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Abstract

Strong wind gust can cause severe damages, such as power outages, which are major concerns for emer-

gency management of utility companies. Yet, gust speed is not a standard output from weather forecasting

models. In this paper, we proposed a Bayesian hierarchical model which combines historical meteorological

observations and weather model outputs to forecast hourly gust speed. The exploratory analysis suggested a

two-step sequential spatio-temporal model as follows. In the first step, we calibrated sustained wind speed

forecast and in the second step, we forecasted gust speed based on calibrated wind forecast. We demonstrated

the use of our model by a real application concerning gust-caused damages for a local power utility company

from New York area.

Key Words: Gust, Model calibration, Spatio-temporal, Wind



1 Introduction

This paper describes a statistical model to forecast gust speed, the maximum wind speed in every two seconds.

Gust is a major factor to cause damages and thus, its prediction is critical in many real applications. For

example, power outages due to strong wind gust are major concerns for the emergency management of electric

utility companies. Strong wind gust blows off trees and branches. Consequently, the wires and poles fall down,

leading to power failures and extensive damages including threat to human lives. One severe event was reported

on September 16, 2010 in New York City. A high wind gust speed of 100 mph was recorded, causing major

transportation issues and power outrages in the metropolitan area. In the city alone, Con-Ed reported more than

4, 500 outages on Staten Island and 27, 000 in Queens (http://newyork.cbslocal.com/2010/09/16/severe-storm-

rips-through-new-york-city/).

In the example of emergency management for electric utility companies, an effective gust forecast can

help to gain extra time for proactive allocation and deployment of resources to minimize time to repair (Li

et al., 2010). A new IBM weather modeling capability, dubbed ”Deep Thunder” (DT) (Treinish and Praino,

2006), provides high-resolution forecasts for a region ranging from a metropolitan area up to an entire statewide

calculations as fine as every mile. Forecasts are made up to one day ahead of time. The reports include various

weather elements, such as wind speed, temperature, humidity and pressure. However, currently DT system does

not forecast gust speed. Driven by this business concern of gust-caused damages, in this paper, we developed

a statistical method to forecast hourly instantaneous gust speed, which integrates the DT weather forecast and

the historical weather data.

Previous researches have been done on modeling sustained wind speed (e.g., Brown et al., 1984; Haslett

and Raftery, 1989; Genton and Hering, 2007). Despite the amount of work on wind-forecast post process

and ensemble forecasting (e.g., Sloughter et al., 2010; Thorarinsdottir and Gneiting, 2010), very few work

was devoted to forecasting gust speed which provides direct information to address the issues in emergency

management. In meteorology, wind gust (shorted as gust) is a different concept from sustained wind (shorted as

wind). For comparison, wind speed is the average of sampled wind speed in two minutes while gust speed is the
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maximum sampled wind speed in two seconds. Even though gust and wind are two distinctive meteorological

measures, some studies have suggested a linear relationship between sustained wind speed and gust speed

(Deacon, 1965). This motivated our method to forecast gust speed based on sustained wind speed forecast.

Unlike the wind speed recorded instantaneously, the gust observations herein are collected accumulatively,

i.e., the current gust speed record is updated, if it exceeds the gust speed at previous time point; otherwise, the

gust speed will not be updated. In other words, the gust observations are censored. This is an example of record

values (Lin, 1987), where the research focus is to forecast the occurrence time of the next record. Different from

previous work, we are interested in the inference of the underlying random process, from which the incomplete-

observed record value is obtained. To be specific, we aim at forecasting the true hourly instantaneous gust

speed based on its record value history. To achieve this goal, we developed the following two-step sequential

hierarchical model as suggested by exploratory analysis. In the first step, we built a linear model to calibrate

DT wind forecast using wind speed observations. We then, in the second step, forecasted the gust speed based

on the calibrated DT wind speed. The resulting model, which incorporated information from DT wind forecast,

wind speed and gust observations, allowed us to forecast the instantaneous gust speed.

The remainder of the paper is organized as follows. Section 2 introduces the data sets and the exploratory

analysis which justifies the model we developed. Section 3 describes the two-step sequential model in a Beysian

hierarchical framework. The forecasting results of a real application are shown in Section 4 and the discussion

in Section 5.

2 Data and Exploratory Analysis

2.1 Forecast and Observation Data

Deep Thunder (DT) system developed at the IBM Thomas J. Watson Research Center is a service that provides

local high-resolution weather predictions customized to business applications for weather-sensitive operations.

