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ABSTRACT
We compare two techniques of preventing server overload by
controlling dispatch of mostly short transactional requests
at the edge of a system of servers: (1) a mechanism that
imposes a limit on the number of active requests and (2) a
mechanism that imposes a limit on the rate at which requests
are dispatched. While either technique will work well for a
workload with low variation, the story gets more compli-
cated if the workload has extreme variation in service time.
We suppose a mechanism/policy separation, in which the
limits imposed by a dispatch mechanism are set periodically
based on policy considerations and current traffic character-
istics. Since the dispatch mechanisms follow simple param-
eterized rules, they can not make ideal decisions for each
individual request even with optimal parameter setting. We
study the sensitivity of these mechanisms to the variation
among requests handled by each mechanism in steady load
scenarios where limits are constant or change occasionally
as a result of policy-driven automation. The evaluation cri-
terion is the quality of the regulation of the CPU utilization.
We find that when the limits are manually set to fixed val-
ues neither dispatch mechanism is clearly better than the
other. However, when matching automation of the limits
is added then the rate-based dispatch mechanism produces
more accurate results. On the other hand, the occupancy-
based dispatch mechanism produces results that underload
less often.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
performance management, concurrency control, rate control,
CPU overload protection, service differentiation

1. INTRODUCTION
A large body of work has been done in the area of server over-
load protection for web service platforms. This work gains
new significance with the development of cloud computing
platforms [1, 2] which host a large number of applications
on shared resources and oftentimes charge users based on
the resource utilization by their applications. These envi-
ronments require mechanisms to accurately control resource
utilization by an application or a customer.

It is adequate to consider systems with the following simpli-
fied structure. Clients issue transactional requests, which
are routed to a gateway. The gateway performs various
management functions, one of which is our concern here: a
mechanism to judiciously dispatch the requests to the server
(there is just one). The server handles a request, then re-
turns a reply to the dispatcher, which returns the reply to
the relevant client. The management goal is to achieve a
given target level of CPU utilization on the server — or,
when the load collectively offered by the clients is too low
for that, to come as close as possible. We suppose that in
the course of serving a request a server alternates between
doing two things: (1) local CPU work, and (2) making a syn-
chronous request on (i.e., waiting for the reply from) some
other service of larger capacity. In particular, the response
time from that other service does not strongly depend on
the management of the first server (over the range of what
actually happens on that first server).

This is a simplification of more realistic systems, in which
requests may be rejected for the sake of overload protection
and there are: multiple server processes on multiple server
machines, multiple tiers, multiple gateways, multiple service
classes, multiple local computational resources, and multi-
ple interacting applications spread among the servers. The
simplified system suffices to explore the topic of this paper,
which is a core issue that appears in more complicated real
systems. The management of those more complicated sys-
tems involves more issues, but includes the issue explored
here.

We compare two techniques for preventing server overload
by controlling dispatch of requests from the gateway to the
server. The first mechanism imposes a limit on the number
of requests that can be in process at the server concurrently.
The second mechanism imposes a limit on the rate at which
requests are dispatched.

Real workloads have some variability in what it takes to
serve their requests. This can include variation, from re-
quest to request, in (a) the amount of local CPU work done
and/or (b) the amount of time spent waiting on replies from
other services. If the level of variability is modest then ei-
ther of the techniques we study would work well. However,
some workloads with extreme variability are managed very
poorly by either or both of these techniques. In this paper
we study how the two techniques react to some very prob-
lematic workloads.
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We suppose a separation between a mechanism and a pol-
icy. Both studied dispatch mechanisms are components of a
feedback control system that periodically adjusts dispatcher
settings based on policy considerations and current traffic
characteristics. In each period, the controller measures av-
erages of request throughput and performance from one or
more previous periods, and adjusts the dispatcher settings
for the next period. The control logic differs based on the
type of mechanism used.

We study the concurrency-based and rate-based mechanisms
using a steady state load, managed in either of two modes:
(1) with a constant limit setting and (2) when the setting
occasionally changes as a result of feedback-driven automa-
tion. In the constant setting mode the accuracy of a dispatch
mechanism in maintaining the desired server utilization is
affected primarily by variations between requests; periodic
feedback control introduces a sensitivity to changes in mon-
itored statistics between cycles.

One obvious evaluation criterion is the ability of the system
to avoid exceeding a given utilization level. Server overload
leads to service time degradation, but in most cases some
overload can be tolerated. Another, possibly more impor-
tant, citerion is the ability of the system to avoid unecessary
queuing, which leads to server underload. Underload result-
ing from unecessary queuing has the effect of reducing the
server capacity for serving requests, which can be worse than
slow serving in a commercial context. On the other hand,
in the context of managing a more complicated system with
competing classes of traffic, excessive utilization by one class
can lead to the additional problem of reduced utilization by
another (possibly even more valuable) class.

The study in this paper is guided by our practical experi-
ence with real-life workloads, in which we have observed that
web requests can vary significantly in their service time and
resource utilization. Sometimes there are no distinguishing
attributes that would allow such widely varying requests to
be classified into different classes.

The paper is organized as follows. Prior work is briefly re-
viewed in Section 2. Then, we describe the two mechanisms
for flow control: concurrency-based and rate-based in Sec-
tion 3. The experimental setup is provided in Section 4. The
experimental results are presented in two settings. First, we
present in Section 5 the experimental results without the
controller, i.e. through manual setting of the controls. Then,
in Section 6, we present a description of the analysis used
by the controllers and the results when the controllers are
engaged.

2. PRIOR WORK
The problem of controlling the use of computer and com-
munications resources by limiting the load goes back sev-
eral decades. For example, in the area of operating systems
the number of concurrent active jobs is limited to a value
known as the multiprogramming degree in order to avoid
overloading memory and CPU resources [4]. This is an ex-
ample of a concurrency control mechanism to avoid overload.
Other examples are limiting the number of connections to
a database system and the number of threads in web and
application servers. In the area of data communication, the

number of packets between a pair of sender and receiver is
limited by a window size in order to control the flow and
avoid overloading the links and nodes [3]. Examples of rate
control mechanisms are also found in data communications
systems where rate limiters in the form of leaky and/or token
buckets are used to control traffic rates so as not to over-
load network resources. The values of the limits, whether
they are concurrency levels or maximum rates, are either
statically configured or dynamically adjusted according to
fluctuations in traffic characteristics and resource dynamics.
Typically, such systems are modeled and analyzed for the
given control mechanism, e.g. [10], rather than contrasting
concurrency and rate control mechanisms in an attempt to
understand the nature of traffic that would make one mech-
anism more suitable than the other. The study in this paper
is a step in that direction, focused on CPU overload in web
serving systems.

A large body of work has been conducted in the related areas
of overload protection, resource allocation, quality of service,
service differentiation, and admission control for transac-
tional requests to platforms providing web services. An ex-
ample of rate control is the work of Kanodia and Knightly [9]
where they consider the problem of achieving pre-specified
response time targets to multiple streams of requests to web
services. An admission control mechanism is placed in a
front-end gateway to control the acceptance rate of requests.
The admission control decision is made for each request and
is based on statistical measurements of arrivals and services.
The average and standard deviation measurements allow the
controller to estimate the admission rates that satisfy the
quality-of-service requirements, which are defined through
percentiles of delays. The model is fairly simplistic in that it
does not include a model of the workload nor resource (e.g.
CPU) demand. Measurements of server resources utiliza-
tion are not available to the admission controller and, hence,
overload protection is achieved only indirectly by specifying
smaller response time targets.

