
RC25088 (W1012-066) December 16, 2010
Computer Science

IBM Research Report

Optimizing MPI Collectives Using Efficient Intra-node
Communication Techniques over the

Blue Gene/P Supercomputer

Amith Mamidala1, Ahmad Faraj2, Sameer Kumar1, Douglas Miller2,
Michael Blocksome2, Thomas Gooding2, Philip Heidelberger1, Gabor Dozsa1

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2IBM Systems and Technology Group
Rochester, MN 55901

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Optimizing MPI Collectives using Efficient Intra-node Communication Techniques
over the Blue Gene/P Supercomputer

Amith Mamidala1 Ahmad Faraj2 Sameer Kumar1 Douglas Miller2

Michael Blocksome2 Thomas Gooding2 Philip Heidelberger1 Gabor Dozsa1

{amithr, faraja, sameerk, dougmill, blocksom, tgooding, philiph, gdozsa}@us.ibm.com
1 IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598

2 IBM Systems and Technology Group, Rochester, MN, 55901

Abstract

The Blue Gene/P (BG/P) system is the second gener-
ation in the line of massively large supercomputers that
IBM built with a petaflop scalability footprint and with
greater emphasis on maximizing the efficiency in the areas
of power, cooling, and space consumption. The system
consists of thousands of compute nodes interconnected by
multiple networks, of which a 3D torus–equipped with
direct memory access (DMA) engine–is the primary. BG/P
also features a collective network which supports hardware
accelerated collective operations such as broadcast, allre-
duce etc. BG/P nodes consist of four cache coherent sym-
metric multi-processor (SMP) cores. The message passing
interface (MPI) is the popular method of programming
parallel applications on these large supercomputers. One
of BG/P’s operating modes is the quad mode where the
four cores can be active MPI tasks, performing inter-node
and intra-node communication.

In this paper, we propose software techniques
to enhance MPI collective communication primitives,
MPI Bcast and MPI Allreduce in BG/P quad mode by
using cache coherent memory subsystem as the commu-
nication method inside the node. Specifically, we pro-
pose techniques utilizing shared address space wherein
a process can access the peer’s memory by specialized
system calls. Apart from cutting down the copy costs, such
techniques allow for designing light weight synchronizing
structures in software such as message counters. These
counters are used to effectively pipeline data across the
network and intra-node interfaces. Further, the shared
address capability allows for easy means of core special-
ization where the different tasks in a collective operation
can be delegated to specific cores. This is critical for
efficiently using the hardware collective network on BG/P
as different cores are needed for injection and reception
of data from the network and for copy operation within
the node. We also propose a concurrent data structure,
Broadcast (Bcast) FIFO which is designed using atomic
operations such as Fetch and Increment. We demonstrate
the utility and benefits of these mechanisms using bench-
marks which measure the performance of MPI Bcast and
MPI Allreduce. Our optimization provides up to 2.9 times
improvement for MPI Bcast over the current approaches
on the 3D torus. Further, we see improvements up to
44% and 33% for MPI Bcast using the collective tree and
MPI Allreduce over the 3D Torus, respectively.

I. Introduction
The Blue Gene/P (BG/P) [1] Supercomputer allows

for ultra scalability and is designed to scale to at least
3.56 petaflops of peak performance coupled with superior
efficiencies in the areas of power, cooling and space con-
sumption. BG/P consists of thousands of compute nodes
and each of these nodes is composed of four processing
cores. Unlike its predecessor, all the processing cores
are arranged as a SMP with hardware managed cached
coherency. The compute nodes are interconnected with
three different types of networks with the 3D torus being
the principal network for data communication. There is
also the collective network which supports hardware accel-
erated collective operations. The primary mode of commu-
nication over BG/P is by exchanging messages via the stan-
dard Message Passing Interface (MPI) which has become
ubiquitous in the high performance computing arena. One
important and widely used mode of running the parallel
applications over BG/P is to program all the processing
cores to do message passing. In this context, it is important
to not only consider the inter-node communication but
also optimize intra-node communication performance in
conjunction with the network communication.

MPI provides a wide variety of communication primi-
tives. In particular, it provides for a rich set of collective
operations which are extensively used in many scientific
applications. In this paper, we focus on optimizing two
widely used collective operations namely, Broadcast and
Allreduce by allowing sharing of data via the cache
coherent memory subsystem [1]. This is an essential step
on BG/P as the DMA engine, though capable of saturating
all the six torus links simultaneously [2], does not provide
adequate bandwidth for the collective messaging tasks.
Also, the processes communicating via memory can either
use a separate mutually shared segment or directly access
the memory of the peer’s process. We refer to these
approaches in this paper as the shared memory and shared
address space based methods respectively.

Shared memory based methods for these collectives
have been extensively studied by many researchers in
the past [3], [4], [5], [6], [7], [8]. In these approaches
either a flat or a circular buffer is deployed for staging
the data. Data has to be either copied in or out of these
buffers during the course of the operation. Synchroniza-
tion is handled explicitly by setting or reading signaling
flags from a shared area. These flags indicate whether
a particular data item is either read or written into the
data buffers. However, with the rising number of cores
per node, effective synchronization techniques coupled

with shared data structures is needed to ensure safety and
performance at the same time. This is because potentially
several processes or threads can access these data buffers
and providing convenient concurrent data structures is
extremely important for programmability and performance.
In this paper, we propose a concurrent Bcast FIFO for
MPI Bcast using atomic operations to enable safe enqueue
and dequeue of data items. The FIFO can be designed on
any platform supporting the fetch and increment atomic
operation. However, mechanisms employing shared mem-
ory involve extra copying of the data from/into the staging
buffers. On BG/P, where the processing cores are relatively
slower, memory copy imposes a fundamental bottleneck
in terms of achievable performance. Recently, several
researchers have demonstrated the utility of accessing
the peer’s memory directly for improving intra-node MPI
point-to-point and collective performance [9], [10], [11],
[12], [13], [14]. These studies have concentrated mostly on
boosting performance with in the node and do not take into
account the network capabilities. BG/P features advanced
hardware accelerated collective primitives both in torus and
the collective tree network. However, efficiently leveraging
these poses a challenge because:

a) data arriving via these channels has to processed fast
enough, considering especially the lower clock frequency
of the cores,

b) any extra copy across the network interface and intra-
node buffers presents a bottleneck,

c) in the case of collective tree, the processing cores also
have to inject/receive data into the hardware tree, further
compounding the problem and

d) in the case of allreduce, the cores have to simulta-
neously do a local sum and broadcast of the data arriving
from the network.