It uses a capability at the meso-scale (which corresponds to 1- to 2-km grid spacing, or cloud scale) to predict the
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combination of weather conditions across the northeastern area of US. The service area is shown as blue grids

on the left map of Figure 1. DT operates one-day-ahead forecast initialized at 00 hours UTC in international

standard time, 8 p.m. eastern time in summer when daylight saving time operates, and 7 p.m. eastern time

otherwise. The IBM DT system has been used for a utility company in the New York metropolitan area, to

provide weather forecast which initiates the power outage damage forecast (Li et al., 2010). Our focus is to

forecast the severe weather conditions that can disrupt the electrical distribution network of overhead lines.

The wind gust forecast is critical for this purpose, which is, unfortunately, not forecasted directly from IBM

DT system.
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Figure 1: The left panel shows DT forecast domain (blue grids) in the northeastern area of the US and the subset
of the grids (red grids) that covers the utility company service area that we are interested in. The right panel
zooms in the grid area of interests. 13 weather stations where weather observations are collected are plotted as
red pluses.

We extracted the DT weather forecast outputs at the selected grids that cover the service area of the utility

company. These grids are marked red on the left panel of Figure 1. The DT model outputs report various

weather elements, such as wind speed, temperature, humidity and pressure. The wind forecast was recorded
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in knots (1 knot = 1.51 mile per hour (mph)) and converted to mph for analysis. The weather forecast data

between July 1, 2009 and January 31, 2010 were selected to develop the model and the data between February

1, 2010 and February 17, 2010 were used for testing and validation.

Historical weather observations were provided by AWS Convergence Technologies, Inc., Germantown,

MD, including hourly observations of surface wind speed (mph), accumulative gust speed (mph), temperature

and etc. Weather observations were made at 13 weather stations located in the service area of the utility

company. The stations are shown in the right panel of Figure 1, labeled by red crosses. To compare the DT

weather forecast with real observations by locations, we interpolated the weather forecast data to those 13

weather station locations using bilinear interpolator, a common practice in the meteorological community.
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Figure 2: Plots of the hourly values of the accumulative gust speed observations (red curve), forecasted (black
curve) and observed wind speeds (blue curve) from July 1, 2009 to July 15, 2009.

In Figure 2, we showed the hourly values of the accumulative gust speed observations (red curve), fore-

casted (black curve) and observed (blue curve) wind speeds from July 1, 2009 to July 15, 2009 as an illustra-

tion. From the plot, we can see the record value property of gust observations. Gust speed is an increasing

step-function curve within 24 hours. Accumulative gust is only updated when the gust speed at current time

exceeds the speed at previous time point or at midnight of each day. In our situation, the record value is reset at

midnight for every 24 hours. Compared to gust observations, the DT wind forecast and wind observations are
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instantaneously recorded.

2.2 Exploratory Analysis

In this section, we showed some results from exploratory data analysis. These results were illustrative and

helpful to provide insights to our model building. Since gust observations are censored, there is no direct

way to explore the relationship between gust speed and other variables. For this reason, we only picked the

observed gust values which are record values and removed those censored gust values. Accordingly, we picked

the observed wind and DT wind values at the time points that the gust speed was observed rather than censored.

• Exploration of relationship between wind speed and gust speed suggests that we can predict gust speed

using a linear model based on wind observations if they are available.

We showed the scatterplots of wind observations and wind forecast versus observed gust speed in Figure

3. Through comparison, gust observations have stronger correlation with wind observations (left panel)

than with wind forecast values (right panel). In addition, a strong linear relationship between gust speed

and wind speed can be observed from these two plots.
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Figure 3: Scatterplots of gust observations vs. wind observations (left panel) and gust observations vs. DT wind
forecast (right panel).

• Exploration of relationship between DT wind forecasts and wind observations suggests a two-step se-

quential model.
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Wind observations, in principle, are not available at the stage of predicting gust speed. Thus, we need

to rely on DT wind forecast to some extent. We showed the scatterplot of the wind observations and

the DT wind forecasts in Figure 4. DT wind forecast represents a strong linear relationship with wind

observations which suggests a linear relationship between them. However, we also noticed the potential

biases in the DT wind forecast. As we can see from the plot, the DT wind forecast is usually higher than

the wind observations. For this reason, direct use of the DT wind forecasts to predict gust speed will

lead to biased gust speed forecasts. More importantly, the gust speed is record valued and not completely

observed. The inference of the true gust speed process heavily depends on the accuracy of the predictors.

