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ABSTRACT 
 
Constrained discriminative linear transform (CDLT) optimized 
with Extended Baum-Welch (EBW) has been presented in the 
literature as a discriminative speaker adaptation method that 
outperforms the conventional maximum likelihood algorithm. 
Defining the controlling parameter of EBW to achieve the best 
performance of speaker adaptation, however, still remains an open 
question. This paper presents an empirical study on this issue. 
Results of our experiment suggest that a log-linear relationship 
exists between the optimal controlling parameter and the amount 
of data.  This relationship can be used to efficiently define the 
controlling parameter for each test speaker to improve CDLT 
performance. We also discuss the possibility of generalizing the 
log-linear rule to a wider range of learning problems because such 
knowledge can substantially reduce the computation effort for 
parameter tuning.  
 

Index Terms— Extended Baum-Welch (EBW), Constrained 
Discriminative Linear Transform (CDLT), speaker adaptation, 
parameter tuning 
 

1. INTRODUCTION 
 
Speaker adaptation is critical for improving the performance of 
speech recognition systems when limited speaker data are 
available. Transform based adaptation methods like maximum 
likelihood linear regression (MLLR) [1] have proven efficient and 
effective for a variety of recognition tasks. Inside the MLLR 
family, constrained MLLR (CMLLR) can be applied at the feature 
end and thus is preferable in server-based speech recognition 
systems, where memory and disk space generally cannot afford 
duplications of the speaker-specific models necessary when model-
space adaptations are employed. 

In contrast to conventional CMLLR, constrained 
discriminative linear transform (CDLT) optimizes the speaker-
specific transform using a discriminative criterion like maximal 
mutual information (MMI) or minimum phone error rate (MPE) 
and Extended Baum-Welch (EBW). Previous studies [2,3] have 
shown that discriminative linear transform can outperform the 
maximum likelihood baseline. Similar to the parameter update in 
discriminative acoustic model training (DT), a controlling 
parameter E is involved in the update of transform using EBW. In 
principle, E represents the learning speed. The smaller the E is, the 
faster the learning speed, and vice versa. In existing discriminative 

adaptation research [2,3], E was set to the same empirical value as 
that used in DT.  

However, the setting of the controlling parameter in CDLT 
can be very different from that in DT for at least two reasons.  
Firstly, as speaker adaptation occupies application system 
resources, it requires a more aggressive learning speed for 
efficiency considerations. In DT, model parameters can be 
optimized gradually, in multiple iterations, so the learning speed 
can be set to a slower value. Secondly, the setting of E depends on 
the amount of data. A larger amount of data requires a smaller E to 
reduce the weight of the original parameters, while a smaller 
amount of data needs a larger E to improve the stability. In a 
speech system, the amount of adaptation data available for each 
speaker often varies, and using a fixed E as in DT for all speakers 
will lead to suboptimal accuracy. 

In this paper, we investigate how the controlling parameter 
affects the performance of CDLT in supervised speaker adaptation 
experiments, and then propose a log-linear formula to define the 
parameter for each test speaker based on the experimental 
observations. We also discuss the possibility of generalizing our 
method to defining controlling parameters for other optimization 
models, providing a theoretical proof for ridge regression.  
 

2. CONSTRAINED DISCRIMINATIVE LINEAR 
TRANSFORM 

 
2.1. CDLT formula 
Similar to standard CMLLR, CDLT also transforms both model 
means and variances with the same speaker-specific matrix, so it 
can be applied at the feature end: 
        )()()(ˆ tWbtAoto ζ=+=                                                   (1) 

where TTT AbW ][=  and TTtot ])(1[)( =ζ .  

Given a discriminative objective function )(λF , a weak-sense 
auxiliary function is defined and EBW is used to optimize the 
transform. According to [2], the sufficient statistics required to 
estimate the i-th row of the transform are as follows:   
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where )(tjmγ is the posterior probability at time t for mixture 
component m of state j, and 
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        Then the linear transform can be estimated in the same way 
with CMLLR. If iŵ  denotes the i-th row of Ŵ  and ip  is the 
corresponding extended cofactor row vector, then the linear 
transform can be estimated row-by-row by solving the following 
equation: 
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2.2. The controlling parameter 
As the discriminative transform is updated via EBW technique, a 
Gaussian-specific smoothing factor jmD  is required in the 
optimization. Theoretically, the smoothing factor should be a large 
constant to guarantee convergence of the parameter update 
procedure. It also controls learning speed of the optimization. The 
smaller the factor is, the faster the learning, and vice versa. jmD  is 