Another example of rate control is the work of Urgaonkar
and Shenoy [14] where they consider the problem of CPU
overload avoidance. They describe the Cataclysm system
which involves a gateway function for admission control.
Such a function consists of (1) guaranteeing a minimum re-
quest rate per class, (2) queueing of requests so as to achieve
service differentiation by delaying lower priority requests,
and (3) load balancing across servers. The first function is
simply implemented using leaky buckets. The second func-
tion involves the approximate, periodical calculation of de-
lays per class based on simple queueing models. Such cal-
culation relies on an estimation of CPU work demand per
request which is assumed to be collected offline. And, the
third function is an implementation of a layer-7 load balanc-
ing.

The work of Pacifici et al. [12] describes a system employ-
ing a concurrency control mechanism. The number of con-
currently executing requests for each class of service in the
server complex is periodically determined using a queueing
network model that is trained using observations of perfor-
mance metrics during the prior period. The concurrency
limits are computed in such a way to avoid CPU overloading
and to provide a fair quality of service to the various traffic
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classes. Concurrency limits are imposed in the gateways.
Urgaonkar et al. [13] develop a queueing network model for
multi-tier web systems and provide a method for accounting
for concurrency limits.

A variation of the concurrency control mechanism is when
requests are not homogeneous in their use of resources. For
instance, consider a multitude of request types, where each
type of requests is characterized by a given level of resource
demand. This gives rise to a weighted concurrency con-
trol mechanism. An example of such a system is described
by Elnikety et al. [5] where an admission controller and a
scheduler run in a proxy in front of multi-tiered web ap-
plications. Based on online measurements of service times
of different classes of requests, the load on the system is
estimated and compared to a maximum load value that is
obtained offline by varying the offered load until a peak per-
formance is reached. The admission controller basically acts
as a work limiter and makes its decisions at request arrival
times based on the current anticipated load and the esti-
mated load of the newly arrived request. The latter is only
admitted if the resulting total system load does not violate
the maximum load value.

Again, the above examples are specific in their mechanisms
for controlling resource overload through limiting concur-
rency or rate. We are not aware of an investigation where
these mechanisms are contrasted so as to identify the nature
of traffic that would make one mechanism superior over the
other.

3. DESCRIPTION OF CONTROL MECHA-
NISMS

We first consider the two different mechanisms for dispatch-
ing requests from the gateway to the server. The we turn
our attention to automating the setting of the dispatching
parameters.

3.1 Gateway Mechanisms
3.1.1 Concurrency Control Gateway

In concurrency control, the dispatcher is given a limit on
the number of requests that may be concurrently active in
the server. We suppose that each request’s response flows
back through the dispatcher, or the dispatcher is otherwise
informed of the completion of each request. The dispatcher
can thus keep track of the active number of its requests.
The dispatcher has a FIFO queue of requests. Whenever a
request arrives from outside, it is first put into that queue.
Whenever the queue is non-empty and the number of ac-
tive requests is below the given limit, another request is
dispatched to the server system.

3.1.2 Rate Control Gateway
In rate control, the dispatcher also has a FIFO queue; the
dispatch criterion is a token bucket. The parameters are a
rate (tokens per time) and a size (number of tokens). The
bucket is continuously filled with tokens at the given rate,
but can not hold more than its size (excess spills over the
lip of the bucket). A dispatch happens whenever the queue
is non-empty and the bucket holds at least 1.0 tokens. Note
that this mechanism pays no attention to responses.

3.2 Automatic Control Mechanisms
In automatic mode there is a policy agent, or controller, that
monitors certain aspects of the running system and period-
ically changes the parameters of the dispatcher. A policy
agent’s job can be broken down into the following parts.
One is to create a model of the offered load. Another is to
develop a performance model that relates dispatch param-
eter values with server utilization, for the modeled offered
load. Finally, the performance model is solved to find the
dispatch parameter values that correspond to the desired
level of utilization. When the offered load is insufficient, the
problem is to find dispatch parameter values that would be
appropriate if the offered load were to suddenly increase.

3.2.1 Automatic Concurrency Control Mechanism

round trip time T

throughput λ

wait time W

Queue

N clients

think time Z

concurrent requests

service time S

At most K

Figure 1: Model outline

Figure 1 outlines the queuing system used in both (a) mod-
eling the offered load and (b) performance modeling. There
is some number N of clients, each of which alternately makes
a synchronous invocation and sleeps with a mean sleep time
of Z. An invocation is queued and dispatched, by one of
the mechanisms discussed earlier; the mean wait time is W ,
and the mean service time is S. The total round trip time
T averages Z + W + S, and the N clients doing this col-
lectively average a throughput of λ, which Little’s Result
tells us equals N/(Z + W + S) in long term averages. The
policy agent gets the statistics, which give sample averages
for W , S, and λ; the load modeling problem is to invent N
and Z that give a reasonable model of the offered load. This
starts by using a case analysis, on the average utilization of
the allocated concurrency in the preceding control cycle, to
set a provisional estimate. If the average concurrency was
less than 40% of the concurrency limit, then the provisional
estimate is N = d2(W + S)λe with Z to fit Little’s Result;
if greater than 95%, then N = d(W + S)λe and Z is fit to
Little’s Result; otherwise the provisional estimate is made
by picking the N and Z that are within reasonable bounds
and close to the intersection of Little’s Result and the Ma-
chine Repairmen model [6] (which gives a set of recursive
equations that relate those quantities — with one degree of
freedom). The series of provisional Z estimates is subjected
to exponential smoothing and then re-fitting to observation1

1setting N to the nearest integer related by Little’s Result
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to give the series of estimates.

One part of the performance model is simple: the utilization
ρ of the outer server is proportional to the request through-
put, and the constant of proportionality is what we call the
utilization factor and denote by the variable α.

ρ = λα

The utilization factor is a characeristic of the traffic, which
we presume may drift over time. The value of α is estimated
on-line based on observations of ρ and λ. In reality the
problem is more complex due to the presence of multiple
classes of traffic [11]. The α estimates are smoothed over
time to cope with various difficulties of doing this estimation.
Thus, the α estimates do not depend on the latest interval’s
statistics as strongly as do the other quantities used by the
performance agent.