This exploratory analysis suggests the following two-step sequential modeling. In the first step, we

calibrated the DT wind forecast against the historic wind observations. Then, given the calibrated forecast

wind values combined with historical gust observations, we provided predication of gust speed.
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Figure 4: Scatterplots of wind observations vs. DT wind forecast.

• Exploration of seasonality patterns of wind speed suggests inclusion of seasonality factors in the model.

In Figure 5, we compared the 24-hour patterns of DT wind speed forecasts (left panel) and the wind

observations (right panel) through boxplots. As shown in the plots, it is apparent that wind speed is

higher during the day, i.e., 9am to 6pm, while the DT wind forecasts do not show such pattern. This
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suggests we include 24-hour seasonality factors in the statistical model as means to capture the seasonal

difference between the wind observations and DT forecasts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
5

10
15

20
25

30
35

forecasted wind

Hour

w
in

d 
sp

ee
d 

(m
ph

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
5

10
15

20
25

30
35

wind observation

Hour

w
in

d 
sp

ee
d 

(m
ph

)
Figure 5: Exploration of 24-hour seasonality patterns of DT wind forecasts (left panel) and wind observations
(right panel).

• Exploration of other meteorological variables suggests they are not significant.

We also considered including more meteorological forecast variables, such as temperature, humidity and

pressure. Exploratory analysis showed that after including sustained wind speed as a predictor in the gust

forecasting model, these variables are not significant and thus will not be considered in the model.

• Exploration of spatial heterogeneity suggests spatial varying coefficients.

Figure 6 explores whether the relationship between observed wind speed and DT forecasted wind speed

varies over space. We fitted linear regression models of wind observations to DT wind forecasts for

the data collected at each of the 13 different locations, respectively. Figure 6 showed that there were

substantial differences among the resulting regression slope coefficients. To test the heterogeneity of

location effects, we used Breusch-Pagan (BP) test (Breusch and Pagan, 1979). The BP test gave a very

small p-value, which confirmed the heterogeneity due to spatial location impact. The same procedure was

also performed to explore the relationship between gust speed and wind speed, with similar conclusion

on the spatial heterogeneity.

• Exploration of spatial correlation of the regression coefficients at different locations suggests the existence
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Figure 6: Exploration of spatial heterogeneity. A linear regression model of wind observations to DT wind
forecasts was fitted for the data collected at each of the 13 different locations, respectively. This plot shows the
estimates (circles in the plot) of the slope coefficients for each location and the corresponding 95% confidence
levels (dotted lines) of the estimates.

of a spatial covariance structure.

Followed by the analysis of spatial heterogeneity, we studied the spatial correlation of the regression

coefficient estimates at different locations. Figure 7 shows the semivariograms of the 13 slope estimates.

As can be seen from the plot, there is a clearly spatial pattern between the coefficients, which motivated

us to build a model with spatial varying coefficients (Gelfand et al., 2003).

3 Method

Throughout this paper, we are going to use the following notations:

• t ∈ T = {1, . . . , T}: t = 1 refers to midnight of July 1, 2009, and T is the total number of hours that

data covered;

• U = {u1, . . . , uM}: the weather station locations and M is the number of weather stations;

• xt(u): the hourly wind speed forecast at location u and time t, which is interpolated using bilinear

interpolation of the nearby forecast values, u ∈ U and t ∈ T ;
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Figure 7: Semivariogram of the slope estimates from the linear regression of wind observations versus wind
forecasts at 13 locations.

• yt(u): the wind observations at location u and time t, u ∈ U and t ∈ T ;

• zt(u): the original accumulative gust speed records at location u and time t, u ∈ U and t ∈ T ;

• gt(u): the true gust speed process at location u and time t, u ∈ U and t ∈ T .

