
RC25081 (C1012-004) December 6, 2010
Computer Science

IBM Research Report

A Collaborative Requirement Elicitation Technique for
SaaS Applications

Xin Zhou1, Li Yi2, Wei Zhang2, Ying Liu1

1IBM Research Division
China Research Laboratory

 Building 19, Zhouguancun Software Park
8 Dongbeiwang West Road, Haidian District

Beijing, 100193
P.R.China

2Peking University
Beijing

P.R. China

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Collaborative Requirement Elicitation Technique for
SaaS Applications

Xin Zhou

IBM Research - China
Beijing, China

zhouxin@cn.ibm.com

Li Yi, Wei Zhang
Peking University

Beijing, China
{yili07, zhangw}@sei.pku.edu.cn

Ying Liu
IBM Research - China

Beijing, China
aliceliu@cn.ibm.com

ABSTRACT
Software as a Service (SaaS) provides a web based software
delivery model to serve a large number of clients with one single
application instance. One of the essential problems to SaaS
application development is about how to elicit the commonality
and variance of multiple clients’ requirements effectively. This
paper presents a collaborative requirement elicitation technique
(CRETE), which keeps each potential client of a SaaS application
aware of the requirements raised by other clients or the SaaS
vendor and allows a client to vote on existing requirements or
raise new requirements. With CRETE, individual client can create
and evolve his proprietary requirements model, while the SaaS
vendor can automatically get a combined requirements model that
reflects all clients’ common and variant requirements. The SaaS
vendor then can develop a SaaS application according to the
combined requirements model, so that individual client’s
requirements can be satisfied by self-serve configuration without
changing the SaaS application‘s source code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types

General Terms
Management

Keywords
SaaS, requirement elicitation, feature model, collaboration

1. INTRODUCTION
Software as a Service (SaaS) provides a web based software
delivery model to serve a large number of clients with one single
application instance, which has gotten rapidly growing acceptance
by software vendors [5][6]. Each client might present variant
requirements on the application due to their unique business
and/or operational needs. To deal with such variant requirements,
SaaS vendors should provide an application with all
functionalities and offer clients with configuration and/or
customization capabilities to tailor the whole application to a
unique one as wanted Error! Reference source not found.[11].
If clients’ variable requirements can be clearly identified and well
dealt with at SaaS application development time, configuration
can be easily done at SaaS runtime to meet each client’s unique
requirements. For those unique requirements not considered at
SaaS development time, configuration doesn’t work and only

customization can be performed with significant complexity and
cost.

There are many literatures reporting research works on SaaS
application configuration and customization [11][12][14][9].
However, little work is reported on the elicitation of variant
requirements for a SaaS application, which is fundamental to
SaaS configuration and customization. Without well elicited and
organized common and/or variant requirements from potential
clients, it’s difficult to pre-define enough and appropriate
configuration capability for a SaaS application at development
time Error! Reference source not found.[12]. As the volume of
SaaS clients is usually large and the clients are separate, existing
traditional requirement elicitation methods [1][3][8] are incapable
of collecting large amount of diverse requirements and identifying
the commonality and variability among these requirements.

In this paper, we propose a Collaborative Requirement Elicitation
Technique (CRETE) for SaaS application development. The basic
idea is to keep each potential client of a SaaS application aware of
the requirements raised by others and allow them to raise new
requirements or vote on existing requirements. With CRETE,
individual client can create and evolve his proprietary
requirement model, while the SaaS vendor can automatically get a
combined requirement model that reflects all clients’ common and
variant requirements. The remaining part of this paper is
organized as follows. Section 2 presents the concept framework of
CRETE. The requirement elicitation process is illustrated in
Section 3. Section 4 introduces the preliminary experiment
conducted to validate the feasibility of CRETE. Section 5
introduces some related works. Section 6 concludes this paper and
discusses future works.