In the following sections of the paper, we propose
algorithms that address these challenges. In particular, in
this paper:

• we propose an integrated mechanism of doing shared
address MPI Bcast over BG/P Torus that utilizes light
weight message counters for data synchronization and
pipelining.

• we design a shared address and core specialization
strategy that effectively leverages the collective net-
work providing hardware broadcast capabilities. The
key idea used in the approach is to delegate special
tasks to each of the core and allow these tasks to be
completed in a pipelined and asynchronous manner
wherever possible.

• we develop a similar approach for MPI Allreduce
where different cores are used to perform local re-
duction and broadcast. A separate core handles the
network protocol processing.

• we design software Bcast FIFO, a concurrent data
structure which provides a convenient and general
mechanism of broadcasting data over any system sup-
porting a basic atomic fetch and increment operation.

The design of the schemes is integrated into the DCMF
messaging stack [15], CCMI collective framework [16]
and glued to MPICH [17]. We demonstrate the utility and
benefits of these mechanisms using benchmarks measuring
the performance of MPI Bcast and MPI Allreduce. Our
optimizations provide up to 2.9 times improvement for
MPI Bcast in the quad mode over the current approaches
on 3D torus. Further, we see improvements up to 44%
and 33% for MPI Bcast using the collective tree and
MPI Allreduce over the 3D torus, respectively. Our results

also demonstrate the effectiveness of the software message
counters to aid efficient pipelining.

In the following section of the paper, we provide the
motivation of our work followed by the detailed back-
ground. We then describe the details of the collective
algorithms for MPI Bcast and MPI Allreduce over the
BG/P 3D torus and collective network. Finally, we evaluate
the techniques proposed in the paper followed by the
conclusion and future work.

II. Motivation
In this section, we explain the main motivation for the

different designs proposed in the paper.
As discussed in the earlier section, copying costs play

a decisive role in the performance of the collective op-
erations. This poses a challenge on BG/P where due to
power and efficiency considerations, each of the core
is clocked at a lower frequency. It is to be noted that
the same guiding principle also applies in the context
of multicore computing where increasing parallelism and
not the core frequency is required to obtain performance
with low power dissipation. It is in this context that the
shared address schemes play an important role. By shared
address schemes we mean the mechanisms by which a
process can directly access the memory of the peer process
residing on the same node. This would involve, directly
or indirectly the operating system services on the node.
Recently, several researchers have shown the effectiveness
and applicability of the concept on different architectures.
Jin et al. demonstrated the kernel aided one copy schemes
using LiMIC [11], a kernel module supporting MPI intra-
node communication on a Linux machine, integrated into
open source MVAPICH [18], [19], [20]. Brightwell et al.
have shown the performance gains on the Cray XT using
the SMARTMAP [9], [10], [21] strategy developed in the
Catamount lightweight kernel. The performance results
were shown using open source OpenMPI [22] over Cray.

These schemes were also illustrated by using Ka-
put [23], another kernel module in [13]. However, all these
studies concentrated on the intra-node communication.
There are several key advantages that shared address ca-
pability provides for designing collectives over massively
parallel supercomputers which is elucidated in the follow-
ing parts of the section. It is to be noted that most network
hardware including BG/P, feature DMA engines that can
move data across the processes. As we demonstrate, shared
address capability is a useful communication method in
such scenarios as well.

Some of the salient benefits of shared address methods
are the following:

• Avoid extraneous copy costs thereby pushing the
performance envelope of the collective algorithms

• Allow lightweight synchronization structures such as
counters to effectively pipeline across the different
stages of the collective : between network and shared
memory and across different stages in the shared
memory

• Avoid explicit global flow control across network and
intra-node interfaces. Since the destination and source
buffers are the application buffers, data is channelled
directly in and out of these buffers. Avoiding staging
buffers automatically solves the issue of explicit flow
control mechanisms. However, care must be taken to
pin the buffers in the memory during the operation. In

BG/P, by default all the application memory is always
pinned in the memory.

• Allow easy means of core specialization where certain
tasks can be delegated to one or more cores in-
creasing the performance of the collective algorithms.
As demonstrated in the following sections of the
paper, this technique is critical to the performance
of broadcast over the hardware collective network.

• in the case of allreduce, the cores are specialized to
simultaneously do a local sum and broadcast the data
arriving from the network. A dedicated core performs
allreduce protocol processing over the torus network.

However, it must be noted that leveraging the shared
address capability is dependent on the interfaces exposed
by the operating system. On systems which do not support
this functionality we propose a convenient and efficient
data structure, Bcast FIFO for the broadcast operation.
The data structure uses a basic fetch and increment atomic
operation to support safe message enqueue and dequeue
operations.

In the following sections of the paper, we propose
different algorithms and communication mechanisms that
leverage the benefits of shared address space and atomic
operations. Please note that though we have conducted
our studies over BG/P, the general idea can be easily
applied to other networks as well. For example, Infini-
Band [24] allows for RDMA mechanisms where the data
can be directly placed in the application buffer. Several re-
searchers [25], [26], [27] have observed good performance
with these techniques. The ideas mentioned in this paper
can be easily integrated with the RDMA mechanism of
InfiniBand to provide efficient collectives.

