
RC25095 (W1101-013) January 7, 2011
Computer Science

IBM Research Report

Friends in Low Places – Loading Firmware in the Field

Elaine Palmer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Tamas Visegrady
IBM Research Division

Zurich Research Laboratory
8803 Rüschlikon

Switzerland

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Friends in Low Places – Loading Firmware in the Field
Elaine Palmer and Tamas Visegrady, IBM Research Division

1 Introduction	
A country song made famous by Garth Brooks in 1990 declares, “I got friends in low
places,” noting that one can always rely on ordinary people to help a friend in need.
BIOS software is the friend in the “low places” of clients and servers. It is software on
which these systems rely to verify the soundness of the hardware and to transfer
control to subsequent software. It has full access to the resources of a system,
including memory, processors, coprocessors, and fans. What, then, if this software
were to become irreparably modified, whether by mistake or malice? This paper
addresses the problem of reliably updating such firmware in the field, after a device
has left the secure confines of a manufacturing facility.

2 The	 Device	 That	 Tested	 our	 Mettle	 	
For many years, IBM has produced hardware security modules, also known as secure
coprocessors, which are small, general-purpose systems inside a tamper-responding
enclosure. In 1998 IBM’s 4758 hardware security module and its firmware earned the
first ever FIPS 140-1[1] overall level 41 (Certificate #35). That firmware, known inside
IBM as “Miniboot,” works in conjunction with its low-level friend POST (Power On Self
Test). In addition to typical BIOS-like functions, Miniboot is responsible for verifying
the state of security inside the secure enclosure. Miniboot
is also responsible for handling software updates (more on
that later). On successful inspection of the system,
Miniboot transfers control to the embedded operating
system and its applications, and does not run again until
the secure coprocessor is reset. As required by FIPS 140-1 and -2 level 4, Miniboot
was formally modeled and verified, rigorously tested, and inspected. To date, the
design has stood the test of time, with only minor tweaks despite two major redesigns
of the underlying hardware. (The current generation is the IBM 4765.)

3 Problems	 With	 Field	 Updates	 of	 Firmware	
The security requirements of the device pose a difficult problem – how to securely
update the firmware (and operating system and applications) in the field.

3.1 No	 hardware	 updates	
During manufacture, after initial tests are completed, the system is wrapped in a
tamper-sensing membrane and potted in a hard resin. At that point, the secure
hardware can never be updated (except for replacing an external battery), without
triggering a tamper event and permanently disabling the device. In that event, it
becomes an expensive (but very secure) doorstop.

1 Level 4 means that the device withstands all known logical and physical attacks without revealing the
secrets (such as cryptographic keys) stored within.

 2

3.2 No	 Configuration	 Tracking	 Back	 at	 the	 Ranch,	 No	 Trust	 in	 the	 Field	
Keeping track of which software is in which device is out of the question, for example
by keeping huge databases or affixing unique part numbers for each software
configuration. The data and software inside the device vary by customer and by
application, and can be updated frequently. To complicate matters, the host system in
which the coprocessor is installed is not trusted, and the user is a potential adversary.

3.3 Multiple	 Authorities	
There are multiple parties authorized to update the embedded software. IBM is solely
responsible for the Miniboot firmware. However, any one or a combination of parties
(IBM, OEM’s, or customers) may furnish the operating system and the applications
that run inside the secure device. Supporting this flexibility increases the complexity of
the field update problem, but it decreases manufacturing and support costs by
allowing one general-purpose device to be programmed and updated by multiple
authorities for widely different security applications.

3.4 Inbound	 Updates,	 Outbound	 Authentication	
From the time an IBM secure coprocessor leaves the factory, it must defend itself
against malicious or mistaken firmware updates (inbound), while still permitting and
applying field updates from properly authenticated parties. It must also prove to the
outside world that it is an authentic IBM secure coprocessor (not a software clone)
running a specific code stack (outbound authentication).

3.5 No	 Backdoors	
Because of the extreme sensitivity of the applications that use the IBM secure
coprocessor, no secret mechanisms to update the software or revive the device are
permitted, even in the case of accidental tampers.