2. CRETE Conceptual Framework

2.1 Overview
The purpose of CRETE is to facilitate the vendor and potential
clients on collaboratively presenting, verifying and refining a
SaaS application’s requirements via web. A SaaS vendor can raise
an initial set of features and then inform the potential clients to
verify those features by voting “yes” or “no” on them. Also, each
client can present their personal requirements on the application
by creating new features into the CRETE environment, which
further triggers other clients to vote “yes” or “no” on these newly-
added features. During the whole process, the SaaS vendor can
review all requirements about the application.

The conceptual framework for CRETE is shown in Figure 1,
which will be further illustrated in following sections.

Client 1’s
Private View
Client 1’s

Private View
Client 1’s

Working View
Client 1’s

Working View

Vendor’s Management ViewVendor’s Management View

Client N’s
Working View

Client N’s
Working View

Client N’s
Private View
Client N’s

Private View
…

Collaboration
Controller

Collaboration
Controller

Client 1’s BROWSER Client N’s BROWSER

CRETE SERVER

Requirements
Repository

SaaS
Vendor’s
BROWSER

View
Generator

View
Generator

Web Web

Web

Figure 1. CRETE Conceptual Framework

2.2 CRETE Requirement Repository
CRETE requirement repository stores not only all requirements
presented by every clients, but also collaboration-related
information (for example, the creation or voting actions a client
performs on a requirement).

Requirements information includes “feature”, “refinement”, and
“constraint”. Also, the creator of those requirement elements is
recorded in the repository. The refinement relationships organize
features with different levels of abstraction or granularities into a
hierarchical structure. The constraint relationships describe
dependencies between features.

Collaborative requirement modeling information includes “direct
voting”, “propagated voting” and “preference”. A direct vote is a
“yes” or “no” directly given by a client on an existing element. A
propagated voting is automatically applied on an element as a
consequence of a directly voting initiated by a client. For
example, if there is a direct voting “yes” applied to a refinement
relationship, there will be a corresponding propagated voting
“yes” to the two features involved in this relationship. We also
record a client’s preference on an element he votes “yes”, include
the element’s alias, comment to this element’s original name or
description, etc.

2.3 Client’s Views
Client’s working view (CWV) is a client’s main workspace to
build requirement model for a SaaS application. In the CWV, a
client can create requirements and echo existing requirements
presented by the SaaS vendor or other clients. The entities in the
CWV are those “feature” and “refinement” elements that the
clients hasn’t vote “no”. In CWV, “constraint” elements will not
be presented for clients to voting. They will only be used at the
backend to check the validity of a client’s voting.

Client’s private view (CPV) is to represent a client’s proprietary
perspective on the requirements on the SaaS application. The
entities in the CPV are those “feature” and “refinement” elements
that the client has voted “yes”. For an element created by the
client, CRETE will automatically add a “yes” voting to the
element for this client.

2.4 SaaS Vendor’s Views
The SaaS vendor works with his management view (VMV) during
the process of collaborative requirement elicitation. In VMV, the
vendor can create some initial requirements for a to-be developed
application, with which clients can vote on them or be inspired to
propose new requirement. Also, the vendor can review all the

requirements about an application. Besides, the vendor is
presented with each requirement’s creator, the supporters and the
dissenters. Then, he can understand which requirements are
required by which clients. Also, he can attach the requirement
relationships on the management view from application
development perspective. For example, the “excludes” constraint
can be added between two features to indicate their conflict due to
development considerations.

3. Collaborative Requirement Construction
Process
3.1 Process Overview
The collaboration process for constructing a SaaS application’s
requirements model is shown in Figure 2, which includes human
activities performed by clients and system activities performed
automatically by the system according to predefined rules.

SaaS Vendor

Submit Operation
(Creating/Voting)

Resolve Conflicts

Propagate Voting Record Operations

Requirements
Repository

Update Views

Client 1

Client 2

Update Views

Update Views

Client n

Update Views…

Submit
Creating

Resolve
Conflicts

Record Operations

Figure 2. Requirement Construction Process

Update Views: When the information in the requirement
repository changes due to operation submission or propagated
voting, client and vendor’s views can be automatically updated.