III. Background
Overview of BlueGene/P : A BG/P compute node

consists of 4 PowerPC 450 SMP cores embedded on a
single ASIC, running at a clock frequency of 850MHz,
and having access to 4GB of memory. There are three
operating modes: symmetric multi-processing (SMP) mode
where one process with up to four threads can be active;
dual (DUAL) mode where two processes with up to two
threads each can be active; and quad mode (QUAD) mode
where all four processes are active and each gets 512MB
of memory. In this paper, we focus on the quad mode
and describe optimized collectives when four processes are
launched per node.

BG/P comprises of three different interconnection net-
works: 3D torus, collective and global interrupt network
connecting all the compute nodes. We focus on the 3D
torus and collective network in this paper.

A. BG/P interconnection networks

3D Torus: The 3D torus is the primary network used
in BG/P. It is dead-lock free and supports reliable packet
delivery. Each node in the torus connects to six neighbors
with links of 425MB/s raw throughput. It also provides
for hardware accelerated broadcast wherein a deposit-bit
can be set in the packet header allowing torus packets
to be copied at intermediate nodes along the way to the
destination (on torus line). This feature is extensively used
in the collective algorithms over BG/P.

Collective Network: The collective network has a
tree topology and supports reliable data movement at a

raw throughput of 850MB/s. The hardware is capable of
routing packets upward to the root or downward to the
leaves, and it has an integer arithmetic logic unit (ALU).
This makes it very efficient for broadcast and reduction
operations. Note that there is no DMA on this network.
Packet injection and reception on the collective network is
handled by a processor core [15].

DMA Engine: BG/P improves upon BG/L hardware
by adding a DMA engine that is responsible for injecting
and receiving packets on the torus network and for local
intra-node memory copies. The high performance DMA
engine can also keep all six links busy, resulting in
better performance of torus point-to-point and collective
communication [2], [16], [15].

Direct Put/Get: The DMA engine allows the capabil-
ities of direct put and get operations of message data to
and from a destination buffer. In this mechanism, the host
posts a descriptor to the DMA with the description of the
source and destination buffers. Counters are also allocated
to track the progress of the operation which are regularly
polled by the processes cores. For every chunk of data read
or written, the DMA would appropriately decrement the
counter by the number of bytes transferred in the chunk.
Together with the torus line broadcast capability, Direct Put
allows for zero-copy collectives wherein the processor is
not involved in any memory copy operations. Please note
that such RDMA techniques have been studied over other
networks such as InfiniBand in [27], [7]. However, in both
these approaches, the data is channelled to a staging shared
memory buffer and not to the application buffer directly.

B. Compute Node Kernel (CNK) on BG/P

CNK is a simple linux like kernel and runs one appli-
cation at a time. However, an application can consist of up
to four processes per node. In our case it would be four
MPI tasks per node. It is a light weight operating system
using small amount of memory to run and leaving the rest
to the application. A very useful feature in CNK is the
process window support. By using specialized system calls,
the host kernel on BG/P allows for a process to expose
its memory to another process. Using this mechanism
a process can directly read/write the data from/to the
source buffers of other process during the message transfer
operations. This could potentially cut-down any extraneous
copy costs that would be incurred otherwise. The exact
mechanism is described in detail below.

Consider two processes A and B where process A
wants to read from the virtual address VA b of process
B a length of n bytes. In order to perform this operation,
process B translates VA b into a physical address PA b
using a system call. Process A uses PA b and makes
another system call to map the physical memory region
into its address space. The system call returns the new
VA a for this memory region. Each process is provided
N Translation Look-aside Buffer (TLB) slots. By default,
the value of N is three. Hence, mapping only a maximum
of three memory regions is allowed in this context. This
implies that there is one mapping allowed for each of the
peer processes on the four core BG/P node. The sizes of
the TLB slots can be configured ranging from 1MB, 16MB
to 256MB. Using the largest TLB slot is advantageous if
the application buffers used in messaging lie within 256M
span of memory. Also, in the worst case, more than one
mapping may be required to access one buffer if the buffer
spans across multiple page boundaries. Adjustment to the

processor’s TLBs must be done in privileged mode. In
order to accomplish this, CNK exposes this functionality
via a process window system call. Also, a traditional
operating system would simply perform TLB faults to map
the pages when they are accessed. However, the CNK
approach is to map all TLBs needed for the application.
CNK can take advantage of large, non-uniform TLB sizes
to algorithmically determine a static best-TLB fit in the
constrained 64 TLB slots of each PowerPC 450. CNK does
this to avoid performance jitter in large scale applications.
The aforementioned static TLB algorithm reserves N TLB
slots for the usage of process windows. The value of N
can be changed at the application load time.

IV. Communication Mechanisms
In this section, we first explain the mechanism of the

Bcast FIFO. We describe the operation of the Point-to-
Point FIFO using atomic Fetch and Increment operation
which forms the basis of the design of the Bcast FIFO
explained subsequently. We then describe the message
counter mechanism.

A. Point-to-Point FIFO

By a Point-to-Point FIFO, we mean a process enqueues
a data item into a shared FIFO and only one process
dequeues that particular data item. The basic idea in the
design of this FIFO is for the memory to be structured in
the form of a shared FIFO where a first arriving process
reserves a slot in the FIFO followed by the next process
and so on. The required attributes of this FIFO are the
following: a) Each process enqueues into a unique slot
reserved by it. No two processes obtain the same slot in the
FIFO. b) Messages are drained in the same order as they
were enqueued in. The order of enqueueing is determined
by the order of the reservations of the slots.

