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We investigate gate capacitance of cylindrical nanowires with elliptical cross-sections because most 
fabricated Si nanowires have elliptical cross sections. We derive an exact result for the capacitance of 
confocal elliptical capacitors and an approximate expression for the capacitance of conformal elliptical 
capacitors. Using numerical simulations for conformal elliptical capacitors, we show that the analytical 
results for the confocal and conformal elliptical capacitors are within 5 % of the numerical values for 
eccentricity < 0.85. We also provide correction factors to the analytical results that match the numerical 
conformal elliptical capacitances to within 5 % for all values of eccentricity. 

 
 
For over a decade, there has been a significant amount 

of experimental research interest in cylindrical nanowire 
(NW) geometry for fabricating metal oxide semiconductor 
field effect transistors (MOSFETs).1-10 This is because the 
NW geometry provides better gate control over the channel 
region of a short-channel MOSFET than any other MOSFET 
geometry.11-13 An interesting consequence of NW fabrication 
is that the NW cross-sections are generally elliptical and not 
circular.9 Furthermore, the gate oxide is uniform across the 
perimeter, implying that the geometry is that of conformal 
ellipses. Since the capacitance of a MOSFET is an important 
parameter that not only determines on-state current but also 
affects the short-channel characteristics,11-13 theoretical work 
on the capacitance of NWs with confocal and conformal 
elliptical cross-sections is required to understand 
experimental data from NWs with elliptical cross-sections. 

In this letter, we investigate the capacitance of 
cylindrical NWs with elliptical cross-sections using 
analytical and numerical methods. We derive an exact 
analytical expression for the capacitance of confocal 
elliptical capacitors and an approximate result for the 
capacitance of conformal elliptical capacitors. We use 
numerical simulations for conformal capacitors to show that 
the analytical capacitance expressions are within 5 % of the 
numerical capacitances for eccentricity < 0.85. We also 
show that the differences between the analytical and 
numerical results increase sharply for eccentricity > 0.85. 
Therefore, we provide correction factors to the analytical 
results that match the numerical capacitances to within 5 % 
for all values of eccentricity. 

The elliptical NW geometry is modeled as follows. We 
assume that the inner and outer conductors have elliptical 
cross-sections. The semi-major and semi-minor axes are 
denoted as ain and bin for the inner conductor, and aout and 
bout for the outer conductor. The eccentricity of the inner 

conductor is given by 2
in

2
inin 1 abe −=  and that of the 

outer conductor by 2
out

2
outout 1 abe −= . We define the 

elliptical coordinates (µ,ν) as x = k cosh(µ) cos(ν) and y = k 
sinh(µ) sin(ν), where (x,y) are Cartesian coordinates and x =  
± k are the location of the foci along the x-axis. One should 
note that surfaces with constant µ are ellipses while those 
with constant ν are hyperbolae. 

We first present exact analytical results for the 
capacitance of confocal elliptical capacitors, where the inner 
and outer conductors have the same value of k. For confocal 
elliptical capacitors, of the four geometrical parameters ain, 
bin, aout, and bout, only three are free parameters because 

2
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2
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2
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2 babak −=−= . One should note that confocal 
ellipses are not conformal, with the exception being the 
special case of a circle. This is because the distance between 
the inner and outer conductors of a confocal capacitor, 
denoted by TOX, is a function of angle ν and is given by 

( ) ν−+ν−=ν 22
inout

22
inoutOX sin)(cos)( bbaaT . Given 

that the inner and outer conductors with constant potentials 
are ellipses, equipotential surfaces are ellipses while electric 
field lines are along the hyperbolae. Therefore, the 
electrostatic potential is φ = φ(µ) and the electric field is 

( ) µµφ−=µ= µ ˆ1ˆ ddhEE
r

, where Eµ is the component of 
electric field along the µ direction, µ̂  is the unit vector along 

the µ direction, and ν+µ= 22 sinsinhkh  is the scale 
factor for coordinate transformation.14 Using either elliptical 
symmetry or conformal mapping15, one can evaluate φ and 
Eµ, which are given by ( ) ( ) ( ) ( )inOXin 2 µ−µπελ+µφ=µφ  

and ( ) ν+µπελ=νµµ
22

OX sinsinh2, kE , respectively, 
where µin describes the inner conductor, λ is the linear 
charge density, and εOX is the permittivity of the dielectric 
between the conductors.  

Having obtained the potential and electric-field profiles, 
it is straightforward to calculate capacitance. The 
capacitance per unit length of cylindrical conductors with 
confocal elliptical cross-sections, denoted as CL1, is given by 
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The circular cross-section limit with ain = bin = R and aout = 
bout = R + TOX, where R is the radius of the circle, leads to 

( )RTCL OXOX 1ln2 +πε= , which is the correct limit for 
cylindrical capacitors with circular cross-sections.16 
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We next investigate the planar limit with ain >> bin and 
ain >> TOX. In this case, aout ≈ ain and inOXout 2 aTb ≈ , and 

therefore, Eq. (1) reduces to OXinOXL1 2 TaC πε≈ . For a 
planar geometry, the relevant quantity is capacitance per unit 
area, which we define as CA = CL / P, where P is the 
perimeter of the ellipse. The perimeter of an ellipse is P = 4 
ain E(ein), where E(e) is the complete elliptic integral of 
second kind. Since E(e) has no closed form solution, we use 
the following well-known approximate form:17  

])3)(3()(3[ inininininin bababaP ++−+π=
. (2) 

For ain >> bin, in)13(3 aP −π≈ . Since TOX is a function 
of ν for con-focal ellipses, we define an effective oxide 

thickness by ( )∫
π

ννπ=
2/

0
OXOXE )2( dTT . The integral in this 

equation is also a complete elliptic integral of the second 
kind, which can be approximated by the result of Ref. 17. 
For ain >> bin, we obtain 2)13(3 inOXOXE aTT −≈ . 
Therefore, in the planar limit, we obtain CA ≈ εOX / TOXE, 
which is the correct value for planar capacitance upon 
properly defining the effective oxide thickness. 