4 Initialization	 –	 The	 Origin	 of	 the	 Universe	
How can a secure device be initialized with its very first credentials? There are at
least three common ways: 1) imprinting, 2) installing temporary transport keys and
initializing later, and 3) establishing permanent keys during manufacture.

4.1 Imprinting	 in	 the	 Field	
Imprinting allows the first initializer of a device to establish its identity and its
membership in an organization (or security domain). “Welcome to the world, device. I
see you call yourself ABC, and now you are officially part of the XYZ power grid.” The
device may create its own initial keys, or they can be generated externally and
injected. Those keys must be certified, lest the device be indistinguishable from other
devices that are outside the security domain. Further attempts to imprint the device
are either allowed (after wiping all secrets) or forbidden (by blowing a fuse or setting
an unmodifiable bit). It is important that the imprinting process itself and the chain of
custody of the devices be secured, for example, with trusted couriers. If not, then
evildoers can create software clones, or imprint stolen hardware for nefarious
purposes. In our case, these risks are unacceptable, but may be perfectly acceptable
in other applications.

 3

4.2 Temporary	 Transport	 Keys	
Similar problems exist in the world of smart cards and mobile phone SIMs, where
thousands of very low cost devices are manufactured, initialized (with a set of
applications), and personalized (with a cardholder’s information). Typically, chips are
initialized during manufacture with a secret transport key that is common across a
large batch of chips. It is known only to the manufacturer and the next organization to
process the chips. When the number of organizations is relatively small and their
identities are known in advance, such a scheme is feasible. Initialization and
personalization are irreversible. In the case of JavaCards, some organizations allow
the update and addition of applets in the field, but the initialization and personalization
values remain constant once established. In the case of IBM’s secure coprocessors,
temporary transport keys are not an option, because at the time of manufacture, the
identity of the “next” organization is not known.

4.3 Permanent	 Keys	 during	 Manufacture	
IBM’s secure coprocessors generate their own secret keys and either generate or
import critical configuration parameters, such as trusted certificates. This operation
takes place during a once-in-a-lifetime (of the device) initialization step, at the last
stage of manufacturing, after the module has been encapsulated in its tamper-
responding enclosure. At that time, Miniboot generates its own first keypair. IBM
certifies the public key for that device, along with its own unique hardware id. The
certificate attests that this unique, untampered device is the entity that knows the
matching private key, and that it is running a specific version of Miniboot software.

5 Highlights	 of	 our	 Solution	
This section describes features of IBM secure coprocessors that are related to
firmware and firmware updates. A detailed description can be found online in [2].

5.1 Physical	 Separation	 	 and	 Decreasing	 Levels	 of	 Trust	 	
Immediately after reset, POST and Miniboot run, then Miniboot transfers control to the
operating system, which then invokes applications. Figure 1 shows the four layers of
software that run inside the secure coprocessor.

Figure 1 - Software Architecture

Miniboot is the most trusted software in the system and runs in a known state right
after reset (a convenient assumption for formal proofs). Just as in conventional

driver

Layer 3: Application

Layer 2: System Software/OS (Linux) POST2

Host

Application

network?
Device

Seg1 flash
Layer 1: IBM POST1, Miniboot 1

Layer 0: IBM POST0, Miniboot 0 Seg0 ROM

Scope of Segment 0−1 validation

 4

systems, as more and more software is invoked, there is less and less trust that the
software can maintain the secure state of the device. In typical computing
environments, the operating system is trusted and the application is not. However, in
the secure coprocessor, the all-powerful OS is not trusted.

In the original 4758 device, all software shares the same processor and address
space. Therefore, a hardware lock microcontroller protects reserved segments of
memory after each layer of firmware is completed. Higher layers cannot unlock lower
segments under any circumstances. We use a term “trust ratchet” to describe how the
system moves forward through the software, from trusted to untrusted, never going
backwards, and never unlocking the hardware locks without first starting over at the
known good state of reset. In more recent devices, we maintain the same concept of
decreasing levels of trust, but use multiple processors with their own isolated memory
subsystems instead of hardware locks on shared memory. One processor with its
own memory is devoted exclusively to Miniboot. Another, with its own physically-
separated memory is used for the OS and applications.

