
RC25091 (W1012-100) December 23, 2010
Computer Science

IBM Research Report

A Scalable Availability Model for 
Infrastructure-as-a-Service Cloud

Francesco Longo1, Rahul Ghosh2, Vijay K. Naik3, Kishor S.  Trivedi2

1Dipartimento di Matematica
Università degli Studi di Messina

Contrada di Dio, S. Agata
98166 Messina

Italia

2Department of Electrical and Computer Engineering
Duke University

Durham, NC  27708
USA

3IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

 

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



A Scalable Availability Model for Infrastructure-as-a-Service Cloud

Francesco Longo∗, Rahul Ghosh‡, Vijay K. Naik§, and Kishor S. Trivedi‡
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Abstract—High availability is one of the key characteristics
of Infrastructure-as-a-Service (IaaS) cloud. In this paper, we
show a scalable method for availability analysis of large scale
IaaS cloud using analytic models. To reduce the complexity of
analysis and the solution time, we use an interacting Markov
chain based approach. The construction and the solution of
the Markov chains is facilitated by the use of a high-level Petri
net based paradigm known as stochastic reward net (SRN).
Overall solution is composed by iteration over individual SRN
sub-model solutions. Dependencies among the sub-models are
resolved using fixed-point iteration, for which existence of a
solution is proved. We compare the solution obtained from
the interacting sub-models with a monolithic model and show
that errors introduced by decomposition are insignificant.
Additionally, we provide closed form solutions of the sub-
models and show that our approach can handle very large
size IaaS clouds.

Keywords-Analytic model, availability analysis, cloud, fixed-
point iteration, Markov models.

I. INTRODUCTION

Cloud computing is a model of Internet-based computing.

An IaaS cloud, such as Amazon EC2 [1] and IBM Smart

Business Cloud [2], [3], delivers, on-demand, operating

system (OS) instances provisioning computational resources

in the form of virtual machines deployed in the cloud

provider’s data center. Requests submitted by the users are

provisioned and served if the cloud has enough available

capacity in terms of physical machines. Large cloud service

providers such as IBM provide service level agreements

(SLAs) regulating the availability of the cloud service.

Before committing an SLA to the customers of a cloud,

the service provider needs to carry out availability analysis

of the infrastructure on which the cloud service is hosted.

In this paper, we show how stochastic analytic models

can be utilized for cloud service availability analysis. We

first develop a one-level monolithic model. However, such

monolithic models become intractable as the size of cloud

increases. To overcome this difficulty, we use an interacting

sub-models approach. Overall model solution is obtained by

iteration over individual sub-model solutions. Comparison

of the results with monolithic model shows that errors

introduced by model decomposition are negligible. We also

develop closed form solutions of the sub-models and show

that our approach can scale for large size clouds. To the

best of our knowledge, this is the first attempt to analyze

availability of a cloud computing infrastructure by using

stochastic analytic models. The presence of three pools of

physical machines and the migration of them from one pool

to another caused by failure events makes the model both

novel and interesting. In order to automate the construction

and solution of underlying Markov models, we use a variant

of stochastic Petri net (SPN) called stochastic reward net

(SRN). This paradigm is supported by two of our own

software packages, SHARPE [4] and SPNP [5].

Rest of the paper is organized as follows. Section II

describes cloud system model, assumptions and problem

formulation. Section III, presents the monolithic SRN model.

Interacting SRN sub-models are described in Section IV

and their closed form solutions are presented in Section V.

Fixed point iteration among the interacting sub-models and

proof of existence of a solution is shown in Section VI.

Results obtained from monolithic approach and interacting

sub-models approach are compared in Section VII. Related

research is highlighted in Section VIII. We conclude this

work and discuss future avenues of research in Section IX.

Appendix A provides backgrounds on SPNs and SRNs.

II. PROBLEM DEFINITION

System model and assumptions. In IaaS cloud, when a

request is processed, a pre-built image is used to create one

or more Virtual Machine (VM) instances [6]. When the VM

instances are deployed, they are provisioned with request

specific CPU, RAM, and disk capacity. VMs are deployed

on physical machines (PMs) each of which may be shared

by multiple VMs. To reduce overall VM provisioning delays

and operational costs, we assume that the PMs are grouped

into three pools; hot (running), warm (turned on, but not

ready) and cold (turned off). Maintaining the PMs in three

pools (in general, multiple tiered pools) helps to minimize

power and cooling costs without incurring high startup

delays for all VMs. A pre-instantiated VM can be readily

provisioned and brought to ready state on a running PM

(hot PM) with minimum provisioning delay. Instantiating

a VM from an image and deploying it on a warm PM

needs additional provisioning time. PMs in the cold pool

are turned-off when not in use and deploying a VM on such

a PM adds to the startup delays. A performability model of



this system was presented in [6] where it has been shown

that the “bottleneck” model is the availability model. Hence,

the objective of this paper is to develop a scalable availability

model of cloud service with the following assumptions:

(1) Variety of failures/repairs can occur in a cloud

environment such as failure/repair of hardware, software,

hypervisor, VM, OS and applications. In this paper, we

consider only the net effect of different failures and repairs

of PMs in the hot, warm and cold pools. We do not consider

software and OS failures in a VM. Typically, these failures

are handled by restarting the VM. Although the cause of

a PM failure can be because of variety of reasons, in our

analysis we consider the net combined effect on the PM

failure rate. In future, we plan to extend our availability

model to capture detailed PM failure modes and recovery

steps as in [7], [8].

(2) We assume that all times to failure are exponentially

distributed. Equivalent mean time to failure (MTTF) of each

hot PM is 1/λh and that of each warm PM is 1/λw.

Typically, 1/λw is higher than 1/λh by a factor of 2 to 4.