There are multiple ways in which a unique slot can
be reserved by a process. One of the ways would be to
use a mutex for the FIFO and obtain a unique slot. For
example, each FIFO would have a counter associated with
it. A process would increment this counter to obtain a
unique slot id. A mutex would guarantee that accesses to
this shared variable are serialized. However, one would
incur the overhead of lock/unlock for every enqueue op-
eration. Several researches have studied the benefits of
using atomic operations for designing lock-free queues.
Darius et al. [12] have demonstrated the effectiveness of
compare and swap atomic operation to link the different
data cells to implement a queue abstraction. The basic
approach used in our technique is to use a fetch and
increment operation which greatly simplifies the handling
of the different queue elements. As shown in the figure 1,
enqueueing a data element is accomplished by atomically
incrementing the Tail and reserving a unique slot. However,
the final location in the FIFO is determined by doing a
(mySlot%fifoSize). The atomicity of the counter ensures
that no two processes write to the same location in the
FIFO. Also, before enqueueing the FIFO must be checked
for free slots. The dequeue operation is handled in a
similar fashion by incrementing the value of the Head. The
particular item is accessed by doing a (Head%fifoSize) for
obtaining the index into the FIFO once it is determined that
valid data exists at the location pointed to by the Head.

B. Bcast FIFO

This FIFO is similar to the Pt-to-Pt FIFO for enqueue-
ing the message. As shown in the figure 1, a given process
increments the Tail atomically reserving a unique slot in
the FIFO. Only if there is space it proceeds to write
data into the FIFO. The amount of space is determined
by checking if (mySlot-Head)< fifoSize. If the condition
is true, the data element is enqueued. Also, in addition,
an atomic counter variable for this index is set to equal
to (n-1) which is the count of all the processes that
would dequeue this data element. The enqueue operation
is complete when the process finishes the write completion
step. The FIFO differs in the way the message is dequeued.
Except for the process inserting a message into the FIFO,
all the others need to read the message in order for it
to be dequeued from the FIFO. The current index of the
head is obtained by doing (Head%fifoSize) and after the
process reads the message it also decrements the atomic
counter which was initialized to (n-1) before. After this
value reaches zero, the last arriving process completes the
dequeue operation and the message is effectively removed
from the FIFO by atomically incrementing the Head.

Fig. 1: Bcast FIFO

C. Message counters with direct copy

Message Counters are convenient and effective method
of tracking the progress of data transfer operations. As
explained in the earlier section, BG/P extensively uses
the counter mechanism to monitor the status of different
network operations. We have explored this technique at
the software level for doing a direct copy of data in
the broadcast operation. The central idea adopted in our
approach is to dedicate a counter for a given broadcast and
whenever the data arrives in the buffer, it is incremented
by the total number of bytes received in the buffer. The
detailed logic for this operation is presented in the next
section.

V. Communication Algorithms
In this section, we present the collective algorithms

that address the issues raised in the earlier sections of the

Y−Color
1

2223

3

3

1

2

2

2 3 33

X−Color

Fig. 2: Multi-color rectangle algorithm

paper. It is to be noted that depending on the message size,
either the Torus or the Collective network based algorithms
perform optimally. The Torus network is superior for large
message collectives where the six torus links together
provide more bandwidth than the Collective network. The
Collective network is optimal for short to medium mes-
sages where the latency dominates the performance model.

A. Integrated Broadcast over Torus

We first describe the current algorithm that is used
in doing large message broadcast over Torus. We then
explain the integration of the intra-node communication
mechanisms described in this paper to provide an efficient
method of doing a broadcast operation.

1) Current Approaches:: The collective algorithms on
BG/P are designed in a manner to keep all the links busy
to extract maximum performance. This is accomplished by
assigning unique connection ids to each of the links and
scheduling the data movement on each connection. Specif-
ically, these are referred to as the multi-color algorithms.

BG/P messaging stack uses multi-color spanning tree
algorithms for broadcast on the torus network. These
algorithms take advantage of the three or six edge-disjoint
routes from the root of the collective to all other nodes
in 3D meshes and tori, respectively. figure 2 illustrates a
multi-color rectangle broadcast on a 2D mesh. The root is
at the bottom left corner. On a 2D mesh, all root nodes
have two edge disjoint spanning trees to all other nodes. In
phase 1 of the X-color broadcast, the root sends data first
along the X dimension using the deposit bit feature. The
X-neighbors of the root then forward this data along the
Y dimension in phase 2. On BG/P 3D torus, there are six
such spanning trees which correspond to a peak throughput
of 2250 MB/s which is close to peak performance. For
quad mode scenario, an extra fourth dimension is added to
these multi-color spanning tree algorithm. This dimension
corresponds to the data movement within the node. Also,
note that DMA is involved in moving the data across the
different phases. Though the DMA is capable of keeping
all the six links busy of a 3D torus node, it is not enough to
concurrently transfer the data within the node along with
the network transfers.

2) Proposed Algorithm: The basic idea behind the
algorithms explained below is to effectively extend the
concept of connection explained above within a node.
The mechanisms for allowing this is described below. We
postulate the techniques for doing this. The first technique
streamlines pipelining but does not avoid extra copying.
The second technique allows for both.

Shared Memory Broadcast using Bcast FIFO:
In this design, the master process forwards the data to its

peers using the Bcast FIFO, presented in the earlier section

of the paper. The mechanism works as follows: once a
chunk of data is received from the Torus network into the
application buffer, the master process enqueues the data
element into the Bcast FIFO using the interface methods
mentioned in the last section of the paper. The data is
packetized if it is more than the FIFO slot size. Apart from
the actual data, metadata information associated with the
data is also copied into the same FIFO slot. The metadata
includes the number of data bytes copied into the slot
and the connection id of the global broadcast flow. In this
fashion broadcast streams from multiple connections can
be multiplexed into the same FIFO.