The rest of the performance model is the Machine Repair-
men model. Given N , Z, S, and K, it predicts values for
λ and W . The policy agent solves for K incrementally [8]
by considering successively larger values for K until it finds
the largest that keeps λα within the desired utilization limit.
Note that this iteration is naturally limited to K ≤ N —
there is no gain in allowing more concurrency than there
are clients. If there is still power to spare at K = N then
additional increments in K are made, making the conserva-
tive assumption that increasing K by 1 will increase λ by
1/S. To gain a little bit finer control, the considered val-
ues of K are not just whole numbers but rather multiples
of 1/8. For non-integer K greater than 1, the Machine Re-
pairmen results from the nearest two integer K are linearly
interpolated; for 0 < K < 1 the Machine Repairmen model
is tweaked by using a single repairman, with S/K in place
of S

3.2.2 Automatic Rate Control Mechanism
The load modeling used by the policy agent for a rate con-
trolling dispatcher can also be explained by reference to Fig-
ure 1. It starts with Little’s Result, N = (Z+W +S)λ. Be-
cause the control variable is a throughput limit rather than
a concurrency limit, the Machine Repairmen model does
not apply. Little’s Result is only one equation, not enough
to fix two unknowns with a single observation of 〈W,S, λ〉.
Instead, two successive observations are used, 〈W1, S1, λ1〉
from the previous cycle and 〈W2, S2, λ2〉 from the latest cy-
cle. We start with a provisional estimate of N2, done in one
of two ways depending on the relative amount of change in
throughput (|λ2 − λ1|/λ2). If that difference is relatively
small then the provisional N2 is [(Z1 +W2 + S2)λ2], other-
wise the following series of steps is done. First, solve for the
Z that, together with some N , would fit both observations;
this is

Z =
(W1 + S1)λ1 − (W2 + S2)λ2

λ2 − λ1

Take that Z or zero, whichever is higher, and subject to
exponential smoothing. Using the smoothed Z, set the pro-
visional N2 to [(Z+W2+S2)λ2]. Finally, regardless of which

to Z and the latest observation, then setting Z to the non-
negative value most closely related by Little’s Result to N
and the observation

case applied, N2 is the maximum of 1 and the provisional
N2. Lastly,

Z2 = max(0, N2/λ2 −W2 − S2)

The performance modeling proceeds as follows. As in the
concurrency control case,

ρ = λα

The remainder of the performance model predicts λ given
the control setting — which is a limit on λ. Although the
current traffic characteristics impose another limit, N/(Z +
S), this could change during the upcoming control cycle. So
the model is simply that the achieved throughput will be
the control setting. The policy agent solves for the limit λ
by considering λ = Kδ for a small δ and successive whole
numbers K, looking for the largest that respects the de-
sired utilization limit (this looks unnecessarily complex in
this simple setting, but makes more sense in the real world
of multiple service classes, multiple applications, multiple
servers, multiple dispatchers).

4. EXPERIMENTAL SETUP
Both dispatch mechanisms perform well when workload is
characterized by relatively small variance in service time and
compute work done, such as that observed in exponential
distribution. However, in practice, some workloads exhibit
a lot higher variability: we have dealt with real life scenarios
where workload parameters of a small fraction of all requests
were orders of magnitude higher than the average. While it
is reasonable to design a dispatch mechanism for the most
common workloads, it is also important to understand how
the design copes with workloads whose characteristics are
uncommon and extreme.

We will compare the two dispatch mechanisms, in each of
two scenarios, which represent extreme conditions modelled
after those we have observed in real-life deployments. In
each scenario the request population is a mixture of two
kinds: 99% of the requests are “normal”, 1% are “long” (i.e.,
have an exceptionally long service time). Both kinds of
requests have exponentially distributed service times; the
mean service time of the long requests is about two orders
of magnitude larger than the mean of the normal requests.
In the constant-ratio scenario, the amount of computational
work needed to serve a request is proportional to its ser-
vice time; in the constant-work scenario, the mean compu-
tational work needed to service a request is the same for
both normal and long requests.

Notice that the chosen scenarios favor one or the other mech-
anism. Concurrency control is robust against variations in
requests that maintain a constant ratio of service time to
compute work done. Rate control is robust against varia-
tions in requests that change the service time but have no
effect on compute work done. Our purpose is to quantify
the performance of each mechanism in extreme scenarios
that favor and disfavor its design.

The overall request rates in the experiments are relatively
slow, making detailed instrumentation easy to do relatively
cheaply.
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4.1 The Constant-Work Scenario
In this scenario we use a simple micro-benchmark that works
as follows. A single server handles all (outer) requests. This
server handles such a request by executing a loop that does
some arithmetic; the number of iterations is exponentially
distributed with a certain mean. Every so many iterations,
there is a synchronous2 request to an inner server. In par-
ticular, there are 3 inner requests generated by an outer
request that does the mean number of iterations. Each in-
ner server’s service logic is simply an invocation of Java’s
Thread.sleep() operation, which is parameterized by the
amount of time to pause the thread. For the normal outer
requests, that inner sleep is 65 milliseconds in manual tri-
als and automatic mode trials with about 1 long request per
control cycle, 110 milliseconds in automatic mode trials with
about 100 longs/cycle; for long outer requests, that inner
sleep is 19.866 seconds. The inner requests are load bal-
anced across a distinct batch of servers, keeping each one’s
CPU utilization low3.

The outer requests are generated by a fixed number of clients;
that number is 100. Each client runs a simple infinite loop;
the body of the loop issues an outer request, reads the re-
ply once it’s available, and then does a stochastic pause.
The length of the pause is 745 ms plus a random number of
ms that has an exponential distribution and a mean of 800.
In this way we ensure there is ample offered load to keep
the outer server busy without having to worry about queue
overflows.

4.2 The Constant-Ratio Scenario
This scenario uses a similar micro-benchmark. The total
number of iterations in an outer request is exponentially
distributed, but the two different kinds of requests have dif-
ferent means. The mean number of iterations for long re-
quests is about 90 times the mean number of requests for
the normal requests in most of the trials, 100 times larger in
the low-target trials. Independently for each outer request
a nominal number ν of inner requests is chosen uniformly
at random from the interval [0.6, 3.4]. The “get interval” for
the request is set to the quotient of the mean number of
iterations (for the kind of request at hand) divided by ν.
This is the number of iterations between synchronous calls
to the inner server. From this, and knowledge of the phase
at which the inner calls are made, is calculated the number
n of inner requests that would be done if the outer request
did the mean number of iterations for its kind (normal or
long). For this outer request the length of the sleep done
while serving an inner request is [333/n] ms for normal re-
quests, [33400/n] ms for long requests, in most of the trials;
[430/n] and [43000/n], respectively, in the low-target trials.

The outer requests are generated in the a similar fashion as
in the constant-work scenario: there are simulated clients
repeatedly issuing synchronous outer requests; in this sce-
nario the number of simulated clients is small and they do
not pause between invocations.

In both the constant-work and constant-ratio scenarios, in

2That is, the outer loop does not continue until the reply to
this inner request is received
3This is required for good behavior of Thread.sleep().

the manual mode trials and the automatic control trials with
about one long request per control cycle, the outer requests
are served on a machine with a single processor so that we
can have a significant CPU utilization with a very low con-
currency (which highlights the effects of the mixed nature
of the workload). The server machines have two processors,
but one was disabled. In the automatic control trials with
about 100 long requests per control cycle, both processors
were enabled.

4.3 Experiments outline
We perform two kinds of experiments. First, we evaluate
both dispatch mechanisms with both workloads with a static
configuration of the control setting. The control settings are
obtained manually by applying the modeling logic described
in Section 3 to long-term workload averages, which are mea-
sured in an initial profiling stage. They are selected so as to
obtain the average CPU utilization of 66%.

Then, we evaluate the dispatch mechanisms with automated
control. We study two different lengths of control cycles.

All experiments run for several hours. During this time, we
collect various aggregate statistics such as: request arrivals
& dispatches & completions, average occupancy (number of
outer requests active), average inner and outer service timse,
average CPU utilization on each inner and each outer server.
These statistics are collected every 15 seconds. In the eval-
uation we show both the 15-second raw measurements and
their 25-minute averages. From each experiment we discard
an initial warm up phase and only analyze data collected
while the system is in steady state.