The gust speed record zt(u), collected hourly at different weather stations, was updated only at the midnight

of each day or when the gust speed at time t exceeded the one at time t − 1. This implied the following

relationship between zt(u) and gt(u) with z1(u) = g1(u) at starting time t = 1,

zt(u) =





gt(u) if gt(u) ≥ gt−1(u) or [(t− 1)/24] = 0,

zt−1(u) otherwise,

where [A/B] means the remainder after A is divided by B. As shown in the exploratory analysis in Section 2.2,

the observed gust speed gt(u) is linearly related to the wind speed yt(u). This suggests the following model

gt(u) = δ + η(u)yt(u) + εg
t (u), (1)
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with εg
t (u) ∼ N(0, σ2

g). The exploratory analysis in Section 2.2 indicated that the slope coefficients vary over

space. Therefore, we model η = {η(u), u = 1, . . . ,M} as spatially varying coefficients,

η ∼ N(e1M ,Σ(φη, σ
2
η)), (2)

where Σ(φη, σ
2
η) is the covariance matrix with the first parameter specifying spatial correlation and the second

parameter specifying variance. The intercept coefficient, δ, does not show heterogeneity in space from our

exploratory analysis and thus, we modeled it as a scalar parameter.

To guarantee that the gust speed value is nonnegative, we put constraints to parameters δ and η(u), u =

1, . . . , M so that the estimates are positive. In addition, we investigated residual Q-Q plot of model (1) and

found out that the normality assumption works reasonably well.

In reality, the wind speed observation can never be available in advance. Therefore, we had to reply on the

DT wind forecasts. To predict gust speed, we proposed a two-step sequential modeling. In the first step, the

wind forecast was calibrated using wind observations (Equation 3). Then given the calibrated wind forecast,

we predict gust speed according to model (1). We modeled the wind forecast calibration process as

yt(u) = αt + γh(t) + β(u)xt(u) + εy
t (u), (3)

where εy
t (u) ∼ N(0, σ2

y) and γh(t) is the hourly discrepancies, with h(t) = [(t− 1)/24] and h(t) = 1, . . . , 24,.

In above, αt incorporated temporal autocorrelation besides the seasonality and we assigned the following

autoregressive structure as

αt = ραt−1 + εα
t ,

where εα
t ∼ N(0, σ2

α). Similar to the model of η, we further modeled β = {β(u), u = 1, . . . , M} as spatially

varying coefficients,

β ∼ N(b1M ,Σ(φβ, σ2
β)), (4)
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where Σ(φβ, σ2
β) is the covariance matrix with the first parameter specifying spatial correlation and the second

parameter specifying variance.

We run MCMC algorithm to estimate parameters. Within each iteration of the MCMC algorithm, we

imputed the hourly gust speeds according to their full conditional posterior distributions. The algorithm works

as follows:

Algorithm of imputation

At MCMC sampling iteration r,

• If zt(u) is an observed value, g
(r)
t (u) = zt(u), where we use ·(r) superscript to represent the MCMC

samples of the parameters at iteration r.

• If zt(u) is unobserved, given the MCMC samples of the unknown parameters at iteration r, sample

g
(r)
t (u) from truncated normal distribution, TN(δ(r) + η(r)(u)yt(u), σ2(r)

g ) with lower bound equal to 0

and upper bound equal to zt(u).

• Treat the sampled g
(r)
t (u) as the true value, and use it to update the model parameters.

Forecast

To forecast the gust speed at the grids over the entire region, we need to obtain the estimates of the parameters

at any location. Some of the parameters vary over space, such as β = (β(u1), . . . , β(uM ))′. To provide

interpolation for the parameter surface, taking the β as an example, we sampled β(s∗) at a new location s∗

from the posterior of the β process. To be specific,

f(β(s∗)|x, y) =
∫

f(β(s∗)|β, σ2
β, φβ)f(β, σ2

β, φ|x, y). (5)

The first density under the integral is a univariate normal that can be derived from (4). The second density is

the posterior distribution of the parameters from which posterior samples can be obtained.

12



To predict the true wind, or calibrated wind, yt(s∗), given the wind forecast xt(s∗) and the past true wind

till time t, denoted by y(t) = (y(t)(u1), . . . ,y(t)(uM ))′, we require

f(yt(s∗)|xt(s∗), y(t)) =
∫

f(yt(s∗)|αt, γh(t), β(s∗), σ2
y , xt(s∗)) (6)

×f(β(s∗)|β, σ2
β, φβ)

×f(β, αt, γh(t), σ
2
y , σ

2
β, φβ|x, y).

The first density under the integral is given by Equation 3. Similar to the strategy of sampling β(s∗), the

samples of the other parameters can be obtained from the posterior distributions, the second and the third terms

under the integral.