Cold machines can fail with a very low failure rate λc with

λh >> λc and λw >> λc. We will remove the assumption

of exponential distribution in future as in [9].

(3) All PMs in a pool are identical. Failure of a PM in

one pool triggers migration of a PM (if available) from other

pools to replace the failed one. When a hot PM fails, the

failed PM needs to be repaired and at the same time the

system tries to replace it by a warm PM, if available (i.e.,

in “UP” state). If no warm PM is available, replacement is

attempted by migrating an available cold PM to the hot pool.

When a warm PM fails, the failed PM undergoes repair and

at the same time it is replaced by a PM from the cold pool (if

there is at least one PM available in cold pool). We assume

that the migration process is instantaneous.

(4) Each pool has its own repair facilities. Within a pool,

maximum number of PMs that can be repaired in parallel is

assumed to be nr. Value of nr is assumed to be greater than

equal to 1 but less than the maximum number of PMs in the

pool. When the number of PM failures are higher than nr,

failed PMs are put in a queue for repair. Across different

pools, repairs can be done in parallel. We assume that time

to repair is exponentially distributed with mean 1/µ. Once

a failed PM is repaired, it is returned to the original pool

where it belonged before failure. If a PM was borrowed from

other pool to replace the failed PM; such borrowed PM is

also returned to its original pool instantaneously.

Problem Formulation. Assume that nh, nw and nc PMs

are initially available in the hot, warm, and cold pools,

respectively. Our definition of availability is that at least k
PMs (with 1 ≤ k ≤ nh + nw + nc) should be available

across all the pools combined in order for the system to be

up. Under the failure, repair and migration of the PMs across

different pools, we wish to compute the average number of

PMs in each pool at steady state and the effects of downtime

on the cloud service. Note that the migration of PMs from

one pool to another induces a dependence between the three

pools making the availability model both interesting and

novel.

We start by developing a monolithic model using the high-

level formalism of SRN for the automated generation and

solution of the underlying Markov chain. The monolithic

model is not scalable to the large size clouds that we wish to

analyze. Hence, we propose an interacting SRN sub-models

approach that is scalable. As an important side-benefit,

the decomposition also enables us to obtain closed form

solutions of sub-models. Three key comparisons are made

between these two approaches: (1) errors introduced by

interacting sub-models, (ii) maximum number of PMs that

each approach can handle and (iii) solution time required

for both the approaches. Through systematic analysis, we

show that interacting SRN sub-models approach is highly

scalable compared to single monolithic modeling approach.

Closed form solutions of the sub-models are especially

useful in providing a highly scalable and fast method for

the availability analysis of large sized IaaS cloud.

III. MONOLITHIC AVAILABILITY MODEL

Monolithic SRN model for the availability analysis of

IaaS cloud is shown in Fig. 1. Input parameters of monolithic
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Figure 1. Monolithic SRN model for availability analysis of IaaS cloud.

model are: (1) initial number of PMs in each pool (n
h

, n
w

,



and n
c
), (2) MTTFs of hot, warm, and cold PMs (1/λh,

1/λw and 1/λc, respectively), (3) number of repair facilities

for each pool (n
r
), (4) MTTR of a PM (1/µ). Among the

input parameters, n
h

, n
w

, n
c
, and n

r
are design parameters,

MTTF and MTTR values are measured. Five guard functions

are defined on the model and they are described in Table I1.

Table I
GUARD FUNCTIONS DEFINED ON MONOLITHIC SRN MODEL AND

INTERACTING SRN SUB-MODELS.

Guard functions Values

g1
1 if #Pw = 0
0 otherwise

g2
1 if #Pw = 0 and #Pc = 0
0 otherwise

g3
1 if #Pc = 0
0 otherwise

g4
1 if #Pfw +#Pbw > 0
0 otherwise

g5
1 if #Pfc +#Pbc′ +#Pbc′′ > 0
0 otherwise

Places Ph, Pw, and Pc represent the hot, warm, and

cold pool, respectively. Number of tokens in these places

indicates the number of “UP” PMs in the corresponding

pool. Transitions Tbwhf , Tbchf , and Thf represent the failure

event of a hot PM. Since migration of a PM is attempted

upon failure of a hot PM, three cases are possible: (1) Tbwhf

fires if a warm PM is available for migration to the hot pool,

(2) Tbchf fires if the warm pool is empty but a cold PM is

available to be borrowed, and (3) Thf fires if both the warm

and the cold pool are empty so that no PM is available

to substitute the failed hot PM. The guard functions g1
and g2 model the three mutually exclusive cases. Moreover,

rates of these transitions are considered to be dependent on

the number of tokens in place Ph so that the overall hot

PM failure rate is equal to λh multiplied by the number

of available hot PMs. These marking dependent firing rates

are represented by the # symbol near the input arcs which

connect the transitions Tbwhf , Tbchf , and Thf to the place

Ph.

Upon firing of transition Tbwhf , a token is removed from

place Pw and the number of tokens in place Ph remains

unchanged. At the same time, a token is deposited in place

Pbw. This place keeps track of number of failed PMs that

need to be repaired and given back to the warm pool at the

end of the repair process. Similarly, upon firing of transition

Tbchf , a token is removed from place Pc and the number

of tokens in place Ph remains unchanged. Simultaneously,

a token is deposited in place Pbc′ to take into account that a

PM has to be repaired and given back to the cold pool. Upon

firing of transition Thf , following token exchanges happen:

(i) removal of a token from place Ph to model the reduction

in number of available PMs in the hot pool by one and (ii)

1The notation #P indicates the number of tokens in place P .

deposition of a token in place Pfh to model that the failed

PM has to be repaired and given back to the hot pool.

Failure-repair behavior of warm pool is modeled similarly.