Shared Address Broadcast using Message Counters:

The basic idea behind the technique proposed is to
receive the broadcast data from the network in one of
the processes’ application data buffer. We designate this
process as the master process. The master after receiving
the network data notifies other processes about the arrival
of data. The arrived data is copied out directly from the
application buffer of the master process. This is possible
by using the System Memory Map calls which enables a
process to view the memory of the other process. In our
case, this would be the master process exposing its memory
region to all the other processes on the node.

This design relies on data coming in order into the
application buffer. Thus, it is applicable only in the context
of data flow following connection semantics. As shown in
the figure 3 the basic idea in our approach is to use a
counter that is visible to all the processes. This approach
seamlessly integrates with the collective algorithm over the
Torus Network and cuts down the extraneous copy costs.
As described earlier the network DMA also uses a counter
mechanism to track the number of bytes read/written
using the Direct Get/Put strategies. In our approach, we
extend this technique at the software level by mirroring
the contents of the DMA counters into the shared counter
variables indicated as S/W counters in the figure. Note that
the buffers indicated in the figure are partitioned four way
for data streams flowing from X+, X-, Y+ and Y- directions
respectively.

The counter object consists primarily of two fields: a)
Base address of the data buffer b) Total bytes written into
the buffer. The master process initializes the counter with
the base address of its buffer and also sets the total bytes
written to zero. Once the master is notified by the network
about the reception of the next chunk of bytes in the data
stream, it increments the Total bytes by the same amount.
The other processes poll the counter value and test whether
it has been incremented. All these processes maintain a
local counter which is used to compare against the counter
value at the master. Once they observe an increment in the
counter, they copy the arrived chunk of bytes from the
master and increment their own local counters. There is
also an atomic completion counter which is initialized to
zero by the master. All the processes increment this counter
after they finished copying the data from the master. Once
this counter equals to n-1 where n is the total number
of processes, the master can go ahead and start using
his buffer. This method is more effective and convenient
than the earlier technique of using Bcast FIFO. However,
message counters are applicable only to contiguous data
flows.

Fig. 3: Broadcast using Message Counters

B. Integrated Broadcast over Collective
Network

In this section of the paper, we deal with small and
medium message broadcast which uses the collective net-
work. We first explain the current algorithms followed by
the new algorithms proposed in the paper.

1) Current Approaches: The current algorithms use
the fast hardware allreduce feature (math units) of the
collective network. The root node injects data while other
nodes inject zeros in a global OR operation. In SMP mode,
two cores within a node are required to fully saturate the
collective network throughput. Hence, two threads (the
main application MPI thread and a helper communication
thread) inject and receive the broadcast packets on the
collective network. In QUAD mode, the DMA moves the
data among the cores of each node. This can occur using
the memory FIFO and direct put DMA schemes.

2) Proposed Algorithms: As discussed in the previous
section, BG/P has a very efficient mechanism of broadcast
using the tree hardware. Efficiently leveraging this tree
requires attention to load balancing across the different
tasks. In the following sections we describe the schemes
to achieve this.

Shared Memory broadcast over Collective network:
In this simple and basic design the data from the tree

is transferred into a buffer shared across all the nodes.
The same core accessing the collective network does both
the injection and reception of the data. The received data is
placed in a shared memory segment from where it is copied
over by the other processes on the node. This optimization
works for short messages where the copy cost is not a
dominating factor in the performance of the collective
operation.

Shared Address broadcast over Collective network:
As discussed earlier, shared address capability cuts down
the copy costs boosting the performance. Also, another
benefit of this capability is that it allows easy means for the
cores to specialize in certain tasks to extract the maximum
possible performance from the underlying hardware.

As shown in the previous section, effectively utilizing
the tree requires two independent tasks injecting and
receiving data into and from the collective network re-
spectively. The simple design described in the earlier
section is not optimal for medium to large messages as
the same master core does both the injection and reception,
one after another. Stemming from the idea of using two
threads to access collective network, a similar approach
can be applied with two MPI processes. An injection

process injects data into the collective network and a
separate reception process copies the network output into
the application buffer. However, distributing the data across
all the processes in a node poses a problem. Directly using
the Shared Memory techniques creates a scenario where
either the injection or the reception process or both are
loaded more than the other two processes as described
below.

Fig. 4: Broadcast using Collective Network

Assume that the reception process receives data into a
shared memory segment. This data can be copied over by
the two idle cores. However, both the injection and the
reception process have to simultaneously copy the data
into their own application buffers as well. This slows down
the injection and reception rate, significantly degrading the
performance. Similar scenarios occurs where the reception
process receives data directly into its own buffer. Since
there is excess of memory bandwidth relative to the tree,
the two idle cores can be delegated tasks in the collective
operation. We demonstrate the utility of shared address
mechanism to solve this problem.

Consider a system of N BG/P nodes where on each
node, four MPI processes are launched with local ranks of
zero to three. In the example figure 4 shown, N is equal
to two. Assume that the broadcast operation is initiated
by the global root whose local rank corresponds to 0. We
designate all the processes with local rank zero from all
the nodes as the injection processes. All the processes
with local rank one would be the reception processes.
However, unlike the Shared Memory approach, the data
buffers involved in the operation are directly the appli-
cation buffers. For example, the global root injects from
its application buffers. All the local rank one processes
receive the data directly into their final buffers. Once a
chunk of data is copied into its application buffer, it notifies
the other two processes with local ranks two and three.
It uses a software shared counter mechanism described
earlier. These two processes copy the data directly from the
application buffer of process with local rank one. Further,
the process with local rank two makes an additional copy
into the application buffer of the injection process, which
has the local rank of zero. The extra copy is not a problem
as the memory bandwidth is at least twice that of the
collective network. We demonstrate that this approach
delivers the best performance in the performance analysis
section of the paper.