5.2 Officers	
At the very core of Miniboot is the concept of “officers” (see Figure 2). Each officer
has the authority to update a layer of code and its associated key storage, but nothing
else. For layers N >=1, Miniboot authenticates a command from Officer N by verifying
that the public-key signature on the command came from Officer N for that device.

Figure 2: In this example, IBM is the officer that controls the two Miniboot layers, OEM2 is the officer that
controls the OS, and OEM3 is the officer that controls the application

5.3 Commands	
Miniboot has a very small number of commands, all listed in Figure 3. Software
external to the device submits these commands to Miniboot over the primary
communication interface between the untrusted host system and the secure
coprocessor. The commands “Ordinary Burn 1” and “Ordinary Burn 2” request
Miniboot to update the software burned in layers 1 and 2, respectively, in the
persistent memory inside the secure enclosure. Some commands require that the
requesting officer be authenticated, but others, such as simple queries, do not. Some
commands are used only once, in the factory, such as “IBM Initialize”. Other
commands establish who is allowed to update a layer (who “owns” it), such as
“Establish Officer 2.” “Surrender Officer 2” relinquishes ownership of a layer.

University 1 OEM 1 Bank 1 OEM 3IBM crypto API
officer

Bank 2Authority over
Layer 3

OEM 2IBM OS officer OEM 4

IBM Miniboot 1 officer

(IBM Miniboot 0 officer)

Layer 1

Layer 2

(Layer 0)

 5

Figure 3: Miniboot commands and queries

5.4 Software	 Updates,	 Keys,	 and	 Outbound	 Authentication	
Each time Miniboot 1 replaces itself, it generates a keypair for its successor and
certifies the new public key with its current private key. This certificate establishes that
if one trusted the current installation of Miniboot, then one can trust the next one.
Each time the application configuration changes, Miniboot also generates and certifies
a new keypair for the OS in Layer 2. (Miniboot also destroys the old Layer 2 private
key.) This certification binds a keypair to a specific application configuration on a
specific device. (The OS in Layer 2 can use this keypair to provide outbound
authentication services to the application.) This binding, coupled with the trust chain
for Miniboot’s own keypair, permits parties to make accurate trust judgments about
information coming out of the device.

6 Conclusion	
A device exists that can securely update its own firmware in the field. It has been
validated under FIPS 140-2 at level 4, meeting the strictest requirements for security.
Its design has stood the test of time, for over 12 years. Aspects of its design may be
applicable to the protection of firmware and firmware updates in other systems.

References	
1. National Institute of Standards and Technology. Security Requirements for

Cryptographic Modules. Federal Information Processing Standards Publication
140-1, 1994.

2. IBM eServer Cryptographic Coprocessor Security Module 4764-001 Security
Policy, http://csrc.nist.gov/groups/STM/cmvp/documents/140-
1/140sp/140sp661.pdf, 2007.

R
u

n

Continue to Segment 2

Continue to Segment 1

Algorithm test

Query certificate list

Query Signed Health *

Query Status *

K
il

l
C

o
d

e
m

a
n

a
g

em
en

t

Emergency Burn (Segment) 3

Emergency Burn (Segment) 2

Ordinary Burn (Segment) 2

Ordinary Burn (Segment) 1

Ordinary Burn (Segment) 3

(concurrent update)

Establish Officer 3

Surrender Officer 2

Surrender Officer 3

O
ff

ic
er

s

Establish Officer 2

Software tamper

In
it

C
o
m

m
a
n

d
s

Q
u

er
ie

s
Officer 0

(IBM) (IBM)

Officer 1 Officer 2 UserOfficer 3

yes

yes

yes

yes

yes

yes

yes

yes

FACTORY USE ONLY

while within factory
Perform without restrictions

Roles

 marks both MCPU−resetting*

Services

 and non−intrusive variants

(IBM Initialize)

(IBM Burn) (Segment 1)

yes (cross−signatures)

yes (cross−signatures)

Unauthenticated