Transitions Tbcwf and Twf model the failure event of a

warm PM. Two cases are possible: (1) Tbcwf fires if a cold

PM is available for migration to warm pool, and (2) Twf

fires if the cold pool is empty and no PM is available to

substitute the failed warm PM. The guard function g3 models

the fact that the two cases are mutually exclusive. Rates of

transitions Tbcwf and Twf are considered to be dependent on

the number of tokens in place Pw so that the overall warm

PM failure rate is equal to λw multiplied by the number of

available warm PMs. Firing of Tbcwf removes a token from

place Pc and deposits a token to place Pbc′′ representing

the failed PM that needs to be repaired and given back to

the cold pool. Upon firing of Twf , a token is removed from

place Pw and a token is deposited to place Pfw representing

the failed PM that needs to be repaired and given back to

the warm pool.

Transition Tcf fires when a cold PM fails. Rate of such

transition is considered to be dependent on the number of

tokens in place Pc so that the overall cold PM failure rate

is equal to λc multiplied by the number of available cold

PMs. Upon firing of Tcf , a token is removed from place Pc

and deposited to place Pfc.

Transitions Thr, Twr and Tcr model the repair of the failed

PMs. Rates of these transitions are marking dependent to

take into account the presence of nr repair facilities for

each pool. In particular, the rates of the above mentioned

transitions are reported in Table II. Guard functions g4 and

g5 allow transitions Twr and Tcr to be enabled only when

at least one PM needs to be repaired. Immediate transitions

twr1 , twr2 , tcr1 , tcr2 , and tcr3 model the instantaneous

migrations of repaired PMs to the original pool.

Model outputs. Outputs of the model are obtained using

the Markov reward approach by assigning an appropriate

reward rate to each marking of the SRN and then computing

the expected reward rate both in transient and steady state as

the desired measures [7]. Let ri be the reward rate assigned

to marking i of the SRN in Figure 1. If πi(t) denotes the

probability for the SRN to be in marking i at time t then

the expected reward rate at time t is given by
∑

i πi(t)ri.
The expected steady state reward rate can be computed by

taking into consideration the steady state probabilities πi of

the SRN as
∑

i πiri. Our measures of interest are following.

(i) Mean number of PMs in each pool The mean number

of PMs in the hot pool is given by the mean number of

tokens in the corresponding place Ph (E[#Ph]). Similarly,

for the warm and the cold pool we consider the mean number

of tokens in places Pw and Pc, respectively (E[#Pw] and

E[#Pc]). Reward assignment for this measures is shown in

Table III.

(ii) Availability of cloud service (A) As mentioned

above, we consider the cloud service to be available if the



Table II
RATES OF TRANSITIONS MODELING THE REPAIR OF FAILED PMS IN MONOLITHIC SRN MODEL AND INTERACTING SRN SUB-MODELS.

Transitions Rates of transitions

Thr
#Pfh · µ if #Pfh ≤ nr

nr · µ otherwise

Twr
(#Pfw +#Pbw) · µ if #Pfw +#Pbw ≤ nr

nr · µ otherwise

Tcr
(#Pfc +#Pbc′ +#Pbc′′ ) · µ if #Pfc +#Pbc′ +#Pbc′′ ≤ nr

nr · µ otherwise

Table III
REWARD RATES TO COMPUTE DIFFERENT OUTPUT MEASURES FROM MONOLITHIC SRN MODEL AND INTERACTING SRN SUB-MODELS

Measures Reward rates

Mean number of PMs in the hot pool (E[#Ph]) #Ph

Mean number of PMs in the warm pool (E[#Pw]) #Pw

Mean number of PMs in the cold pool (E[#Pc]) #Pc

Availability of cloud service (A) 1 if (#Ph +#Pw +#Pc) ≥ k; 0 o/w

Availability of hot pool (Akh
) 1 if #Ph ≥ kh; 0 o/w

Availability of warm pool (Akw
) 1 if #Pw ≥ kw; 0 o/w

Availability of cold pool (Akc
) 1 if #Pc ≥ kc; 0 o/w

Probability to have at least one PM in warm pool (pw) 1 if #Pw ≥ 1; 0 o/w

Probability to have at least one PM in cold pool (pc) 1 if #Pc ≥ 1; 0 o/w

total number of PMs across all hot, warm, and cold pool is

greater than or equal to k (with 1 ≤ k ≤ nh + hw + nc).

As a consequence, the reward assignment for this measure

is the one shown in Table III.

IV. INTERACTING SRN SUB-MODELS

We decompose the monolithic model into three sub-

models, each of which captures the failure and repair be-

havior of a single pool. Here, we describe how these three

sub-models interact with each other and allow us to compute

the same quantities that are computed from the monolithic

model. The SRN sub-models for the hot, warm and cold pool

are shown in Figures 2, 3 and 4, respectively. Observe that

some of the transitions of the monolithic model are present

in more than one sub-model. Hence, to obtain overall model

solution, sub-models exchange some of the input parameters

and output measures. Guard functions g1, g2, and g3 are

not present in the interacting sub-models approach while the

rates of transitions Thr, Twr, Tcr are still marking dependent

according to the functions described in Table II.

The structure of the hot pool sub-model in Figure 2 is

obtained from the structure of the monolithic model by

keeping the transitions that directly interact with place Ph

and disregarding the others and the related places. Input

parameters to this sub-model are: (i) initial number of PMs

in hot pool (n
h

), (ii) hot PMs failure rate (λh), (iii) hot PMs

repair rate (µ), (iv) number of repair facilities in the hot pool

(nr). Among these input parameters, n
h

and nr are design

parameters, λh and µ are measured. Assume pw and pc are

the probabilities to have at least one PM available in warm

and cold pool, respectively as computed from the warm and

cold pool sub-models discussed later. In the hot pool sub-

model, the rate of transition Tbwhf is λh ·pw. This is because,

#

#

#

Figure 2. SRN sub-model for the availability analysis of the hot pool.

in the monolithic model, an arc is present from place Pw

to such a transition. In the hot pool sub-model, place Pw is

not present but still the impact of the behavior of the warm

pool sub-model on the throughput of transition Tbwhf needs

to be taken into account by scaling its rate with the quantity

pw. Similarly, the rate of transition Tbchf is λh · (1−pw) ·pc
because it is necessary to take into account the presence

of the arc from place Pc (by multiplying with pc) and the

guard function [g1] (by multiplying with 1− pw) as used in

the monolithic model. Finally, the rate of transition Thf is

λh · (1−pw) · (1−pc) because we need to take into account

the presence of the guard function [g2].