To predict gt(s∗) given the wind forecast xt(s∗), we have

f(gt(s∗)|xt(s∗)) =
∫

f(gt(s∗)|δ, η(s∗), σ2
g , yt(s∗)) (7)

×f(yt(s∗)|αt, γh(t), β(s∗), σ2
y , xt(s∗))

×f(β(s∗)|β, σ2
β, φβ)× f(η(s∗)|η, σ2

η, φη)

×f(β, αt, γh(t), η, δ, σ2
y , σ

2
η, σ

2
β, φβ, φη|x, y).

Again, it is straightforward to obtain samples from this predictive distribution.

4 Results

The model was developed using forecast and observations from July 1, 2009 to January 31, 2010. The data from

February 1, 2010 to February 17, 2010 are used for testing and validation purpose. Given the sustained wind

forecast, we calibrated the forecasted wind speed and then forecasted gust speed. In the left panel of Figure

8, we showed the comparison of the hourly forecasted values and observations at one weather station as an

illustration. We can see that the wind forecast (blue curve) is usually higher than the wind observations (green
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curve) which has been discussed in Section 2.2. The calibrated wind forecast is shown as a light blue curve

which is closer to the real observations (green curve). The gust observations are plotted in black curve which

shows the record value property and the instantaneous gust forecast is represented by a red curve. Comparing

these two curves, we can see that when gust speed is unobserved, the gust forecast is usually lower than its

value which is due to the fact that the gust observations are censored; when gust speed is updated, our gust

model provides pretty good forecast compared to the observations.
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Figure 8: Evaluation of gust forecast. Left panel: comparison of gust forecast (red curve) with gust observations
(black curve) and wind calibration (light blue curve) with wind observations (green curve) and DT wind forecast
(blue curve) at one weather station. Right panel: scatterplot of gust forecast versus observed gust speed.

In addition to the comparison of gust forecast and gust records by locations, we also compared them by

choosing the observed gust speed and the corresponding gust forecast for all of the locations in the right panel

of Figure 8. Overall, the scatterplot shows that gust forecast lines up well with gust observations despite that

the forecast is somewhat positively biased when the gust speed is low (e.g., less than 10mph). The bias is in

part due to the fact that the DT model tends to overforecast when the wind speed is low. Furthermore, the

forecast accuracy of low gust speed is not our major concern, since in the context of power-outage emergency

management, the interest is the forecast accuracy for moderate to strong gust that is directly related to the

damages. Our method provides reasonable accuracy in forecasting gust for this purpose.

In the left panel of Figure 9, we showed the estimated η surface. Recall that in (1), η are spatial varying

regression coefficients to connect true wind speed with the gust speed . From the MCMC algorithm, we

obtained the posterior samples of η at the 13 weather stations. Then we interpolated them to the whole η
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surface and estimated the η surface using the posterior means from its posterior distributions. The plot shows

that the coefficients vary substantially across space. Indeed, the estimates range between 1.1 and 1.9. Outside

the the hull of 13 weather stations, the η surface is sort of constant. This is expected due to the fact that the

weather stations are located scarcely in that region. We can further obtain the gust forecast surface by plugging

the interpolated η and β in (7). As an illustration, we showed the snapshot of gust forecast surface at 3am on

Feb 12, 2010 in the right panel of Figure 9. Clearly, the gust speed varies dramatically over space. Our method

provides a high-resolution gust forecast, which is critical information for dispatching facilities and personnel

under extreme weather conditions. With our high-resolution gust forecast, utility companies can allocate more

resources to the high risk areas. This provides an efficient solution to the emergency management.
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Figure 9: Maps of η surface (left panel) and gust forecast (right panel) at 3am on Feb 12, 2010.

5 Discussion

Motivated by the business need to forecast instantaneous gust speed using IBM Deep Thunder system, we de-

veloped a Bayesian hierarchical model to forecast gust speed. Our method combines information from multiple

sources including the DT forecast data and historical weather information. The proposed model provides effec-

tive local high-resolution gust forecast, which are critical for weather-sensitive operations, such as emergency

management for power outages caused by strong storm events. Our approach is currently being used by the
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utility company in its distribution operations.

When the gust forecast is available, it can be fed into the damage forecasting model to provide outage

prediction. It will be another interesting topic to model damage forecast while combined with the gust forecast

in one framework. We will leave it for future work.
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