5. RESULTS IN MANUAL CONTROL
In this section we consider the following question. Supposing
the parameter(s) of the dispatch mechanism are held fixed
for a long time, how well can that mechanism cope with the
variation in the requests?

5.1 Constant-Ratio workload
We applied concurrency control dispatch mechanism to the
constant-ration workload. The stati concurrency limit was
2. In the experiment, the average throughput was about 1.62
requests/sec, which means the expected number of long re-
quests per statistics period (15 sec) was about 1/4. Figures 2
and 3 show time series of the outer server’s CPU utilization
obtained in the experiment averaged over 15-second inter-
vals and over 25-minute intervals, and a histogram of 15-
second CPU utilization averages, respectively. These results
show that with concurrency control mechanism, the CPU
utilization is fairly constant, indicating that this mechanism
is indeed robust in constant-ration scenario despite its high
variance of service time. Figures 4 and 5 show the time series
of the outer service times and a histogram of the 15-second
service time averages, respectively. They show quite a lot of
variation in service time: the distribution has quite a long
tail, because sometimes the outer server is entirely occupied
by long requests — whose completions are thus averaged
with few or no normal requests.

With rate-control mechanism we set the rate limit to 1.4667
req/sec. The average throughput was about 1.5 req/sec,
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Figure 2: CPU Utilization in Constant-ratio, Con-
currency Control, Manual Mode scenario
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Figure 3: Histogram of 15-second CPU Utiliza-
tion in Constant-ratio, Concurrency Control, Man-
ual Mode scenario
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Figure 4: Average Service Time in Constant-ratio,
Concurrency Control, Manual Mode scenario
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Figure 6: CPU Utilization in Constant-ratio, Rate
Control, Manual Mode scenario
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Mode scenario

thus expecting about 1/4 long requests per 15-second inter-
val. The time series of the outer server’s CPU utilization
presented in Figure 6 show a lot of variation. Notice that
even 25-minute averages diverge from the target quite con-
siderably, showing that the mechanism is ineffective in con-
trolling CPU utilization by this workload. The histogram
shown in Figure 7 reveals three clusters, which correspond
to the number of long requests being served: low utiliza-
tion cluster centered around 30% when no long requests are
active, middle cluster centered around 65% when one long
request is active, and very high utilization cluster reaching
100% when two or more long requests are active. Service
time distribution shown in Figures 9 and 10 does not have
the long tail observed with the concurrency-control mecha-
nism (Figure 5), because long requests do not stop normal
ones from entering the system and so every long service time
is averaged with many normal ones.

The results of this study clearly demonstrate that for constant-
ratio workload, the concurrency control mechanism performs
significantly better than the rate-control mechanism when
manual control is applied.

5.2 Constant-Work, Manual Control Results
5.2.1 Constant-Work, Manual Concurrency Control

Results
We ran the constant-work scenario for several hours, with
the concurrency limit set to 2, collecting the same kinds
of statistics. The average throughput was about 1.47 re-
qusts/sec, so the expected number of long requests per 15-
second interval was about 0.22. Figure 11 shows time se-
ries of the outer server’s CPU utilization, averaged over 15-
second intervals and over 25-minute intervals. Figure 12
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Figure 11: CPU Utilization in Constant-work, Con-
currency Control, Manual Mode scenario
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ual Mode scenario
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tion in Constant-work, Concurrency Control, Man-
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Figure 14: Average Service Time in Constant-work,
Concurrency Control, Manual Mode scenario
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Figure 15: Histogram of 15-second Average Service
Time in Constant-work, Concurrency Control, Man-
ual Mode scenario

shows a histogram of 15-second CPU utilization averages
from the entire run after warmup. The CPU utilization
shows a lot of variation, showing that this mechanism is not
robust in this scenario. There are three clusters of values
corresponding to the number of long requests being served:
around 90% CPU when no long requests are being served,
around 67% when one is being served, and under 5% when
two or more are being served. Figure 14 shows the time
series of the outer service times, averaged over the same 15-
second and 25-minute intervals as the CPU utilization; it
shows quite a lot of variation. Figure 15 shows a histogram
of the 15-second service time averages for the entire run af-
ter warmup. This distribution has a long tail, for the same
reason as in the constant-ratio scenario.

5.2.2 Constant-Work, Manual Rate Control Results
We ran the constant-work scenario for three hours, with the
rate limit set to 1.733 req/sec, collecting the usual kinds
of statistics. The average throughput was about 1.7 re-
quests/sec, thus expecting about 1 long request per minute.
Figure 16 shows time series of the outer server’s CPU uti-
lization, and figure 17 shows a histogram of the 15-second
averages. The alternating high-low pattern is an artifact of
rounding: the original data are report as whole numbers of
percent for 15-second intervals, and the histogram bins are
2 1

2
percent wide. All the 25-minute averages of CPU uti-

lization were in the range of 60–70%. This distribution is
much tighter than those of figures 7 and 12, but is broader
than the one for concurrency control of the constant-ratio
workload because dispatch rate control does not compensate
for variation in service time. Figure 18 shows time series of
outer service time averages, and figure 19 shows a histogram
of 15-second averages, showing that there was indeed signif-
icant variation in this traffic. As in the constant-ratio rate

9
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Figure 16: CPU Utilization in Constant-work, Rate
Control, Manual mode scenario
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Figure 17: Histogram of 15-second Averages of CPU
Utilization in Constant-work, Rate Control, Manual
mode scenario
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Figure 18: Service Time averages in Constant-work,
Rate Control, Manual mode scenario
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Figure 19: Histogram of 15-second averages of Ser-
vice Time in Constant-work, Rate Control, Manual
mode scenario
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concurrency gateway rate gateway
constant ratio 61.73237± 3.113405 60.02592± 24.86503
constant work 54.25371± 34.35370 65.87227± 11.96114

Table 1: Mean+-Standard Deviation of 15-second
averages of CPU utilization in manual control

control case, this distribution does not have a long tail.

5.3 Summary of Manual Control
Table 1 summarizes the results of the manual control exper-
iments, showing mean and sample standard deviation for
15-second averages of CPU utilization. Figure 20 summa-
rizes the results using histograms of 15-second averages of
CPU utilization.

Figure 21 summarizes the results of the manual control
experiments, using histograms of 25-minute averages of CPU
utilization.

6. RESULTS IN AUTOMATIC CONTROL
The manual control experiments showed that each dispatch
mechanism provides robust overload protection in one sce-
nario and not the other, but the different mechanisms are
better for different scenarios. We now turn to the question
of what happens if a policy agent periodically adjusts the
dispatch parameters.

Because the modeling depends on the statistics, which in
turn depend on the length of the sampling period, we now
double the number of scenarios. For each of the constant-
work and constant-ratio cases we now test two statistics pe-
riods: one with an average of about one long request per
period and one with an average of about 100 long requests
per period.

6.1 Constant-Ratio, Automatic Mode, ∼1 Longs
Per Cycle Results

We first consider some experiments with rather short control
cycles, in which there is an average of about 1 long request
per control cycle. The policy agent adjusts the gateway’s
control setting once per minute.