From the hot pool sub-model we compute E[#Ph] that

represents the mean number of tokens in place Ph, i.e., mean

number of available PMs in the hot pool. It will be used in



the warm and cold pool SRN sub-models to approximate the

rate of transitions Tbwhf and Tbchf . Moreover, from the hot

pool sub-model we compute the probability (Akh
) for the

hot pool to be available, i.e., the probability for the number

of tokens in place Ph to be greater or equal to kh with

0 ≤ kh ≤ nh . It will be used to compute the overall cloud

service availability from the interacting sub-models. These

output measures can be computed by assigning the reward

rates reported in Table III.

#

#

Figure 3. SRN sub-model for the availability analysis of the warm pool.

Similar to the hot pool sub-model, the structure of the

warm pool sub-model in Figure 3 is obtained from the

structure of the monolithic model by keeping the transitions

that directly interact with place Pw and disregarding the

others and the related places. Input parameters to this sub-

model are: (i) initial number of PMs in warm pool (n
w

),

(ii) warm PMs failure rate (λw), (iii) warm PMs repair rate

(µ) and (iv) number of repair facilities for the warm pool

(nr). Among these input parameters, n
w

and nr are design

parameters, λw and µ are measured. Computation of rate

of transitions Tbcwf and Twf is similar to the computation

of rate of transitions Tbwhf , Tbchf , Thf as described for hot

pool sub-model. Probability pc is obtained from cold pool

sub-model. However, the rate of transition Tbwhf needs to

be set so that the throughput of this transition and the

throughput of the transition with the same name in the hot

pool sub-model are equal. In fact, the two transitions are

same in the monolithic model. In the hot pool sub-model,

the expected throughput of transition Tbwhf is given by:

Thh(Tbwhf) =

nh∑

i=0

i · λh · pw · p(#Ph = i)

= λh · pw · E[#Ph] (1)

where p(#Ph = i) is the probability that the number of

tokens in place Ph is equal to i. Let ratew(Tbwhf ) be the

rate of transition Tbwhf in warm pool sub-model. Then, its

expected throughput in this sub-model is given by:

Thw(Tbwhf ) =

nw∑

i=0

ratew(Tbwhf) · p(#Pw = i)

= ratew(Tbwhf) · p(#Pw > 0)

= ratew(Tbwhf) · pw (2)

Given that we want Thw(Tbwhf) = Thh(Tbwhf ) we can

compute what should be the value of ratew(Tbwhf):

ratew(Tbwhf) = λh · E[#Ph] (3)

where E[#Ph] is obtained from hot pool sub-model.

Outputs of warm pool sub-model are: (i) probability (pw)

to have at least one token in place Pw, i.e., at least one PM

is available in the warm pool, (ii) mean number of tokens

(E[#Pw]) in place Pw, i.e., mean number of available PMs

in the warm pool, and probability (Akw
) for the number

of tokens in place Pw to be greater or equal to kw (with

0 ≤ kw ≤ nw), i.e., availability of the warm pool. Among

these output measures pw will be used as an input parameter

to the hot pool SRN sub-model to approximate the rates

of transitions Tbwhf , Tbchf and Thf , E[#Pw ] will be used

as an input parameter to the cold pool SRN sub-model to

approximate the rate of transition Tbcwf , and Akw
will be

used to compute the overall cloud service availability from

the interacting sub-models. The reward rates assignment for

such output measures are shown in Table III

#

Figure 4. SRN sub-model for the availability analysis of the cold pool.

Also in the case of cold pool, the structure of the sub-

model in Figure 4 can be obtained from the structure of the

monolithic model by keeping the transitions that directly

interact with place Pc and disregarding the others and the

related places. Input parameters to the cold pool sub-model

are: (i) initial number of PMs in cold pool (n
c
), (ii) cold

PMs failure rate (λc), (iii) cold PMs repair rate (µ) and (iv)

number of repair facilities for the cold pool (nr). Among

these input parameters, n
c

and nr are design parameters, λc

and µ are measured. Following similar arguments as in the



case of warm pool, we can compute the rate of transitions

Tbchf and Tbcwf in the cold pool sub-model:

ratec(Tbchf ) = λh · (1− pw) ·E[#Ph] (4)

and

ratec(Tbcwf) = λw ·E[#Pw] (5)

where pw and E[#Pw ] are obtained from warm pool sub-

model, and E[#Ph] is obtained from hot pool sub-model.

Output measures of cold pool sub-model are: (i) probabil-

ity (pc) to have at least one token in place Pc, i.e., at least one

PM is available in the cold pool, (ii) mean number of tokens

(E[#Pc]) in place Pc, i.e., mean number of available PMs in

the cold pool, and (iii) the probability (Akc
) for the number

of tokens in place Pc to be greater or equal to kc (with

0 ≤ kc ≤ nc), i.e., the cold pool availability. pc will be used

as an input parameter to the hot and warm SRN sub-models

to approximate the rate of transitions Tbchf , Thf , Tbcwf and

Twf . Akc
will be used to compute the overall cloud service

availability. Reward assignments for such output measures

are reported in Table III.