generally defined by setting it to ∑
t

den
jm tE )(γ , where E  is the 

controlling parameter empirically set to a value inside [1.0, 2.0].   
        As discussed earlier, the controlling parameter E used in 
CDLT estimation can be very different from that used in DT. On 
the one hand, it should be aggressive enough to achieve a fast 
learning speed, so that the adaptation can be done efficiently. On 
the other hand, it still needs to be large enough to guarantee the 
convergence of optimization. The optimal setting of E also 
depends on the amount of adaptation data. A larger amount of data 
requires a smaller E to reduce the weight of the original parameters, 
while a smaller amount of data requires a larger E to improve 
stability of the parameter updates. In light of the above argument, 
the problem of defining the controlling parameter becomes an 
important research question that warrants further study.  
        Besides considerations of the learning speed, the setting of E 
also needs to guarantee that )(iG  defined by (3) is invertible, for 
the inversion of )(iG is required in the transform estimation. 
Fortunately, this can be guaranteed in practical situations (details 
can be found in Appendix A). 
 

3. EXPERIMENTS 
 
We carried out supervised adaptation experiments to explore how 
the controlling parameter affects the CDLT performance. For the 
sake of simplicity, we only considered a single global transform. 
Boosted MMI [4] objective function was used in the CDLT 
estimation.  

The experiments were based on an English speech recognition 
system. The acoustic model consists of 5k tied-states and 200k 
Gaussian components, trained on 2000 hours of data. The 
recognition features were 24-d vectors computed via an LDA+STC 
projection from 48-d MFCC features (the static cepstra plus the 1st, 
2nd and 3rd order derivatives). SAT training was first performed on 
the features, where the speaker-specific transforms were estimated 
via CMLLR, and then feature-space and model-space MPE 
training was performed based on the SAT model. The language 
model used in the experiments was a general purpose trigram 
model.  

Two sets of test data were used in the experiments, both of 
which were real user data collected from an English dictation 
system at different periods of time.  Test set 1 was composed of 26 
speakers, and test set 2 of 21 speakers. For each test speaker, 
separate adaptation data and test data sets were available. The 
adaptation data of each speaker was 4 minutes long, recorded by 
the speaker in the enrollment stage reading the prompts. The test 
data of each speaker was 7~20 minutes long, and it may have 
included various real-life background noises. Test set 1 was used 
to study the effects of the controlling parameter and for tuning, 
while test set 2 was purely for evaluating CDLT performance.  
        The discriminative adaptation followed the lattice-based 
framework. The denominator lattices were decoded using the un-
adapted acoustic model and a unigram LM. Before the CDLT 
adaptation, CMLLR was first performed to initialize the 
discriminative transform.  

3.1. Effects of the controlling parameter 
Theoretically, the controlling parameter E represents the learning 
speed in optimization: the smaller E is, the faster the learning. 
Figure 1 shows the effects of E on WER for test set 1 by 
comparing the CDLT performance with E=0.2, 0.5, 1.0, 2.0 when 
the amount of adaptation data varies from 30 seconds to 4 minutes. 
It can be seen that when the adaptation data is relatively sufficient 
(i.e. >2 minutes), a smaller E (or faster learning speed) can lead to 
a lower WER, while for smaller amounts of data (i.e. <2 minnutes), 
an aggressive learning speed will cause the optimization to diverge, 
resulting in a very high WER. In the following experiments, we 
use E=0.5 as the CDLT baseline, for it corresponds to the fastest 
learning rate that can guarantee the convergence for all amounts of 
data.  

 
Figure 1. Comparison of CDLT performance with E=0.2, 0.5, 1.0, 

2.0 when the amount of adaptation data varies (on test set 1) 



Figure 2 shows the best E obtained via manual tuning for each 
amount of data on test set 1 (displayed as the solid line with 
asterisk marks). The plot shows that the optimal E of CDLT highly 
depends on the amount of adaptation data, and the dependence 
tends to be log-linear. The correlation coefficient of )ln(E  and 

)ln(n  ( n  denotes the amount of data) computed on test set 1 was -
0.98, confirming the log-linear dependence. This relationship can 
be described by the following equation:  
        )ln(*618.0802.1ln nE −=                                               (9) 
where the linear parameters were estimated via linear regression 
based on test set 1. The dotted line in figure 2 shows the regressed 
E contour, which is rather close to the manually tuned one.  