C. Integrated Allreduce over Torus

In this final algorithm discussed in the paper, we pro-
pose a core specialization strategy to effectively use the
network and memory resources to boost the performance
of allreduce operation for large messages. Similar to the

earlier sections, we first describe the current algorithm
followed by the new proposed method.

1) Current Approach: The basic idea in the algorithm
used is to pipeline the reduction and broadcast phases of
the allreduce. A ring algorithm is used in the reduction
followed by the broadcast of the reduced data from the
assigned root process. Similar to the broadcast algorithm,
a multicolor scheme is used to select three edge-disjoint
routes in the 3D torus both for reduction and broadcast.
This scheme is not optimal as redundant copies of data
are transferred by the DMA for the reduction operation.
Also, the DMA cannot keep pace with both the inter- and
intra-nod data transfers. As we demonstrate below, Shared
address messaging overcomes this issue by delegating
specialized tasks to different cores.

2) Proposed Algorithm: The allreduce operation can be
decomposed into the following tasks: a) network allreduce
b) local reduce and c) local broadcast. The data is first
locally reduced followed by a global network reduction.
The reduced data after arriving into the node is broadcasted
locally. The central idea of the new approach is to delegate
one core to do the network allreduce operation and the
remaining three cores to do the local reduce and broadcast
operation. Since there are three independent allreduce
operations or three colors occurring at the same time, each
of the three cores is delegated to handle one color each.
The data buffers are uniformly split three way and each of
the cores works on its partition. The exact mechanism is
described below.

Assume that the pipeline unit used for reduction and
broadcast used be Pwidth bytes. As soon as the operation
starts, each of the core starts summing up the first Pwidth
bytes from each of the four processes application buffers.
All the application buffers are mapped using the system
call interfaces, and no extra copy operations are necessary.
The cores then inform the master core doing the network
allreduce protocol via shared software message counters.
The network protocol is exactly identical to its SMP
counterpart where there is only one process per node. Once
the network data arrives in the application receive buffer
of the master core, it notifies the three cores. The other
three cores start copying the data into their own respective
buffers after they are done with reducing all the buffer
partitions assigned to them.

VI. Performance Study

Our performance study is conducted on BG/P hardware
on two racks in the quad mode equaling a total of 8192
processes. The study focuses on the following objectives.

• examine the performance of the different shared ad-
dress collective algorithms developed for BG/P

• study the benefits of shared address collectives over
collective network using core specialization

• demonstrate the benefits of shared address collectives
over BG/P torus using message counters

• evaluate shared address allreduce over BG/P torus
• demonstrate the benefits of shared memory Bcast

FIFO over BG/P torus

The micro-benchmark shown in Figure 5 is used to eval-
uate algorithms performance for MPI broadcast on BG/P
hardware with up to 16K nodes. A similar benchmark us
used to measure the performance of MPI Allreduce.

(1) elapsed time = 0;
(2) for (i = 0; i < ITERS; i++)
(3) MPI Barrier(comm);
(4) start = MPI Wtime();
(5) MPI Bcast(...);
(6) elapsed time += (MPI Wtime() - start);
(7) elapsed time /= ITERS;

Fig. 5: Measuring performance of MPI Bcast

A. Integrated Broadcast over Collective
Network

In this section, we demonstrate the benefits of
using shared address and shared memory algorithms
for MPI Bcast over the collective network which
provides hardware accelerated broadcast support for
MPI COMM WORLD. As discussed earlier, two main al-
gorithms are used to improve the performance of broadcast
in the QUAD mode of operation where four MPI processes
are launched per node. In the first algorithm, referred to as
the ‘CollectiveNetwork + Shmem’, a shared memory seg-
ment is used to transfer messages from the hardware to the
four cores on the node. The second algorithm, referred to
as the ‘CollectiveNetwork + Shaddr’, describes the shared
address algorithm described in the section V. The first
algorithm is for latency optimization and is used for short
messages. As shown in the figure 6, it provides a 5.83 us
latency for 8192 processes broadcast operation. It adds an
overhead of 0.4 us over the hardware network broadcast,
referred to as the ‘CollectiveNetwork + SMP’ for the
intra-node protocol processing. The SMP mode gives the
basic network latency as only one process is launched per
node and it directly accesses the collective hardware. Also,
the ‘CollectiveNetwork + shmem’ algorithm improves the
performance considerably over the ‘CollectiveNetwork +
DMA’ which uses the DMA to move data within the node
after it is received over the collective network. The DMA
moves the data to the memory FIFO of the core in this
algorithm.

The second algorithm which is based on the shared
address space and core specialization improves the perfor-
mance of medium messages. As shown in the figure 7,
the ‘CollectiveNetwork+ Shaddr’ algorithm outperforms
over all the QUAD mode algorithms. The SMP mode
algorithm, ‘CollectiveNetwork + SMP’ is described for
reference. The other algorithms referred to in the figure
are the ‘CollectiveNetwork + DMA FIFO’ and ‘Collec-
tiveNetwork + DMA Direct Put’ which uses the DMA for
moving data within the node. DMA can either transfer
the data to the memory FIFO of the cores or directly
place the data in the application memory using Direct
Put primitives. The shared address scheme proposed in
the paper improves the bandwidth throughput of medium
messages up to 45% for message size of 128K bytes.
Figure 8 shows the affect of system call overhead on the
performance of the shared address schemes. Note that each
mapping of an application buffer involves two system calls:
to obtain the physical address from the virtual address and
to map the physical address to the virtual address. If these
system calls are invoked repeatedly by the application, it
contributes to a big source of overhead. In our schemes,
we internally cache the buffer information if the same
buffer is repeatedly used in the application. Several open
source software stacks follow such similar schemes, for
e.g. MVAPICH [20] and OpenMPI [22] use the approach
for MPI stacks over InfiniBand to avoid the overhead of

 5

 10

 15

 20

 25

 30

4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K

La
te

nc
y

(m
ic

ro
-s

ec
on

ds
)

Message size (bytes)

CollectiveNetwork+Shmem
CollectiveNetwork+DMA FIFO

CollectiveNetwork (SMP)

Fig. 6: Latency of MPI Bcast

 100

 200

 300

 400

 500

 600

 700

 800

 900

8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

CollectiveNetwork+Shaddr
CollectiveNetwork+DMA FIFO

CollectiveNetwork+DMA Direct Put
CollectiveNetwork (SMP)

Fig. 7: Bandwidth of MPI Bcast

pinning and unpinning the buffers. Finally, as shown in
the figure 9, the algorithm scales well for different process
configurations. This is owing to the fact that the collective
network provides very good scalability and performance
with increasing number of processes. A detailed study is
published in [2].