As mentioned previously, the geometry of fabricated 
NWs shows that the inner and outer conductors have a 
constant distance between them, that is, the dielectric 
thickness TOX is constant. This implies that the inner and 
outer conductors in fabricated NWs are conformal ellipses. 
Conformal ellipses have separate foci and therefore, are not 
confocal. Thus, one cannot use conformal mapping or 

elliptical symmetry to analytically calculate the capacitance 
of conformal elliptical conductors. Therefore, we present a 
simple approximate analytical result for the capacitance of 
conformal elliptical conductors. The idea is to use CL of 
capacitors with circular cross-section with radius R being 

dependent on ν and given by ν−=ν 22
inin sin1)( eaR . That 

is, an approximate value of conformal elliptical capacitance, 

denoted by CL2, is ( )∫
π

ν+νε=
2/

0
OXOX2L )(1ln4 RTdC . In 

order to obtain a closed-form solution, we expand the 
integrand to second order in TOX/R(ν). Then CL2 is given by 
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where P is given by Eq. (2). 
We now discuss the results of numerical modeling of 

the capacitance of conformal elliptical conductors and 
examine the validity of Eqs. (1) and (3) for the conformal 
case. We performed numerical simulations using Synopsis 
Sentaurus Device simulator.18 We simulated technologically 
relevant conformal elliptical structures with ain and bin in the 
4 to 20 nm range, and TOX = 1 and 2 nm. For conformal 
elliptical conductors, we define aout = ain + TOX and bout = bin 
+ TOX. We show the numerically-computed values of CL of 
conformal elliptical capacitors versus bin as symbols in Fig. 
1 for different values of ain, and TOX = 1 and 2 nm. We also 

 
 

FIG. 1. Capacitance per unit length CL of conformal elliptical conductors 
versus semi-minor axis of inner conductor bin for different values of semi-
major axis of inner conductor ain, and dielectric thickness TOX = 1 nm (a) 
and 2 nm (b). Symbols: numerical simulations, dashed lines: Eq. (1), and 
solid lines: Eq. (3). 
 
 

 
 

FIG. 2. (a) Ratio of numerically-calculated capacitance per unit length to 
analytical capacitance per unit length from Eq. (1) (up triangles) and Eq. (3) 
(down triangles) of conformal elliptical capacitors versus eccentricity eout of 
the outer conductor. The symbols represent data from Fig. 1 while the lines 
are least-square fits to the data given by Eqs. (1) and (3). (b) Error between 
calculated capacitance per unit length of conformal elliptical capacitors and 
corrected analytical capacitance CL1fC1 and CL2fC2 versus eout, where CL1, 
CL2, fC1, and fC2 are given by Eqs. (1), (3), (4a), and (4b), respectively. 
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show CL1 [Eq.(1)] and CL2 [Eq.(3)] for these structures in 
Fig. 1 as lines. One should note that even though Eq. (1) was 
derived for confocal elliptic conductors, one can always use 
it to calculate CL of conformal elliptic conductors. 

Figure 1 shows that both Eq. (1) and Eq. (3) are in good 
agreement with the numerical capacitance for bin/ain > 0.5 
and that these equations lead to significant error for bin << 
ain. We quantify this error in terms of eccentricity eout of the 
outer conductor. We plot the ratio of numerical CL to CL 
from Eqs. (1) and (3) in Fig. 2(a) versus eout. We find that for 
the error is less than 5% for eout < 0.85 for Eq. (1) and eout < 
0.9 for Eq. (3). For larger values of eout, the error increases 
sharply with eout. Figure 2(a) also shows that the error 
between the numerically-calculated capacitance and 
capacitance from Eqs. (1) and (3) is a monotonic function of 
eout. Therefore, one can define a correction factor to Eqs. (1) 
and (3) to match the numerically-calculated capacitance for 
conformal elliptical conductors. We find that the following 
functions are fairly good approximations for correction 
factors to CL1 [Eq.(1)] and CL2 [Eq.(3)], as shown as lines in 
Fig. 2(a): 

)73.13exp()104(1 out
7

1C ef −×+= ,     (4a) 
and  

)95.14exp()1025.6(1 out
8

2C ef −×+= .    (4b) 
When we calculate the capacitance of conformal elliptic 
capacitors using the correction factors, that is, as CL1 fC1 or 
CL2 fC2, we find that the error compared to the numerically-
calculated values of capacitance is less than 5% for all 
values of eout, as shown in Fig. 2(b).  

In conclusion, we have investigated capacitance of 
cylindrical conductors with elliptical cross-sections. We 
have derived an exact expression for the capacitance of 
confocal elliptical conductors and an approximate result for 
the capacitance of conformal elliptical capacitors. Using 
numerical simulations for conformal elliptical capacitors, we 
have shown that the exact confocal and approximate 
conformal elliptical capacitances are within 5 % of the 
numerical values for eccentricity < 0.85. We have also 
provided correction factors to the analytical results that 
match the numerical results to within 5 % for all values of 
eccentricity. 
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