All these sub-models and the interactions among them are

shown as an import graph in Figure 5. We briefly describe

the interactions among these models here. The hot pool sub-

model computes the mean number of PMs in the hot pool

(E[#Ph]) that is needed as an input parameter to both the

warm and cold pool sub-models. The warm pool sub-model

compute the probability for the warm pool to have at least

one available PM (pw) and the mean number of PMs in the

warm pool (E[#Pw]). The former quantity is used both in

the hot and cold pool sub-models while the latter is used

in the cold pool sub-model. Finally, the output measure of

cold pool sub-model (pc, i.e., the probability for the cold

pool to have at least one available PM) is used both in

the hot and warm pool sub-models. Observe, the import

graph shows cyclic dependencies among the sub-models.

Such dependencies are resolved using fixed point iteration

[10], [11].

Figure 5. Interactions among the sub-models as an import graph.

Model outputs. Once the interacting sub-models have

been solved, the same output measures of interest for

the availability analysis of the cloud service that can be

computed from the monolithic model can be obtained. In

particular, the mean number of PMs in each pool (E[#Ph],
E[#Pw], and E[#Pc]) are immediately available from the

hot, warm, and cold pool sub-models, respectively. The

availability of cloud service for a given k can be computed

by combining the availability of hot, warm, and cold pool as

computed from hot, warm, and cold pool sub-models such

that kh + kw + kc ≥ k.

V. CLOSED FORM SOLUTION OF THE SUB-MODELS

In this section, we show the closed form solution for the

interacting SRN sub-models approach by using equivalent

Markov chain models. The Markov chains are reported in

the case of nr = 1 to simplify calculations, but the closed

form results can also be derived for the cases nr > 1.

The SRN sub-model for the hot pool shown in Figure 2

is equivalent to the Markov chain model shown in Figure

6. In this Markov chain, state i represents the configuration

of the hot pool in which i PMs are available. While solving

this Markov chain for steady state probability of each state,

we can ignore the self-loops [7]. Hence, the Markov chain

depicted in Figure 6 is a simple birth-death process where

birth rate for state i is λh · (1− pw) · (1− pc) · i and death

rate for all states is µ. Let

λ′

h = λh · (1− pw) · (1− pc) (6)

Let phi
be the steady state probability to be in state i for

the Markov chain of Figure 6, i.e., the probability to have i
PMs in the hot pool. Under such assumptions, phi

is given

by:

phi
=

λ
′(nh−i)
h

µ(nh−i)
·
(nh)!

i!
· phnh

with (0 ≤ i ≤ nh − 1) (7)

and phnh
is given by:

phnh
=

1
∑nh

i=0
λ
′(nh−i)

h

µ(nh−i) · (nh)!
i!

(8)

From the steady-state state probabilities, we can compute

the mean number of PMs in the hot pool (E[#Ph]) that

needs to be exchanged with the other sub-models:

E[#Ph] =

nh∑

i=0

i · phi
(9)

=

nh∑

i=0

i ·
λ
′(nh−i)
h

µ(nh−i)
·
(nh)!

i!
·

1
∑nh

j=0
λ
′(nh−j)

h

µ(nh−j) · (nh)!
j!

and the availability of the hot pool:

Akh
=

nh∑

i=kh

phi
(10)

The SRN sub-model for the warm pool in Figure 3 is

equivalent to the Markov chain model in Fig. 7 in the case
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Figure 6. Markov chain equivalent to the hot pool SRN sub-model.

... ...

Figure 7. Markov chain equivalent to the warm pool SRN sub-model.

of nr = 1. Also in this case, the Markov chain is a simple

birth-death process where birth rate for state i is λw · (1 −
pc)i+λh ·E[#Ph] and death rate for all states is µ. Let us

define the quantities:

λ′

w = λw · (1 − pc) (11)

and

α = λh ·E[#Ph] (12)

Let, pwi
be the steady state probability to be in state i for

the Markov chain of Figure 7, i.e., the probability to have i
PMs in the warm pool. pwi

is given by:

pwi
=

nw−1∏

j=i

λ′

w · (j + 1) + α

µ
·pwnw

with (0 ≤ i ≤ nw − 1)

(13)

while pwnh
is given by:

pwnh
=

1

1 +
∑nw−1

i=0

∏nw−1
j=i

λ′

w·(j+1)+α

µ

(14)

From the steady-state probabilities, we can compute the

values of pw and E[#Pw ] that need to be exchanged with

the other sub-models. In particular

pw = 1− pw0

= 1−

nw−1∏

j=0

λ′

w · (j + 1) + α

µ
· Fw (15)

where Fw = 1

1+
∑nw−1

i=0

∏nw−1
k=i

λ′
w(k+1)+α

µ

and

E[#Pw] =

nw∑

i=0

i · pwi

=

nw∑

i=0

i ·

nw−1∏

j=i

λ′

w(j + 1) + α

µ
·Gw (16)

where Gw = 1

1+
∑nw−1

l=0

∏nw−1
k=l

λ′
w(k+1)+α

µ

. Finally, it is pos-

sible to compute the availability of the warm pool:

Akw
=

nw∑

i=kw

pwi
(17)

The SRN sub-model for the cold pool in Figure 4 is

equivalent to the Markov chain model in Figure 8 in the case

of nr = 1. It is a simple birth-death process where birth rate
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Figure 8. Markov chain equivalent to the cold pool SRN sub-model.

for state i is λci + λh · (1 − pw) · E[#Ph] + λw · E[#Pw]
and all death rates are µ. Define β:

β = λh · (1− pw) · E[#Ph] + λw ·E[#Pw] (18)

Let pci be the steady state probability for Markov chain of

Figure 8 to be in state i, i.e., the probability to have i PMs

in the cold pool. pci is given by:

pci =

nc−1∏

j=i

λc · (j + 1) + β

µ
· pcnc

with (0 ≤ i ≤ nc − 1)