Resolve Conflicts: When a client’s working view is updated or he
submits an operation, he should first focus on the conflicts
brought to the view and resolve them using creating and/or voting
operations. Conflict resolving will be elaborated in Section 3.2.

Submitting Operations: In addition to conflict resolution, a client
constructs his requirements by submitting operations. He creates a
requirement totally new by submitting creating operation and
adds a requirement already presented by others by submitting
“yes” voting operation. To remove those requirements already
presented by others from his working view, a client should submit
“no” voting. For SaaS vendor, he can create initial requirements
model for clients’ reference or add relationship to his
management view by submitting creating operations.

Propagate Votes: Propagated votes are computed according to the
rules in Table 1 after an operation was submitted:

Table 1. Voting propagation rules

ID Rules

PR-1 Vote “yes” on Refinement r -> Vote “yes” on Feature f, f
is involved in r

PR-2 Vote “no” on Feature f -> Vote “no” on Refinement r, f is
involved in r

PR-3 If there is a “f1 excludes f2” constraint, Vote “yes” on f1 -
> Vote “no” on f2, Vote “yes” on f2 -> Vote “no” on f1

PR-4 If there is “f1 requires f2” constraint, Vote “yes” on f1 ->
Vote “yes” on f2

Coordinate Operations: In the context of collaborative work,
changes submitted by multiple clients need to be coordinated.
After the coordination, if the original changes are still valid, they
are stored in the CRETE requirement repository and in turn, cause
the update of views of all clients; otherwise the changes are
neglected and its submitter will be informed. Operation
coordination will be elaborated in Section 3.3.

3.2 Conflict Resolution
Conflicts might exist in a client’s working view as the
requirement elements presented in it are from multiple clients.
Meanwhile, a client’s operations may also bring conflicts to his
working view. The potential conflicts in a client’s working view
include:

Non-positioned Feature (NPF): the client has denied all existing
positions of a feature without giving a new one. (A feature must
be positioned as either a root feature, or a child of another
feature.)

Conflicting Refinements (CR): multiple refinements existing in a
working view are considered conflicting if they involve the same
feature as the child but different features as the parent.

For a NPF, a client should create a refinement involving it as a
child, or make it a root feature explicitly, or reconsider existing
refinements. For CR, a client should vote on them to select only
one, or even deny all and create a new one.

3.3 Operation Coordination
As different clients might work on the same requirements set
while submitting operations, it is possible that their operations
need to be coordinated. According to the operation types (creating
or voting) that cause the repository updates, three possible
situations to be coordinated are listed as below.

Duplicate creation happens when a client (c2) creates an element
e1 before a previous creation of the same element has became
visible (i.e. update c2’s working view) to him.

Unreachable vote is a vote on a nonexistent element. If client
c1’s “no” vote on element e1 leads to the deletion of e1, and if
client c2 submits a “yes” vote on e1 before the deletion becomes
visible to him, then c2’s “yes” vote is unreachable.

Unreachable propagation is similar to unreachable votes. If
client c1’s “no” vote on feature f1 leads to the deletion of f1, and
if client c2 creates a constraint involving f1 before the deletion
becomes visible to him, then the propagation of “yes” vote on f1
(according to the rule PR-1) is unreachable.

Coordination of these situations follows a serialized update
strategy, that is, all update applies to the elements in the same
order of their submission. For duplicate creations, the first
creating operation adds a new element to the repository, and the
latter is converted to a “yes” vote. For unreachable votes, they are
no longer valid on a nonexistent element and are neglected. For

unreachable propagations, they are neglected together with the
operations which cause the propagations.

4. An Experiment
We conduct an experiment with five participants acting as four
clients and one SaaS vendor, respectively. The scenario we
designed for them is to collaboratively eliciting requirements for a
SaaS application that supports multiple enterprises to register on it
as individual tenant to perform on-line recruiting related activities
like position publishing, position applying, interview arranging,
etc.