6.1.1 Constant-Ratio, Automatic Concurrency Con-
trol, ∼1 Longs Per Cycle Results

We ran the constant-ratio scenario with an average of roughly
one long request per control cycle, for several hours. The
CPU utilization target was set to 62%, which corresponds
with the long-term average utilization seen under manual
control with a concurrency limit of 2. Figure 22 shows the
15-second and 25-minute averages of CPU utilization on the
outer server over the course of two and a half characteristic
hours. Figure 23 shows a histogram of the 15-second CPU
averages on the outer server, for the whole trial excluding
the startup transient. The CPU utilization was not well
managed: it was rarely near its target, and was often near
100%. Compare with figures 33 et. seq. Figure 25 shows the
15-second and 25-minute averages of the service times over
the same 2.5 characteristic hours. Figure 26 shows a his-
togram of 15-second averages of service times, for the whole
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Figure 22: CPU Utilization in Constant-ratio, Con-
currency Control, ∼1 longs/cycle, Automatic Mode
scenario
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Figure 23: Histogram of 15-second average CPU
Utilization in Constant-ratio, Concurrency Control,
∼1 longs/cycle, Automatic Mode scenario
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Figure 20: Histograms of 15-second averages of CPU utilization in manual control
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Figure 21: Histograms of 25-minute averages of CPU utilization in manual control
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Figure 24: Histogram of 25-minute average CPU
Utilization in Constant-ratio, Concurrency Control,
∼1 longs/cycle, Automatic Mode scenario
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Figure 25: Average Service Time in Constant-ratio,
Concurrency Control, ∼1 longs/cycle, Automatic
Mode scenario
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Figure 26: Histogram of 15-second-average Service
Time in Constant-ratio, Concurrency Control, ∼1
longs/cycle, Automatic Mode scenario
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Figure 27: Gateway Control Setting in Constant-
ratio, Concurrency Control, ∼1 longs/cycle, Auto-
matic Mode scenario
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trial excluding the startup transient. Figure 27 shows a time
series of the control settings issued by the policy agent.
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Figure 28: Utilization Factor estimates in Constant-
ratio, Concurrency Control, ∼1 longs/cycle, Auto-
matic Mode scenario

In this trial the on-line estimates of the utilization factor
were consistently low. By comparing smoothed throughput
and utilization we estimated that factor to be about 37 %-
sec/req. Figure 28 shows the time series of the estimates
made on-line; they are consistently low.

We then ran the policy agent using a configured utilization
factor rather than on-line estimates. Figure 29 shows a time
series of CPU utilizations, figure 30 shows a histogram of
15-second averages. In this configuration the CPU utiliza-
tion was more often near the target. Figure 32 shows a time
series of the control settings issued by the policy agent. Us-
ing the correct utilization factor made the control settings
stay closer to the value corresponding to long-term averages.
Even so, most of the 15-second averages of CPU utilization
were far from the target.

We did a similar experiment but with a CPU utilization tar-
get of 42%. We tested three configurations: manual control
with occupancy=2, automatic control with on-line utiliza-
tion factor estimates, and automatic control with off-line
utilization factor estimates. The on-line utilization factor
estimates were about 3/4 of the correct (off-line estimated)
value. Table 2 shows the resultant sample mean and stan-
dard deviation of 15-second averages of CPU utilization; it
also shows histograms.

6.1.2 Constant-Ratio, Automatic Rate Control, ∼1
Longs Per Cycle Results

We ran the constant-ratio scenario for several hours, col-
lecting the same kinds of statistics as before. The CPU
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Figure 29: CPU Utilization in Constant-ratio, Con-
currency Control, ∼1 longs/cycle, Automatic Mode,
configured utilization factor
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Figure 30: Histogram of 15-second average CPU
Utilization in Constant-ratio, Concurrency Control,
∼1 longs/cycle, Automatic Mode, configured utiliza-
tion factor
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scenario mean std. dev.
manual 42.02984 1.779418
auto, on-line 62.50296 19.51831
auto, off-line 61.65669 22.96383
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Table 2: Mean+-Standard Deviation and Histograms of 15-second averge CPU utilization with low target,
constant rate, concurrency control, ∼1 longs/cycle
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Figure 31: Histogram of 25-minute average CPU
Utilization in Constant-ratio, Concurrency Control,
∼1 longs/cycle, Automatic Mode, configured utiliza-
tion factor
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Figure 32: Gateway Control Setting in Constant-
ratio, Concurrency Control, ∼1 longs/cycle, Auto-
matic Mode, configured utilization factor
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Figure 33: CPU Utilization in Constant-ratio, Rate
Control, Automatic Mode, ∼1 longs/cycle scenario
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Figure 34: Histogram of 15-second CPU Utilization
in Constant-ratio, Rate Mode, Automatic Mode, ∼1
longs/cycle scenario
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Figure 35: Histogram of 25-minute CPU Utilization
in Constant-ratio, Rate Mode, Automatic Mode, ∼1
longs/cycle scenario
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Figure 36: Gateway Control Setting in Constant-
ratio, Rate Control, Automatic Mode, ∼1
longs/cycle scenario
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Figure 37: Average Service Time in Constant-ratio,
Rate Control, Automatic Mode, ∼1 longs/cycle sce-
nario
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Figure 38: Histogram of 15-second Average Service
Time in Constant-ratio, Rate Control, Automatic
Mode, ∼1 longs/cycle scenario
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utilization target was set at 64%, which corresponds with
a throughput of about 1.6 req/sec. The average through-
put was about 1.5 req/sec, thus expecting about 1/4 long
requests per 15-second interval or about 1 per 60-second
control cycle. Figure 33 shows the time series of the outer
server’s CPU utilization, averaged over 15 seconds and over
25 minutes, for 275 typical minutes of this run. Figure 34
shows a histogram of the 15-second averages from the whole
run after warmup. These show a tri-modal distribution.
This is because the CPU utilization is dominated by a state
variable that takes on three values: the number of long re-
quests being served is either zero, one, or multiple. Compare
with figures 22 et. seq. Figure 37 shows the time series of
the 15-second and 25-minute averages of service time, for the
same 275 minutes as the CPU utilization. Figure 38 shows
a histogram of the 15-second averages from the whole run
after warmup. Figure 36 shows a time series of the control
settings issued by the policy agent. Compared with figure 27
or even 32 we see a much better control, the setting stays
much nearer the ideal value.
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Figure 39: Utilization Factor Estimates in
Constant-ratio, Rate Control, Automatic Mode, ∼1
longs/cycle scenario

Again, an identifiable source of error is in the on-line esti-
mation of the utilization factor. Offline estimates from long-
term averages give a value of about 40 %-sec/req; figure 39
shows a time series of the estimates produced on-line.

We then had the policy agent use a configured utilization
factor of about 40 %-sec/req rather than the on-line esti-
mates. Figure 40 shows a time series of the control settings
issued; it stayed closer to the ideal value. Figure 41 shows
a histogram of 15 second averages of CPU utilization; it
still showed no great regulation. Indeed, this workload is
designed to be very difficult to regulate at this time scale.
Next let us look at what happens if we multiply the number
of requests per control cycle by about 100.
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Figure 40: Gateway Control Setting in Constant-
ratio, Rate Control, Automatic Mode, ∼1
longs/cycle, configured utilization factor
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Figure 41: Histogram of 15-second CPU Utilization
in Constant-ratio, Rate Mode, Automatic Mode, ∼1
longs/cycle, configured utilization factor
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Figure 42: Histogram of 25-minute CPU Utilization
in Constant-ratio, Rate Mode, Automatic Mode, ∼1
longs/cycle, configured utilization factor

6.2 Constant-Ratio, Automatic Mode, ∼100 Longs
Per Cycle Results

Next we repeated those experiments but configured to have
roughly 100 long requests per control cycle. We doubled
the number of processors on the outer server (from 1 to 2)
and lengthened the control cycle to 50 minutes. After this
reconfiguration we repeated the manual mode trials to cali-
brate to the modified servers. We found that the constant-
ratio workload had a long-term average CPU utilization of
about 63% when the concurrency gateway was set to about
3.75 req, and when the rate gateway was set to about 3.65
req/sec.