(19)

while pcnc
is given by:

pcnc
=

1

1 +
∑nc−1

i=0

∏nc−1
j=i

λc(j+1)+β

µ

(20)

From the steady-state probabilities we can compute pc
and E[#Pc] that need to be exchanged with the other sub-

models, and Ac. In particular:

pc = 1− pc0

= 1−

nc−1∏

j=0

λc(j + 1) + β

µ
· Fc (21)

(22)

where Fc =
1

1+
∑nc−1

i=0

∏nc−1
k=i

λc(k+1)+β

µ

and

E[#Pc] =

nc∑

i=0

i · pci =

=

nc∑

i=0

i ·

nc−1∏

j=i

λc(j + 1) + β

µ
·Gc (23)

(24)

where Gc =
1

1+
∑nc−1

l=0

∏nc−1
k=l

λc(k+1)+β

µ

. Finally, it is possible

to compute the availability of the cold pool:

Akc
=

nc∑

i=kc

pci (25)

VI. FIXED POINT ITERATION

To resolve the cyclic dependency among the interacting

sub-models, we need to use a fixed point iteration approach.

Fixed point iteration variables are reported in the import

graph depicted in Figure 5. Our fixed point equation is given

by:

x = G(x) (26)

where x = (pw, pc, E[#Ph], E[#Pw]).
We show the proof of existence of a solution for the

Equation (26). First, we simplify the fixed point equation and

express it in a simpler way considering only few variables.

We observe that: (i) E[#Ph] is function of pw and pc; (ii)

pw is function of E[#Ph], and pc; (iii) E[#Pw ] is function

of E[#Ph], and pc; (iv) pc is function of E[#Ph], pw and

E[#Pw]. From the above relations, it can be shown that all

variables can be expressed as functions of pw and pc. Hence,

the fixed point Equation (26) can be rewritten as:

y = F(y) (27)

where y = (pw, pc).
Proof of existence of a solution to Equation (27) implies

the existence of a solution to Equation (26). We use the

Brouwer’s fixed point theorem [12]:

Let F : C ⊂ R
2 → R

2 be continuous on the compact,

convex set C, and suppose that F(C) ⊆ C. Then, F has a

fixed point in C.

In our case, given that pw and pc are probabilities, we can

define C = {y = (pw, pc) : pw ∈ [0, 1], pc ∈ [0, 1]}. Set C is

compact since both pw and pc belong to the closed interval

[0, 1] and, according to the Heine-Borel theorem, if a subset

of the Euclidean space R
n is closed and bounded then it is

also compact.

The set C is convex if, given two elements x ∈ C and

y ∈ C, the element tx+(1−t)y, with t ∈ [0, 1] belongs to C.

Since, pw and pc are both probabilities, convexity of set C is



Table IV
COMPARISON OF NUMBER OF STATES AND NUMBER OF NON-ZERO ENTRIES.

#PMs in each pool in the
beginning

#States in monolithic
model

Maximum #states in inter-
acting sub-models

#Non-zero entries in
monolithic model

Maximum #non-zero entries in
interacting sub-models

5 7056 56 44520 210

10 207636 286 1535490 1320

15 1775616 136 13948160 480

17 3508920 171 27976968 612

19 6468000 210 52189200 760

20 Memory overflow 231 Memory overflow 840

50 - 1326 - 5100

100 - 5151 - 20200

150 - 11476 - 45300

200 - 20301 - 80400

Table VII
COMPARISON OF AVERAGE NUMBER OF PMS IN EACH POOL.

#PMs in each pool
in the beginning

Avg. #PMs in pools for monolithic model Avg. #PMs in pools for interacting sub-models
hot warm cold hot warm cold

5 4.99 4.98 4.99 5.00 4.98 4.99
10 10.00 9.96 9.98 10.00 9.96 9.98
15 14.99 14.95 14.97 15.00 14.95 14.97
17 16.99 16.94 16.97 17.00 16.94 16.97
19 18.99 18.93 18.97 19.00 18.93 18.97

Table V
COMPARISON OF SOLUTION TIMES IN SECONDS.

#PMs in each pool in
the beginning

Monolithic model Interacting
sub-models

5 0.627 0.406

10 18.670 0.517

15 373.822 0.278

17 1004.494 0.279

19 2459.553 0.280

20 Memory overflow 0.281

50 - 0.296

100 - 0.377

150 - 0.564

200 - 0.948

trivial in our case. The vector function F is continuous over

C if its component functions f1(pw, pc) and f2(pw, pc) are

continuous over C. The functions f1 and f2 are continuous

over C if, for each point ŷ ∈ C, limy→ŷfi(y) = fi(ŷ)
with i = 1, 2. From the definition of C, we observe that C
is a singleton set of only element y =< pw, pc >. Hence,

each term in the limit converges to its (finite) value at ŷ.

Therefore, the limit limy→ŷfi(y) = fi(ŷ) with i = 1, 2
holds in our case and F is continuous over C. This proves

the existence of a solution for the fixed point Equation

y = F(y). The existence of a fixed point for the Equation

y = F(y) can be proved also by referring to the Corollary

to the Theorem 2 in [10]:

Consider a system modeled using a set of stochastic

reward nets. Let some of the transition firing

rates/probabilities of each net be functions of one or

Table VI
COMPARISON OF DOWNTIME VALUES IN MINUTES PER YEAR, WITH 10
PMS IN EACH POOL OR 30 PMS IN TOTAL IN THE BEGINNING. CLOUD

IS AVAILABLE WHEN THERE ARE AT LEAST k “UP” PMS ACROSS ALL

POOLS, WHERE k ≤ 30. MAXIMUM NUMBER OF PMS THAT CAN BE

REPAIRED IN PARALLEL IS DENOTED BY nr .