To facilitate the experiment, we develop a tool that implements all
essential aspects of CRETE, including automatic generation of
client and vendor views, support of creating and voting on
features, and organizing features with refinement relationships.
The five participants spend 3 hours working simultaneously in the
first day, and spend a couple of hours working freely (at any time
they like, and often at different time) in the next two days. In the
end, all clients confirm the requirements in their private views,
and the vendor gets the requested features for the system in his
management view. There are totally 113 features proposed for the
application, including 30 variant features. Two interesting
observations have emerged from this case study:

One observation is that the efficiency of requirements elicitation
is greatly improved. The reason is that participants are often
inspired by others’ work. Table 2 shows the proportion of feature
creation and reuse in each client’s private view, which is another
evidence for the improvement of efficiency of our requirements
elicitation.

Table 2. Features in each client’s private view (CPV)

Client

Total
number of
features in
CPV

Number of
features in CPV
that are created
by the client

Number of
features in CPV
that are voted
“yes” by the
client

Client 1 91 21 (23.1%) 70 (76.9%)
Client 2 87 37 (42.5%) 50 (57.5%)
Client 3 94 34 (36.2%) 60 (63.8%)
Client 4 104 21 (20.2%) 83 (79.8%)

The other observation is that many variants can be observed in the
vendor’s management view, as shown in Table 3. It implies that
our approach is capable of capturing variant requirements among
the clients. The “common structure” emerges by comparing the
structure of each client’s private view. We have observed that all
conflicting are resolved by the participants finally, and all private
views have the similar hierarchical structure except that some of
the leaf features are different.

Table 3. Common and variant features in VMV

Total number of features 113

Number of common features in 4 CPVs 83 (73.5%)

Number of features presented in 3 CPVs 24 (21.2%)

Number of features presented in 2 CPVs 5 (4.4%)

113 Number of unique features in 1 CPV 1 (0.9%)

The results preliminarily demonstrate that our approach is suitable
for requirements elicitation of SaaS applications, and the explicit
support for collaboration between clients and vendors has very
positive influence on the efficiency of elicitation.

5. Related Works

5.1 Feature-oriented Requirements Modeling
Our work in this paper is partly inspired by the research of
feature-oriented requirements modeling [7][10][13]. One implicit
assumption of these works is that there is an available set of
domain experts who possess a comprehensive understanding of
the current software product line and thus can discover all the
important commonality and variability in the software
requirements. However, this assumption is generally not hold in
the SaaS circumstance, because of the rapid evolution nature of
SaaS applications and the low possibility of getting a suitable set
of domain experts for SaaS applications.

Our approach releases the feature-oriented requirements modeling
from above assumption by integrating it with explicit
collaboration mechanism and encapsulating it as a web-based
application. The larger number of geographic-distributed clients
can express, share requirements in a collaborative and
asynchronous way, and the requirement commonality and
variability can be collected via analyzing voting on requirements.
Furthermore, we proposes an effective evolution mechanism, that
is, clients can continuously express their updated requirements
about a SaaS application and the SaaS vendor can always get the
latest commonality and variability requirements of a large number
of clients.

5.2 Collaborative Requirements Engineering
Another important research area related to our work is the
research on collaborative requirements engineering. Potts et al.
proposed an approach to carry out the requirements elicitation
through the iteration of three activities: requirements
documentation, discussion and evolution [4]. In CREWS project,
the concept of scenario is used to facilitate the conduction of
requirements engineering activities in collaborative ways [3].
Decker et al. leveraged wiki to support asynchronous
collaborative requirements collecting Error! Reference source
not found.[2].

All these research works aim to get a suitable set of requirements
for only a single customer or organization, and it is almost
impossible for them to collect and analyze requirements
containing variability requirements from different customers or
organizations. While in our approach, a carefully designed voting
mechanism is provided to collect requirements from a large
number of different customers and to reflect the commonality and
variability of those collected requirements, which makes our
approach suitable for SaaS applications’ requirements elicitation.