6.2.1 Constant-Ratio, Automatic Concurrency Con-
trol, ∼100 Longs Per Cycle Results

We ran the constant-ratio scenario with many long requests
per control cycle, for several hours. The CPU utilization tar-
get was set to 63%. The long-term average of the throughput
was about 4 req/sec, which means there was an average of
about 120 long requests per control cycle. Figure 43 shows
the 12.5-minute averages of CPU utilization, for the whole
trial excluding the startup, and figure 44 shows a histogram
of those values. Figure 45 shows the 12.5-minute averages of
the service times, for the whole trial excluding the startup,
and figure 46 shows a histogram of those values. Figure 47
shows the control settings issued by the policy agent; they
were a bit high, for the reason discussed next.

In this trial the on-line estimates of the utilization factor
were consistently low. By comparing smoothed throughput
and utilization we estimated that factor to be about 18.4
%-sec/req. Figure 48 shows the time series of the estimates
made on-line.
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Figure 43: 12.5-Minute Averages of CPU Utiliza-
tion in Constant-ratio, Concurrency Control, ∼100
longs/cycle, Automatic Mode scenario
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Figure 44: Histogram of 12.5-Minute Averages of
CPU Utilization in Constant-ratio, Concurrency
Control, ∼100 longs/cycle, Automatic Mode sce-
nario
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Figure 45: 12.5-Minute Averages Service Times
in Constant-ratio, Concurrency Control, ∼100
longs/cycle, Automatic Mode scenario
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Figure 46: Histogram of 12.5-Minute Averages of
Service Time in Constant-ratio, Concurrency Con-
trol, ∼100 longs/cycle, Automatic Mode scenario
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Figure 47: Gateway Control Settings in Constant-
ratio, Concurrency Control, ∼100 longs/cycle, Au-
tomatic Mode scenario
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Figure 48: Utilization Factor estimates in Constant-
ratio, Concurrency Control, ∼100 longs/cycle, Au-
tomatic Mode scenario
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Figure 49: 12.5-Minute Averages of CPU Utiliza-
tion in Constant-ratio, Concurrency Control, ∼100
longs/cycle, Automatic Mode, configured utilization
factors
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Figure 50: Histogram of 12.5-Minute Averages of
CPU Utilization in Constant-ratio, Concurrency
Control, ∼100 longs/cycle, Automatic Mode, con-
figured utilization factors
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Figure 51: Gateway Control Settings in Constant-
ratio, Concurrency Control, ∼100 longs/cycle, Au-
tomatic Mode, configured utilization factors

We then changed the automatic controller to use a con-
figured utilization factor of about 18.4 %-sec/req, instead
of the results of the on-line profiler. The long-term aver-
age throughput dropped to about 3 1

3
req/sec, which corre-

sponds to an average of 100 long requests per control cy-
cle. Figure 49 shows a time series of 12.5-minute averages of
CPU utilization, and figure 50 shows a histogram. Figure 51
shows a time series of the control settings issued by the pol-
icy agent; these were closer to the correct value (3.75).

6.2.2 Constant-Ratio, Automatic Rate Control, ∼100
Longs Per Cycle Results

We ran the constant-ratio scenario with many long requests
per control cycle, for several hours. The CPU utilization
target was set to 63%. The long-term average throughput
was about 3.4 req/sec, which corresponds with an average of
about 102 long requests per control cycle. Figure 52 shows
a time series of 12.5-minute averages of CPU utilization, for
the whole trial excluding the startup, and figure 53 shows
a histogram of those values. Figure 54 shows a time series
of 12.5-minute averages of the service times, for the whole
trial excluding the startup. Figure 55 shows a histogram
of 12.5-minute averages of service times, for the whole trial
excluding the startup.

In this trial the on-line estimates of the utilization factor
were consistently high. By comparing smoothed throughput
and utilization we estimated that factor to be about 17.2 %-
sec/req. Figure 56 shows the time series of the estimates
made on-line.

We then changed the automatic controller to use a config-
ured utilization factor of 17.2 %-sec/req, instead of the re-
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Figure 52: 12.5-Minute Averages of CPU Utilization
in Constant-ratio, Rate Control, ∼100 longs/cycle,
Automatic Mode scenario
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Figure 53: Histogram of 12.5-Minute Averages of
CPU Utilization in Constant-ratio, Rate Control,
∼100 longs/cycle, Automatic Mode scenario
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Figure 54: 12.5-Minute Averages of Service Time
in Constant-ratio, Rate Control, ∼100 longs/cycle,
Automatic Mode scenario
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Service Time in Constant-ratio, Rate Control, ∼100
longs/cycle, Automatic Mode scenario
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Figure 56: Utilization Factor estimates in Constant-
ratio, Rate Control, ∼100 longs/cycle, Automatic
Mode scenario
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Figure 57: 12.5-Minute Averages of CPU Utilization
in Constant-ratio, Rate Control, ∼100 longs/cycle,
Automatic Mode, configured utilization factors

CPU utilization

co
un

t

20 40 60 80 100

0
2

4
6

8
10

Figure 58: Histogram of 12.5-Minute Averages of
CPU Utilization in Constant-ratio, Rate Control,
∼100 longs/cycle, Automatic Mode, configured uti-
lization factors

sults of the on-line profiler. Figure 57 shows the time series
of the CPU utilizations, and figure 58 shows a histogram.

6.3 Constant-Work, Automatic Mode, ∼1 Longs
Per Cycle Results

First, let us return to configurations with about one long/cycle.
Again the outer server is a uniprocessor and the control cycle
length is one minute.

6.3.1 Constant-Work, Automatic Concurrency Con-
trol, ∼1 Longs Per Cycle Results

We ran the constant-work scenario with an average of roughly
one long request per control cycle, for several hours. The
CPU utilization target was set at 67%, which corresponds
with a concurrency of about 2 requests. The long-term av-
erage of the throughput that actually happened was about
2 req/sec, thus an average of about 1.2 long requests per
60-second control cycle. Figure 59 shows the 15-second and
25-minute averages of CPU utilization on the outer server
over the whole run excluding startup, and figure 60 shows
a histogram of the 15-second CPU averages. Compare with
figures 66 et. seq. Figure 62 shows a time series of the con-
currency limits set by the policy agent. Figure 63 shows
a time series of the on-line estimates of the utilization fac-
tor; later we took long-term averages and they indicated
a utilization factor of about 38 %-sec/req, which is in the
upper range of the on-line estimates. Figure 64 shows the
15-second and 25-minute averages of the service times for
the whole trial excluding startup, and figure 65 shows a his-
togram of 15-second averages of service times.