B. Integrated Broadcast over Torus

In this section, we provide the details of the algorithms
designed to do MPI Bcast for medium to large messages.
The first algorithm is referred to as ‘Torus + Shaddr’.
It is based on the shared address concept and described
in section V. It uses the light weight message counters
to effectively pipeline across network and intra-node. The
second algorithm referred to as ‘Torus + FIFO’ uses the
concurrent Bcast FIFO structure described in section IV.
These algorithms are compared to the current best per-
forming algorithm, ‘Torus Direct Put’ which involves the
DMA to do the message transfer both within the node and
as well as outside the node.

As shown in the figure 10, the ‘Torus + FIFO’ scheme
improves the performance of broadcast by a factor of 1.4

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

64
K

12
8K

25
6K

51
2K 1M 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

CollectiveNetwork+Shaddr+caching
CollectiveNetwork+Shaddr+nocaching

Fig. 8: Overhead of System Call Overhead

 350

 400

 450

 500

 550

 600

 650

 700

 750

8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

CollectiveNetwork+Shaddr(1024)
CollectiveNetwork+Shaddr(2048)
CollectiveNetwork+Shaddr(4096)
CollectiveNetwork+Shaddr(8192)

Fig. 9: Performance with increasing scale

for 2M message size. This is primarily because of con-
current data transfers intra-node by the processing cores
and the DMA moving the data from the node to the Torus
network. Please note that in this scheme a common FIFO
is used to multiplex the data from all the six edge disjoint
routes of data flow. As shown in the figure 10, the ‘Torus
+ Shaddr’ scheme performs the best for large messages.
The algorithm is able to achieve a 2.9 speedup at 2M
message size. The scheme also gives good improvement
for messages at the lower end, 64K message size, and is
within 15% of the peak possible for this message in the
SMP mode. This is primarily because of the low overhead
and light weight message counters which are used for
synchronizing the data movement intra-node and over the
torus. Also, note that the performance drops in the end for
the ‘Torus + Shaddr’ schemes. This is due to the L2 cache
size which is 8MB in size.

C. Integrated Allreduce over Torus

In this section, we describe the performance of the
MPI Allreduce algorithm described in section V. The
algorithm uses three cores to exclusively do the reduc-
tion and broadcast of data. Each color or connection is

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

64
K

12
8K

25
6K

51
2K 1M 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

Torus+Shaddr
Torus+FIFO

Torus Direct Put
Torus Direct Put(SMP)

Fig. 10: Bandwidth of MPI Bcast

assigned to a different core. There is one core dedicated
to doing only the network protocol processing. As seen
in the table I, we observe performance benefits across
the different messages but the algorithm is mostly useful
for large messages. As shown in the table, the algorithm
provides about 33% improvement for 512K doubles.

TABLE I: Allreduce throughput
Doubles New (MB/s) Current (MB/s)
16K 145.35 120.7
32K 191.25 161.5
64K 215.9 196.35
128K 258.4 227.8
256K 289.0 234.6
512K 322.15 241.4

VII. Conclusions and Future Work

The Blue Gene/P Supercomputer (BG/P) is designed to
scale to petaflops of peak performance while maximizing
efficiencies in the areas of power, cooling and space con-
sumption. BG/P consists of thousands of compute nodes
interconnected by the primary network, 3-D Torus trans-
porting data across the nodes. It also features a collective
network providing efficient hardware collectives such as
broadcast, allreduce etc. Each of the nodes is made up
of four embedded cores, arranged as an SMP. The primary
mode of running applications over BG/P is via the standard
Message Passing Interface (MPI). It is possible in these
applications for messages to be exchanged both inside and
across the nodes, especially when all the cores are used
for MPI tasks.

In this paper, we proposed software techniques
to enhance MPI Collective communication primitives,
MPI Bcast and MPI Allreduce in BG/P quad mode by
using cache coherent memory subsystem as the communi-
cation method inside the node. The paper proposes tech-
niques utilizing shared address space wherein a process
can access the peer’s memory by specialized system calls.
Apart from cutting down the copy costs, such techniques
allow for designing light weight synchronizing structures
in software such as message counters. These counters
are used to effectively pipeline data across the network
and intra-node interfaces. Further, we demonstrate that the
shared address capability allows for easy means of core

specialization where the different tasks in a collective oper-
ation can be delegated to specific cores. This is critical for
efficiently using the hardware collective network on BG/P
as different cores are needed for injection and reception
of data from the network and for copy operation within
the node. We also proposed a concurrent data structure,
Bcast FIFO which is designed using atomic operations
such as Fetch and Increment. We have demonstrated the
utility and benefits of all these mechanisms using bench-
marks which measure the performance of MPI Bcast and
MPI Allreduce. Our optimization provides up to 2.9 times
improvement for MPI Bcast in the quad mode over the
3D torus over the current approaches. Further, we show
improvements up to 44% and 33% for MPI Bcast using the
collective tree and for MPI Allreduce over the 3D Torus.