6. Conclusions
This paper presents a Collaborative Requirement Elicitation
Technique (CRETE) to facilitate SaaS vendors on eliciting the
commonality and variance of multiple clients’ requirements
effectively. In this approach, a center repository is used to record
all requirements about the to-be developed SaaS application and

all collaboration related information. Based on the information in
repository, client’s working view is presented as a client’s
workspace while client’s private view is presented for a client to
review his proprietary requirement model. SaaS vendor raises
initial application requirements and reviews the combined
requirements model through management view. A process with
relevant conflict resolving and coordination rules is also proposed
to guide the collaboration. An experiment is conducted to show
the feasibility of CRETE.

In the future, we are going to focus on improving the usability of
the CRETE. Especially, how to represent a large number of
requirement elements in client’s working view in a well organized
way so that clients will not get lost in it.

7. REFERENCES
[1] A. Van Lamsweerde, "Requirements Engineering in the Year

00: A Research Perspective," International Conference on
Software Engineering, Los Alamitos, California: IEEE
Computer Society Press, 2000, pp. 5-19.

[2] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth. Wiki-
Based Stakeholder Participation in Requirements
Engineering. IEEE Software, 2007, 24(2):28-35.

[3] CREWS Homepage. http://sunsite.informati k.rwth-
aachen.de/CREWS/.

[4] C. Potts, K. Takahashi, A.I. Anton. Inquiry-Based
Requirements Analysis. IEEE Software, 1994, 11(2):21-32

[5] D. Ma, The Business Model of "Software-As-A-Service”. In
2007 IEEE International Conference on Services Computing
(SCC 2007), pages: 701–702, July 2007.

[6] L. Herbert, E. G. Brown, and S. Galvin, “Competing in the
fast-growing SaaS market”, Forrester Report, No.
0,5110,44254,00, 2008.

[7] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,
“FORM: A Feature-Oriented Reuse Method with Domain-
Specific Architecture”, Annals of Software Engineering, vol.
5, pp. 143-168, Sept. 1998

[8] K. E. Wiegers, Software Requirements, Microsoft Press,
1999.

[9] K. Zhang, X. Zhang, W. Sun, H.Q. Liang, Y. Huang, L.
Zeng and X. Z. Liu, “A Policy-Driven Approach for
Software-as-Services Customization”, IEEE Computer
Society, CEC-EEE, 2007, pp.1-8.

[10] P. Clements, and L. Northrop, “Software Product Lines:
Practices and Patterns”, Addison-Wesley Professional, 2001

[11] R. Mietzner, A. Metzger, F. Leymann, K. Pohl, “Variability
modeling to support customization and deployment of multi-
tenant-aware Software as a Service applications”, 2009 ICSE
Workshop on Principles of Engineering Service Oriented
Systems, pages: 18-25.

[12] W. Sun, X. Zhang, C. Guo, P. Sun, and H. Su, “Software as a
Service: Configuration and Customization Perspectives”.
SERVICES-2. IEEE, 2008, pages: 18–25.

[13] W. Zhang, H. Mei, H. Zhao, “A feature-oriented approach to
modeling requirements dependencies,” in Proc. of the 13th

IEEE Intl. Conf. on Requirements Engineering (RE 05),
2005, pp. 273–282

[14] Y. Shi, S. Luan, Q. Li, H. Wang, “A Multi-tenant Oriented
Business Process Customization System”, 2009 International

Conference on New Trends in Information and Service
Science, Beijing, China, 2009.

	1. INTRODUCTION
	2. CRETE Conceptual Framework
	2.1 Overview
	2.2 CRETE Requirement Repository
	2.3 Client’s Views
	2.4 SaaS Vendor’s Views

	3. Collaborative Requirement Construction Process
	3.1 Process Overview
	3.2 Conflict Resolution
	3.3 Operation Coordination

	4. An Experiment
	5. Related Works
	5.1 Feature-oriented Requirements Modeling
	5.2 Collaborative Requirements Engineering

	6. Conclusions
	7. REFERENCES