We then repeated experiments with the constant work sce-
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Table 4: Histograms of 15-second averge CPU utilization with low target, constant work, concurrency control,
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Figure 59: CPU Utilization in Constant-work, Con-
currency Control, ∼1 longs/cycle, Automatic Mode
scenario
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Figure 60: Histogram of 15-second average CPU
Utilization in Constant-work, Concurrency Control,
∼1 longs/cycle, Automatic Mode scenario
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Figure 61: Histogram of 25-minute average CPU
Utilization in Constant-work, Concurrency Control,
∼1 longs/cycle, Automatic Mode scenario

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

elapsed time

co
nc

ur
re

nc
y 

lim
it

00:00 01:00 02:00 03:00 04:00 05:00

Figure 62: Gateway Control Settings in Constant-
work, Concurrency Control, ∼1 longs/cycle, Auto-
matic Mode scenario

scenario mean std. dev.
manual 41.43995 26.28481
auto, on-line 57.88514 30.60786

Table 3: Mean+-Standard Deviation of 15-second
averge CPU utilization with low target, constant
work, concurrency control, ∼1 longs/cycle
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Figure 63: Utilization Factor Estimates in Constant-
work, Concurrency Control, ∼1 longs/cycle, Auto-
matic Mode scenario
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Figure 64: Average Service Time in Constant-work,
Concurrency Control, ∼1 longs/cycle, Automatic
Mode scenario
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Figure 65: Histogram of 15-second-average Service
Time in Constant-work, Concurrency Control, ∼1
longs/cycle, Automatic Mode scenario

nario, but used a CPU utilization target of 44%. Table 3
shows the resulting sample mean and standard deviation,
while table 4 shows histograms.

6.3.2 Constant-Work, Automatic Rate Control, ∼1 Longs
Per Cycle Results

We ran the constant-work scenario an average of one long
request per control cycle, for several hours. The CPU uti-
lization target was set at 67%. The long-term average of
the throughput was about 1.7 req/sec, corresponding to an
average of about 1 long request per control cycle. Figure 66
shows the 15-second and 15-minute averages of CPU uti-
lization on the outer server over three characteristic hours,
and figure 67 shows a histogram of the 15-second CPU av-
erages on the outer server, for the whole trial excluding the
startup transient; all the 25-minute averages of CPU utiliza-
tion were in the 60–70% range. Compare with figures 59 et.
seq. Figure 69 shows the on-line estimates of the utilization
factor; we later looked at long-term averages and found they
indicate a utilization factor of about 38 %-sec/req — which
makes a utilization of 67% correspond with a throughput
of about 1.8 req/sec. Figure 68 shows the rate limits is-
sued by the policy agent. Figure 70 shows the 15-second
and 15-minute averages of the service times for the same
three characteristic hours, and figure 71 shows a histogram
of 15-second averages of service times, for the whole trial
excluding the startup transient.

6.4 Constant-Work, Automatic Mode, ∼100 Longs
Per Cycle results

Now for roughly a hundred longs/cycle. Again, the outer
server has two processors and the control cycle length is 50
minutes.
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Figure 66: CPU Utilization in Constant-work, Rate
Control, ∼1 longs/cycle, Automatic Mode scenario
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Figure 67: Histogram of 15-second average CPU
Utilization in Constant-work, Rate Control, ∼1
longs/cycle, Automatic Mode scenario
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Figure 68: Gateway Control Settings in Constant-
work, Rate Control, ∼1 longs/cycle, Automatic
Mode scenario
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Figure 69: Utilization Factor Estimates in Constant-
work, Rate Control, ∼1 longs/cycle, Automatic
Mode scenario
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Figure 70: Average Service Time in Constant-work,
Rate Control, ∼1 longs/cycle, Automatic Mode sce-
nario
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Figure 71: Histogram of 15-second-average Ser-
vice Time in Constant-work, Rate Control, ∼1
longs/cycle, Automatic Mode scenario
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6.4.1 Constant-Work, Automatic Concurrency Con-
trol, ∼100 Longs Per Cycle Results
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Figure 72: 12.5-Minute Averages of CPU Utiliza-
tion in Constant-work, Concurrency Control, ∼100
longs/cycle, Automatic Mode scenario

We calibrated the constant-work scenario in the many long
per cycle configuration in manual mode, finding that, in
long-term averages, a throughput of 3.66 req/sec corresponds
with a CPU utilization of 67.8%.

We ran the constant-work scenario with an average of 100
long requests per control cycle, for several hours. The CPU
utilization target was set to 67%. Figure 72 shows the 12.5-
minute averages of CPU utilization, for the whole trial ex-
cluding the startup. Figure 73 shows a histogram of the 12.5-
minute CPU averages on the outer server, for the whole trial
excluding the startup. Figure 74 shows a time series of the
gateway control settings from the policy agent. Figure 75
shows a time series of the on-line estimates of the utilization
factor; we later look at long-term averages and estimated
the factor was about 18.5 %-sec/req. Figure 76 shows the
12.5-minute averages of the service times, for the whole trial
excluding the startup. Figure 77 shows a histogram of 12.5-
minute averages of service times, for the whole trial exclud-
ing the startup.

6.4.2 Constant-Work, Automatic Rate Control, ∼100
Longs Per Cycle Results

We calibrated the constant-work scenario in the many long
per cycle configuration in manual mode, finding that, in
long-term averages, a throughput of 3.38 req/sec corresponds
with a CPU utilization of 67%.

We ran the constant-work scenario with an average of 100
long requests per control cycle, for several hours. The CPU
utilization target was set to 67%. Figure 78 shows the 12.5-
minute averages of CPU utilization, for the whole trial ex-
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Figure 73: Histogram of 12.5-Minute Averages of
CPU Utilization in Constant-work, Concurrency
Control, ∼100 longs/cycle, Automatic Mode sce-
nario
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Figure 74: Gateway Control Settings in Constant-
work, Concurrency Control, ∼100 longs/cycle, Au-
tomatic Mode scenario
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Figure 75: Utilization Factor Estimates in Constant-
work, Concurrency Control, ∼100 longs/cycle, Au-
tomatic Mode scenario
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Figure 76: 12.5-Minute Averages of Service Time
in Constant-work, Concurrency Control, ∼100
longs/cycle, Automatic Mode scenario
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Figure 77: Histogram of 12.5-Minute Averages of
Service Time in Constant-work, Concurrency Con-
trol, ∼100 longs/cycle, Automatic Mode scenario
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Figure 78: 12.5-Minute Averages of CPU Utilization
in Constant-work, Rate Control, ∼100 longs/cycle,
Automatic Mode scenario
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Figure 79: Histogram of 12.5-Minute Averages of
CPU Utilization in Constant-work, Rate Control,
∼100 longs/cycle, Automatic Mode scenario

3.
00

3.
05

3.
10

3.
15

3.
20

3.
25

3.
30

3.
35

elapsed time

ra
te

 li
m

it

00:00 05:00 10:00 15:00 20:00 01:00

Figure 80: Gateway Control Settings in Constant-
work, Rate Control, ∼100 longs/cycle, Automatic
Mode scenario
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Figure 81: Utilization Factor Estimates in Constant-
work, Rate Control, ∼100 longs/cycle, Automatic
Mode scenario
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Figure 82: 12.5-Minute Averages of Service Time
in Constant-work, Rate Control, ∼100 longs/cycle,
Automatic Mode scenario
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Figure 83: Histogram of 12.5-Minute Averages of
Service Time in Constant-work, Rate Control, ∼100
longs/cycle, Automatic Mode scenario

concurrency gateway rate gateway
constant ratio 83.11346± 14.46747 58.79613± 24.30999
constant work 78.24217± 29.43880 63.96396± 12.70281

Table 5: Mean+-Standard Deviation of 15-second
averge CPU utilization in automatic control, on-line
utilization factor estimates, ∼1 longs/cycle

cluding the startup. Figure 79 shows a histogram of the 12.5-
minute CPU averages on the outer server, for the whole trial
excluding the startup. Figure 80 shows a time series of the
gateway control settings from the policy agent. Figure 81
shows a time series of the on-line estimates of the utilization
factor; we later look at long-term averages and estimated
the factor was about 19.6 %-sec/req. Figure 82 shows the
12.5-minute averages of the service times, for the whole trial
excluding the startup. Figure 83 shows a histogram of 12.5-
minute averages of service times, for the whole trial exclud-
ing the startup.