Value of k Value of nr

Downtime (minutes per year)
Monolithic model Interacting

sub-models

30
1 23185.793 23178.956
2 22904.919 22898.454
3 22903.681 22897.219

29
1 792.475 798.651
2 499.081 505.258
3 497.787 503.964

28
1 24.722 25.336
2 8.412 8.691
3 7.118 7.396

27
1 0.740 0.778
2 0.129 0.138
3 0.081 0.087

26
1 0.022 0.024
2 0.002 0.002
3 0.0008 0.0009

more parameters computed from the other nets. Then,

if such parameters (the iteration variables) are expected

reward rates and the CTMCs underlying the SRN models

have exactly one closed communication class for all

values of the parameters, a fixed point will exist for the

correspondent equation.

In our case, all the parameters that are exchanged between

the SRN models according to the import graph depicted



in Figure 5 can be computed as expected reward rates.

Moreover, from Figure 6, 7 and 8, we can observe that all

SRN models have exactly one closed communication class

for all the values of the parameters. Clearly, Equation (26)

has a fixed point solution. Uniqueness of the fixed point is

yet to be proved.

VII. NUMERICAL RESULTS

We used Stochastic Petri Net Package (SPNP) [5] to solve

the SRN models. In particular, the interacting SRN sub-

models were solved by implementing a fixed point iteration

approach using Python scripts. Closed form solution of each

sub-model was implemented using C language. Our models

were solved for a broad range of parameter space so that

they can represent large variety of clouds. However, for

space limitation, here we report only interesting results. We

assume MTTF of hot PMs to be in the range of 1−6 months,

MTTF of warm PMs to be in the range of 3.5− 12 months

and MTTF of cold PMs to be in the range of 7 months

- 2 years. MTTR of a PM can vary depending on type

of repair process: (i) software based completely automated

repair (1−30 minutes), (ii) completely manual repair (1−5
days) and (iii) combination of manual and automated repair

(1− 12 hours). All models were solved using a desktop PC

with Intel Core 2 Duo processor (E8400, 3.0 GHz) and 4 GB

memory. In Table IV, we report the state space and storage

requirements for both the monolithic model and interacting

sub-models. Monolithic model runs into a memory overflow

problem when the number of PMs in each pool increases

beyond 19. We observe that the state space size of the

monolithic model increases quickly and becomes too large

to construct the reachability graph even for small number

of PMs. However, with interacting sub-models approach,

the state space increases at a slower rate as the number

of PMs in the system is increased. Table IV also shows

a comparison of non-zero entries. These entries are number

of non-zero elements in the infinitesimal generator matrix of

the underlying continuous time Markov chain. For the same

number of PMs, number of non-zero entries in interacting

sub-models is 3− 4 orders of magnitude smaller compared

to the monolithic model. Observe that, for interacting sub-

models, in both cases (i.e., number of states and number of

non-zero entries), we report only the maximum value among

the three sub-models. Since three sub-models are solved

separately, we assumed that for a given execution only states

and non-zero entries of only one sub-model are require to be

stored in the memory. Reduction in state space and non-zero

entries for interacting sub-models also leads to concomitant

reduction in solution time needed. A comparison of solution

times is shown in Table V. Solution time for monolithic

model increases almost exponentially with the increase in

model size. Solution time for interacting sub-models remains

almost constant with the increase in model size.

In Table VI, we compare the downtime values as obtained

from the monolithic model and interacting sub-models. We

assume that cloud is available if there are at least k “UP”

PMs across all pools. For the example scenario investigated,

we vary the value of k, with 10 PMs in each pool and 30
PMs in total. When k is 30, any failure of PM results in

unavailability of cloud service. For each value k, we also

change the value of n
r

which denotes maximum number

of PMs that can be repaired in parallel. If nr is 1, failed

PMs are repaired serially, i.e., one after another. MTTFs

of hot, warm and cold PMs were assumed to be 1000 hrs,

3500 hrs and 5000 hrs respectively. MTTR was assumed

to be 3 hrs. Table VI shows that results obtained from the

interacting sub-models are accurate. As expected, downtime

values are higher with increasing in values of k. For each k,

downtime reduces if we increase value of n
r
. This gives rise

to interesting optimization problems as discussed in Section

IX.

In Table VII, we show the mean number of PMs in each

pool. MTTF and MTTR values for this case were assumed

to same as in the Table VI. Value of n
r

was assumed to be 1
for this example scenario. Results obtained from interacting

sub-models are in good agreement with the results obtained

from monolithic model. In Table VIII, we show the effect

of changing MTTF of PMs on downtime. We assume 10
PMs in each pool (i.e., 30 PMs in total) and maximum

number of parallel repairs in each pool is 2. In this example

scenario, we further assume that cloud service is available

when at least 28 PMs across all pools are “UP”. For each

value MTTF of hot PM, MTTFs of warm and cold PM were

assumed to be 3.5 times and 5 times greater than that of hot

PM’s MTTF.

Table VIII
EFFECT OF VARYING MTTF OF PMS WITH 10 PMS IN EACH POOL.

MTTF of hot PM
(hours)

Downtime (minutes per year)
Monolithic model Interacting sub-models

800 16.313 16.848
1000 8.412 8.691
1200 4.892 5.055
1400 3.091 3.195
1600 2.076 2.146

Results described so far were obtained by solving SRN

models using SPNP. Next, using the closed form solutions

for the interacting sub-models, we solve large scale models

(order of thousands PMs in each pool). Table IX shows

that solution time needed for solving large models increases

very slowly with the model input size. Clearly, interacting

sub-models approach facilitates availability analysis of large

sized clouds with a reasonably small solution time.

VIII. RELATED RESEARCH

In [13], Vishwanath et al. investigated failure character-

istics of servers in large cloud data centers. They tried to



Table IX
SOLUTION TIME REQUIRED FOR AVAILABILITY ANALYSIS OF LARGE

SCALE CLOUD USING CLOSED-FORM.