In our future work, we intend to extend the mech-
anism to other collectives such as MPI Gather and
MPI Allgather which can also potentially move large
volumes of data. Moreover, as shared address mechanisms
gain prominence it becomes important to standardize the
interfaces for effectively using these capabilities across
different platforms and applications.

VIII. Acknowledgments

We would like to acknowledge Robert Wisniewski and
Craig Stunkel for their useful comments and suggestions.
Also, we want to thank the rest of the Blue Gene team.
We would like to thank the government for providing the
opportunity to work on this project.

References

[1] IBM Blue Gene Team, “Overview of the Blue Gene/P
project,” IBM J. Res. Dev., vol. 52, January (2008).
http://www.research.ibm.com/journal/rd/521/team.html.

[2] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels, “MPI
Collective Communications on The Blue Gene/P Supercomputer:
Algorithms and Optimizations,” in IEEE Hot Interconnects, 2009.

[3] R. Graham and G. Shipman, “MPI Support for Multi-core Archi-
tectures: Optimized Shared Memory Collectives,” in Proceedings of
the 15th European PVM/MPI Users’ Group Meeting on Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface,
2008.

[4] V. Tipparaju, J. Nieplocha, and D. Panda, “Fast Collective Op-
erations Using Shared and Remote Memory Access Protocols on
Clusters,” in Proceedings of the 17th International Symposium on
Parallel and Distributed Processing, 2003.

[5] M.-S. Wu, R. Kendall, and K. Wright, “Optimizing collective
communications on SMP clusters,” in International Conference on
Parallel Processing, 2005.

[6] A. Mamidala, R. Kumar, D. De, and D. K. Panda, “MPI Collectives
on Modern Multicore Clusters: Performance Optimizations and
Communication Characteristics,” in Int’l Symposium on Cluster
Computing and the Grid (CCGrid), May 2008.

[7] A. R. Mamidala, A. Vishnu, and D. K. Panda, “Efficient Shared
Memory and RDMA based design for MPI Allgather over Infini-
Band,” in Proceedings of Euro PVM/MPI, 2006.

[8] A. Mamidala, L. Chai, H.-W. Jin, and D. K. Panda, “Efficient SMP-
Aware MPI-Level Broadcast over InfiniBand’s Hardware Multicast,”
in Communication Architecture for Clusters (CAC) Workshop, 2006.

[9] R. Brightwell, “A Prototype Implementation of MPI for
SMARTMAP,” in Proceedings of the 15th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 2008.

[10] R. Brightwell, T. Hudson, and K. Pedretti, “SMARTMAP: Operat-
ing System Support for Efficient Data Sharing Among Processes on
a Multi-Core Processor,” in International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (SC’08),
Austin, TX, 2008.

[11] H.-W. Jin, S. Sur, L. Chai, and D. Panda, “LiMIC: support for high-
performance MPI intra-node communication on Linux cluster,” in
Parallel Processing, 2005. ICPP 2005. International Conference on,
2005.

[12] D. Buntinas, G. Mercier, and W. Gropp, “Design and Evaluation of
Nemesis, a Scalable, Low-Latency, Message-Passing Communica-
tion Subsystem,” in International Symposium on Cluster Computing
and the Grid, May 2006.

[13] D. Buntinas, G. Mercier, and W. Gropp, “Data Transfers Between
Processes in an SMP System: Performance Study and Application
to MPI,” in International Conference on Parallel Processing, 2006.

[14] D. Buntinas, G. Mercier, and W. Gropp, “Implementation and
Shared-Memory Evaluation of MPICH2 over the Nemesis Commu-
nication Subsystem,” in Euro PVM/MPI 2006 Conference, 2006.

[15] S. Kumar and et al., “The Deep Computing Messaging Frame-
work: Generalized Scalable Message Passing on the Blue Gene/P
Supercomputer.,” in The 22nd ACM International Conference on
Supercomputing (ICS), 2008.

[16] S. Kumar and et al., “Architecture of the Component Collective
Messaging Interface,” in Proceedings of Euro PVM/MPI, 2008.

[17] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “MPICH: A high-
performance, portable implementation of the MPI message passing
interface standard,” Parallel Computing, vol. 22, pp. 789–828,
September 1996.

[18] L. Chai, P. Lai, H.-W. Jin, and D. K. Panda, “Designing An Efficient
Kernel-level and User-level Hybrid Approach for MPI Intra-node
Communication on Multi-core Systems,” in Int’l Conference on
Parallel Processing (ICPP ’08), 2008.

[19] L. Chai, A. Hartono, and D. K. Panda, “Designing An Efficient
MPI Intra-node Communication Support for Modern Computer
Architectures,” in Int’l Conference on Cluster Computing, 2006.

[20] The Ohio State University, MVAPICH:High Performance MPI over
InfiniBand and iWARP.

[21] R. Brightwell, T. Hudson, K. Pedretti, R. Riesen, and K. Under-
wood, “Implementation and performance of Portals 3.3 on the Cray
XT3,” in Proceedings of the 2005 IEEE International Conference
on Cluster Computing, 2005.

[22] OpenMPI:Open Source High Performance Computing.
[23] P. Carns, “Kaput, Kernel Module for copying data between pro-

cesses,” 2004.
[24] InfiBniBand Trade Association. InfiniBand Architecture Specifica-

tion,Release 1.1 November,2002.
[25] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High

Performance RDMA-Based MPI Implementation over InfiniBand,”
in In the Proceedings of 17th Annual ACM International Conference
on Supercomputing, 2003.

[26] “High Performance RDMA Protocols in HPC,” in Proceedings, 13th
European PVM/MPI Users’ Group Meeting, 2006.

[27] S. Sur, U. Bondhugula, A. Mamidala, H.-W. Jin, and D. K. Panda,
“High Performance RDMA Based All-to-all Broadcast for Infini-
Band Clusters,” in International Conference on High Performance
Computing, 2005.