6.5 Summary of Automatic Control
Table 5 summarizes the comparison of CPU utilization re-
sults in the case of automatic control, roughly a hundred
longs/cycle, on-line utilization factor estimates via sample
mean and standard deviation. Figure 84 summarizes the
comparison via histograms of 15-second averages. Figure 85

concurrency gateway rate gateway
constant ratio 71.41645± 22.14784 59.43745± 23.99228

Table 6: Mean+-Standard Deviation of 15-second
averge CPU utilization in automatic control, config-
ured utilization factor estimates, ∼1 longs/cycle

concurrency gateway rate gateway
constant ratio 72.13367± 4.057711 58.13689± 18.25958
constant work 68.26586± 27.10929 64.83647± 8.972858

Table 7: Mean+-Standard Deviation of 15-second
averge CPU utilization in automatic control, on-line
utilization factor estimates, ∼100 longs/cycle

concurrency gateway rate gateway
constant ratio 58.87767± 4.119689 60.17795± 17.41581

Table 8: Sample Mean and Standard Deviation of
15-second averge CPU utilization in automatic con-
trol, configured utilization factor estimates, ∼100
longs/cycle

compares time series of the control settings.

Figure 86 summarizes the comparison in the case of auto-
matic control, roughly one longs/cycle, on-line utilization
factor estimates via histograms of 25-minute averages.

Table 6 summarizes the comparison in the case of automatic
control, roughly one longs/cycle, configured utilization fac-
tor estimates via sample mean and standard deviation of
15-second averages. Figure 87 summarizes the comparison
via histograms of 15-second averages.

Figure 88 summarizes the comparison in the case of auto-
matic control, roughly one longs/cycle, configured utiliza-
tion factor estimates via histograms of 25-minute averages.

Table 7 summarizes the comparison in the case of automatic
control, roughly a hundred longs/cycle, on-line utilization
factor estimates via sample mean and standard deviation of
15-second averages. Figure 89 summarizes the comparison
via histograms of 12.5-minute averages. Figure 90 compares
the time series of the control settings.

Table 8 summarizes the comparison in the case of automatic
control, roughly a hundred longs/cycle, configured utiliza-
tion factor estimates via sample mean and standard devi-
ation of 15-second averages of CPU utilization. Figure 91
summarizes the comparison in the case of automatic control,
roughly a hundred longs/cycle, configured utilization factor
estimates via histograms of 12.5-minute averages.

7. CONCLUSION
We first summarize the results of this study of very problem-
atic workloads, and then make some general recommenda-
tions. Finally we note some possible further developments.

As summarized in Table 1, Figure 20, and Figure 21, the two
gateway mechanisms are simply different in a manual con-
text: each is better for a different workload. However, there
are more consistent results in automatic contexts. The rate-
based gateway and automatic controller working together
produced more accurate control than the occupancy-based
gateway and automatic controller. On the other hand, if the
highest priority is simply to avoid underload, the occupancy-
based gateway and automatic controller usually did a better
job of this — at the expense of causing overload more often.
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Figure 84: Histograms of 15-second averge CPU utilization in automatic control, on-line utilization factor
estimates, ∼1 longs/cycle

If Then
the workload does not include extreme variance either gateway will work well
the extreme variance, if any, has little variation in the work/time ratio the concurrency gateway works best
the exteme variance, if any, has little variation in work/request the rate gateway works best
every kind of exterme variance might appear in the workload the rate gateway is least risky

Table 9: Management depends on (what you know about) your workload

33



concurrency gateway rate gateway

co
n
st

a
n
t

ra
ti

o

2
5

10
20

50
10

0

elapsed time

co
nc

ur
re

nc
y 

lim
it

00:00 00:30 01:00 01:30 02:00 02:30

1.
0

1.
2

1.
4

1.
6

1.
8

elapsed time

ra
te

 li
m

it

00:00 01:00 02:00 03:00 04:00

co
n
st

a
n
t

w
o
rk

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

elapsed time

co
nc

ur
re

nc
y 

lim
it

00:00 01:00 02:00 03:00 04:00 05:00

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

1.
75

1.
80

elapsed time

ra
te

 li
m

it

00:00 01:00 02:00 03:00 04:00

Figure 85: Time series of control settings in automatic control, on-line utilization factor estimates, ∼1
longs/cycle
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Figure 86: Histograms of 25-minute averge CPU utilization in automatic control, on-line utilization factor
estimates, ∼1 longs/cycle
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Figure 87: Histograms of 15-second averge CPU utilization in automatic control, configured utilization factor
estimates, ∼1 longs/cycle
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Figure 88: Histograms of 25-minute averge CPU utilization in automatic control, configured utilization factor
estimates, ∼1 longs/cycle
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Figure 89: Histograms of 12.5-minute averge CPU utilization in automatic control, on-line utilization factor
estimates, ∼100 longs/cycle
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Figure 90: Time series of 12.5-minute averge CPU utilization in automatic control, on-line utilization factor
estimates, ∼100 longs/cycle
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Figure 91: Histograms of 12.5-minute averge CPU utilization in automatic control, configured utilization
factor estimates, ∼100 longs/cycle

Now for recommendations. Since multi-class settings are
more realistic, we will suppose the objective is accuracy
rather than avoiding underload. Table 9 summarizes our rec-
ommendations. Although the data are not exhibited here,
we find (as you would expect) that when the workload does
not have extreme variation both gateways work fairly well.
If you know your workload might include extreme variation
in service time but will not include high variation in the
work/time ratio then the concurrency controlling gateway
will give the best results. On the other hand, if you know
your workload may include extreme variation in service time
but not in work/request then the rate controlling gateway
gives the best results. If the workload could include any
sort of extreme variation, then the rate controlling gateway
is the safest bet; it might not produce the best results in
some cases, but it avoids the worst results in all cases.

The fact that different gateways handle different surprises
better suggests a hybrid technique might be valuable. In
the single-class setting, is there a way to automatically and
dynamically determine which dispatching mechanism would
work better, and put that into effect? A multi-class setting
adds additional complexities — at least when (e.g., as in
WebSphere VE [7]) the multi-class management is not sim-
ply several independent copies of the single-class manage-
ment. In this situation, even if the decision for each class is
static, how can the two styles of management be mixed in
one multi-class solution?
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