 
Figure 2. Comparison of the best tuned E and the regressed E when 

the amount of adaptation data varies (on test set 1).  

3.2. Evaluation results 
Tables 1 and 2 list the WERs of CDLT and CMLLR for test set 1 
and test set 2, respectively. Three different controlling parameter 
setting methods were compared: a. E was set to 0.5 for all amounts 
of data (the baseline); b. E was manually tuned to obtain the best 
accuracy specifically for each amount of data; c. E was defined 
using (9).  

Table 1. WERs of CDLT with different E setting methods and 
CMLLR on test set 1. 

CDLT  
CMLLR E=0.5 Tuned E Predicted E

30 sec. 9.74 9.71 9.67 9.70 
45 sec. 9.70 9.58 9.57 9.57 

1.0 min. 9.52 9.34 9.34 9.34 
1.4 min. 9.51 9.34 9.29 9.29 
2.0 min. 9.50 9.25 9.16 9.16 
2.8 min. 9.44 9.24 9.12 9.15 
4.0 min. 9.45 9.21 9.02 9.03 

       For both test sets, CDLT with the E defined by (9) (denoted as 
predicted E) clearly outperformed the CDLT baseline (E=0.5) and 
CMLLR, and it performed similarly to CDLT when E was 
manually tuned. The WER was reduced more when there were 
relatively sufficient adaptation data (i.e. >=2 minutes). When 4 
minutes adaptation data were used for each speaker on test sets 1 
and 2, CDLT based on the predicted E reduced the WER by 4.4% 
and 3.0% compared to CMLLR, and reduced the WER by 2.0% 
and 2.2% compared to the CDLT baseline, respectively. Since the 
controlling parameter prediction formula was regressed only based 
on test set 1, the good performance on test set 2 suggests that the 
parameter defining method can be generalized to new test speakers. 

Table 2. WERs of CDLT with different E setting methods and 
CMLLR on test set 2. 

CDLT  
CMLLR E=0.5 Tuned E Predicted E

30 sec. 7.20 7.26 7.14 7.14 
45 sec. 7.21 7.18 7.14 7.15 

1.0 min. 7.13 7.12 7.08 7.12 
1.4 min. 7.14 7.01 7.00 7.03 
2.0 min. 7.11 7.00 6.95 6.96 
2.8 min. 7.04 6.94 6.87 6.87 
4.0 min. 7.03 6.97 6.82 6.82 

        We also submitted the data of test set 2 to paired t-test to 
check whether these improvements were statistically significant. 
The results revealed that when 4 minutes adaptation data were 
used, the improvements of CDLT based on the predicted E over 
both CMLLR and CDLT baseline were significant (ps <.05). 
When less adaptation data (>=2 min.) were used, the 
improvements over CMLLR were still significant (ps <.05), while 
the significance level of improvements over CDLT baseline 
gradually decreased (p =.076 for 2.8 minutes data and p =.138 for 
2 minutes data).  
 

4. DISCUSSIONS OF THE LOG-LINEAR 
RELATIONSHIP 

 
In these experiments, we have found that the controlling parameter 
of EBW in CDLT estimation has a log-linear dependence on the 
amount of adaptation data. As controlling parameters are involved 
in many optimization models, an interesting question is whether 
such log-linear dependence exists for general classes of similar 
models. Knowledge of this kind of relationship would save 
substantial computational effort in the process of parameter tuning. 
We explore this question for the case of multiple regression. Since 
linear regression is the backbone of many problems in learning, the 
rule discovered on multiple regressions can be expected to hold for 
a wider range of situations. 