Number of PMs in each pool Solution time (sec)

500 0.251
1000 0.592
1500 0.911
2000 1.715
3000 2.483
4000 2.651

quantify the relationships between successive failures on

same PM by analyzing experimental data and empirically

compute reliability. Our work can be complementary to this

work since we take into consideration multiple classes of

PMs and consider their failure and repair. In [14], Yang et

al. investigated the failure of workloads on cloud service

performance. In [15], Bonvin et al. designed a reliable and

cost-effective storage system that maintains high availability

guarantees despite failures of servers while in [16], Joshi et

al. discussed the key challenges in achieving high availabil-

ity in large scale cloud services.

There are limited research efforts which investigated

availability in large scale infrastructure. In [17], Tan et al.

designed and implemented a prediction system to achieve

robust hosting for production hosting infrastructure. Our

modeling approach can be complementary to such experi-

mental work. In a very recent paper [18], Javadi et al. show

how statistical models can be useful to predict availability of

an Internet distributed system. In [19], Uemura et al. used

discrete time semi-Markov process to describe the stochastic

behavior of a scalable intrusion tolerant system. In [20] Chen

et al. used a deterministic and stochastic Petri net method

to illustrate the performance of producer/consumer based

application models in cloud context. In our previous work

[21], we showed an SRN modeling approach for resiliency

analysis of IaaS cloud.

IX. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we propose a novel fast and scalable

approach for availability analysis of IaaS cloud system with

multiple class of server pools. The novelty is in modeling

the system as coupled interacting Markov chain based sub-

models. We have developed closed-form solutions for the

sub-models and the dependencies among the sub-models

are resolved using fixed-point iteration, for which we prove

existence of a solution. This approach reduces the com-

plexity and solution time for analyzing IaaS clouds; e.g.,

we are able to analyze availability of IaaS Cloud systems

with thousands of physical servers in order of seconds.

We have also developed a monolithic model which we use

for comparison. We show that: (i) availability results using

both the sub-models approach and the monolithic model are

closely comparable and (ii) the proposed approach can be

used to analyze the availability of IaaS cloud for sizes that

are beyond the practical limits of the monolithic model.

With the fast scalable approach for modeling availability,

we are now able to extend the performability analysis we

described in [6] to large size IaaS clouds. In a future

publication, we plan to describe results from a coupled

pure performance and availability models for systems with

thousands of PMs taking into account workload arrival, ad-

mission control, queueing, resource provisioning decisions,

VM provisioning, and run-time execution in addition to the

failures. Table VI shows that downtime can be reduced

by increasing the maximum number repairs that can be

done in parallel. Since, there is a cost associated with each

repair, an optimal number of repair facilities required to

minimize the repair cost for acceptable value of downtime

can be determined. Combining the performance model with

availability model, the economics of failure-repair for a

given utilization rate of the PMs can be determined. For dif-

ferent utilization and failure-repair rates, there are different

break-even points between loss of revenue and repair costs,

which can be determined and analyzed. Our availability

models also allow us to perform trade-off analysis of longer

MTTF vs faster MTTR on system availability, the effect of

having multiple concurrent repair facilities (i.e., higher labor

costs) vs. higher availability but expensive components,

repairing failed components vs replacing components for the

a given service availability and so on. Another interesting

type of analysis possible with this work is analyzing trade-

off between cost of availability SLAs vs operational costs

including repair, replacement, and energy costs. These are

important questions cloud architects and designers often

face. It is possible to answer these type of questions using

tools based on the modeling and analysis techniques we

describe in this paper. We plan on developing such tools

and will be describing our work in future publications.
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APPENDIX A.

STOCHASTIC PETRI NETS AND REWARD NETS

This section presents an overview of Stochastic Petri

Nets (SPNs) and Stochastic Reward Nets (SRNs). A Petri

net (PN) can be formally defined as a 4-tuple: PN =
(P, T,A,M), where P is the finite set of places (represented

by circles), T is the finite set of transitions (represented by

bars), A is the set of arcs (connecting elements of P and

T ) and M is the set of markings each of which denotes

the number of tokens in the places of the net. The initial

marking is denoted by M0.

In SPN, exponentially distributed firing times can be asso-

ciated to the net transitions so that the stochastic process un-

derlying a SPN is a continuous time Markov chain (CTMC).

In generalized stochastic Petri nets (GSPN) [22], transitions

are allowed to be either timed (exponentially distributed

firing time, drawn as rectangular boxes) or immediate (zero

firing time, represented by thin black bars). Immediate

transitions always have priority over timed transitions and

if both timed and immediate transitions are enabled in a

marking then timed transitions are treated as if they were not

enabled. If several immediate transitions compete for firing,

a specified probability mass function is used to break the

tie. A marking of a GSPN is called vanishing if at least one

immediate transition is enabled in it. A marking is called

tangible otherwise. GSPN also introduces the concept of

inhibitor arc (represented by a small hollow circle at the end

of the arc) which connects a place to a transition. A transition

with an inhibitor arc can not fire if the input place of the

inhibitor arc contains more tokens than the multiplicity of

the arc.

SRNs [23] are extensions of GSPNs. In SRNs, every

tangible marking can be associated with a reward rate thus

facilitating the computation of a variety of performance

measures. Key features of SRNs are:

(1) each transition may have an enabling function (also

called a guard) so that a transition is enabled only if its

marking-dependent enabling function is true;

(2) marking dependent arc multiplicities are allowed;

(3) marking dependent firing rates are allowed;

(4) transitions can be assigned different priorities;

(5) besides traditional output measures obtained from a

GSPN, such as throughput of a transition and mean number

of tokens in a place, more complex measures can be

computed by using reward functions.