Let the regression model be 
        εβ += XY                                                                       (10) 
where X  is the design matrix ( n  by p ), corresponding to n  
samples and p  variables, },...,,{ 21 nyyyY =  are the response 
variables and },...,,{ 21 neee=ε  are the noise terms. Ridge 
regression [5] is used instead of the conventional multiple 
regression to estimate the slopes },...,,{ 21 Pββββ =  in order to 
achieve maximal predictive ability. It has been proven that a 
procedure for achieving the best predictive ability calls for 
estimation of β  by a vector b  obtained as a solution of the 
problem: 

        22 ||||||||)/1(Minimize bXbYn λ+−                              (11) 
        In this setting, λ  is called the “tuning parameter”, and it 
plays a role similar to the controlling parameter E in EBW. It can 
be proven that one can expect an asymptotic inverse relationship 
between λ  and the sample size n  (see appendix B), which 
implies the relationship of type (9) with a slope of -1. This means 
that the log-linear relationship can be widely used to predict the 
optimal tuning parameter for many learning problems that can be 
represented as instances of penalized linear regression. 



        It appears that slope -0.618 in (9) is not as aggressive as the 
asymptotic theory would suggest. While this could be caused by 
model differences, it may be also be related to practical issues like 
the specific features used in the speech recognition system, 
mismatch of noise conditions in the adaptation and test data, or 
presence of outliers.  Further research is needed to explore inherent 
properties of EBW and how they are affected by practical issues. 

5. CONCLUSIONS 

In this paper, we presented an empirical study that investigates 
impacts of the EBW controlling parameter on the adaptation 
performance of constrained discriminative linear transform 
(CDLT). The experimental results suggest that a log-linear 
relationship exists between the optimal setting of the controlling 
parameter E and the amount of adaptation data, which could be 
used to define the controlling parameter for a test speaker. With E 
set based on the log-linear relationship, CDLT performance was 
better than the CDLT baseline (where E was set to a fixed value), 
and better than CMLLR. The improvements were more significant 
when sufficient adaptation data (>=2 minutes) were available.  

We also discussed the value of investigating the log-linear 
relationship in other learning situations, since generalization of this 
finding can substantially reduce the computation effort related to 
parameter tuning. Specifically, we explored the case of ridge 
regression, and proved that the log-linear relationship does exist 
there as well. Based on these results, we can expect that the log-
linear relationship holds more generally in multiple settings, since 
regularized linear regression is the backbone of many learning 
problems. 
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7. APPENDIX 

A. Inversion of G matrixes 
To show how the controlling factor affects the inversion of 

)(iG defined by (3), we rewrite (3) as follows: 
EBAG i +=)(                                                                   (12) 

where  
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Then, )(iG  is invertible since 0)!det( )( =iG , and 
        )det(*)det()det()det( 2/12/1)( EIABBBEBAG i +=+= −−       (15)                 
As B  is positive definite, 0)det( >B . Denote 2/12/1 −−= ABBX  
and represent the eigenvalue decomposition as PPX TΛ= , where 
Λ  is the diagonal matrix of eigenvalues and P  is the associated 
eigenvector matrix. Thus,  

        ∏ +=+Λ=
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From Eq. (16) and Eq. (15) we can find that as long as E is not 
equal to the negative of any of the eigenvalues of X , )(iG  will be 

invertible. Fortunately, in our experiments E was almost never a 
zero point of (16), so the inversion of )(iG  typically existed. 

B. Ridge Regression 
In what follows, we will show that λ in ridge regression can be 
represented as: 
        ))(ln()ln(*10)ln( noncc +−=λ                                       (17) 
        In order to simplify the discussion, we introduce the 
parameter nd *λ= . We will show that for regression-type 
problems d  tends to a constant as the sample size increases, 
implying a relationship of type (17).  
        In the case of multiple linear regression, one can show that 
the solution of (11) is of the form: 
        TT XdIXXb 1)( −+=  
As shown in [5], a suitable d  can be obtained by minimizing the 
Generalized Cross-Validation (GCV) criterion )(dV  defined by: 

2 2( ) (1/ )* || ( ( )) || /{1 ( ) / }V d n I A d Y TraceA d n= − −         (18) 
where  

TT XdIXXXdA 1)()( −+= .                                            (19) 
        For the limitation of space, we will only discuss the univariate 
case here. The generalizations for the multivariate case can be 
proven based on the Singular Value Decomposition (SVD) of X . 
In the univariate case, X  consists of a single column, 
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The criterion )(dV  in this case can be represented as  
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Minimization of )(dV  by d  leads, after some algebra, to: 
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where r  is the sample correlation coefficient. By (23), we obtain  
        22* /)]1([)(lim rrpndn −=∞>−                                         (24) 
 thus proving (17). 
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