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Abstract

Influence diagrams are a widely used framework for decisiaking under
uncertainty. These models allow for a concise graphicalessmtation of both
probabilistic as well as utility information which in turugports efficient graph-
based algorithms for computing an optimal decision pollegt tmaximizes the
expected utility of the decision maker. In this paper we mdtthe framework to
incorporate a qualitative rather than quantitative regmestion of the information
based on order-of-magnitude probability and utility fuoot We also develop a
variable elimination algorithm that generates an ordemafjnitude optimal pol-
icy. Furthermore, our model supports totally as well asigllytordered utilities.
Numerical experiments on random influence diagrams anaheeuality of the
order-of-magnitude policy with respect to the optimal pplderived from a corre-
sponding regular influence diagram with exact probabditiad utility values.

1 Introduction

An influence diagram is a graphical model for decision makinder uncertainty. It
is composed by a directed acyclic graph where utility nodesaasociated to profits
and costs of actions, chance nodes represent uncertaamibslependencies in the
domain and decision nodes represents actions to be takeen & influence diagram,
a policy defines which decision to take at each node, givemtbemation available at
that moment. Each policy has a corresponding expectetyitid the most common
task is to find an optimal policy with maximum expected utilit



Over the past decades, several exact methods have beers@tdposolve influ-
ence diagrams using local computations [1, 2, 3, 4]. Thesthods adapted clas-
sical variable eliminationtechniques, which compute a type of marginalization over
a combination of local functions, in order to handle the tpléttypes of informa-
tion (probabilities and utilities), marginalizations (s@nd max) and combinations (
for probabilities,+ for utilities) involved in influence diagrams. Variableralnation
based techniques are known to exploit the conditional inddpncies encoded by the
influence diagram, however, they require time and spacerexqial in theconstrained
treewidthof the influence diagram.

An alternative approach for evaluating influence diagramsed oronditioning
(orsearcl). These methods unfold the influence diagram intieeision graphor tree)
in such a way that an optimal solution graph corresponds topgimal policy of the
influence diagram. In this case, the problem of computingsimal policy is reduced
to searching for an optimal solution of the decision graphg[57]. In contrast with
variable elimination, search algorithms are not sensttivihe problem structure, use
time exponential in the number of variables, but may operdiiaear space.

In recentyears, a number of proposals have been extendexfpurpose of reliev-
ing domain experts from having to specify point probabitiywell as utility values.
Many of these proposals offer concrete methods that alloyeSan reasoning as well
as decision making under uncertainty to commence withoat@gitment to complete
probability distributions and utility functions. An exatemf this is Qualitative Proba-
bilistic Networks [8], which allow one to reason about prbiiatic influences among
variables in a qualitative manner that is consistent witlyd3&n reasoning. A sec-
ond class of proposals attempts to relief experts from pliogipoint probabilities by
requiring more abstract and intuitive belief measures tlaie consistent with point
probabilities. In this direction, a key proposal is tka&ppa calculug9, 10] and its
probabilistic interpretation usingsemantics [11]. In the context of decision making,
the Possibilistic Influence Diagrams [12] allow to model inanpact form problems
of sequential decision making under uncertainty, when ondynal data on transitions
likelihood or preferences are available.

In this paper, we propose a new framework for qualitativesies making under
uncertainty based on an Order of Magnitude calculus [13jpadrticular, we introduce
the Order of Magnitude Influence Diagram (OOMID) that extetige regular influence
diagram by allowing one to work with different forms of untaénty and other notions
of utility. The graphical part of a OOMID is exactly the sansethat of usual influence
diagrams, however the semantics differ. Transition Ikatids are expressed as order-
of-magnitude probability functions and rewards are repiaby order-of-magnitude
utility functions as well. We also develop a variable eliation algorithm for com-
puting the optimal policy that maximizes the expectedytiNVe consider both totally
ordered as well as partially ordered utilities, thus allogvone to model the utility
function in terms of both costs (negative values) and bengfibsitive values). Nu-
merical experiments on random influence diagrams analyzetiality of the order-
of-magnitude policy with respect to the optimal policy ded from a corresponding
regular influence diagram with exact probabilities andtytitalues.



2 Background

Influence diagrams extend belief networks by adding discision variablesand re-
ward functional components. Formally, an influence diagrardefined by/D =
(X,D, P,R), whereX = {X;,..., X,,} is a set of chance variables on multi-valued
domains (the belief network part) addl= {D;, ..., D,, } is a set of decision variables
(or actions). The chance variables are further divided atiservablemeaning they
will be observed during the execution, wnobservable The discrete domains of the
decision variables denote its possible set of actions. Aioraat the decision variable
D; is denoted byl;. Every chance variabl&; is associated with a conditional prob-
ability (CPT) P, = P(X;|pa;), wherepa; C X U D — {X;}. Each decision variable
D; has aparentsetup, C X U D, denoting the variables whose values will be known
and may affect directly the decision. The reward functiins {v., ..., v, } are defined
over subsets of variablég = {Q1, ..., Q,}, @, € XUD, calledscopesand the utility
function is defined byi(z) = >, v;(zq, ).

The graph of an ID contains nodes for chance variables (desvaircles), decision
variables (drawn as rectangles) and for reward compondraw/( as diamonds). The
arcs in an ID can be partitioned into three disjoint setsresponding to the type of
nodesthey gointo. Arcs into reward (or value) nodes repitdaactional dependencies
by indicating the scope of the associated reward comporens into chance nodes,
denoteddependency argsepresent probabilistic dependencies, whereas arcsl@ito
cision nodes, denotddformational arcs imply information precedence; i, € D
and there is a directed arc frarhe X U D to Dy, then the state of is known when
decisionD;, is made.

A decision rulefor a decision variabl®; is a mapping:

6i : QpllDi — QDi

where forS C X U D, Qg is the cross product of the individual domains of the
variables inS. A policyis a list of decision rule&\ = (41, ..., d,,) consisting of one
rule for each decision variable. To evaluate an influencgrdia is to find theptimal
policythat maximizes the expected utility (MEU) and to computedhmal expected
utility. Assume thate is an assignment over both chance and decision variables
(X1, ey Tpydi, ..., di ), the MEU task is to compute:

E =maxa—s,,...s,) Z HP(xi,e|xﬁai) X u(xA)

wherez® denotes an assignment= (x1, ..., z,,d, ..., d,,) where eachi; is deter-
mined byd; € A as a function ofz, namelyd; = 6;(x), ande is an instantiated subset
of variables.

The set of informational arcs inducepartial order < on X U D as defined by the
transitive closure of the following relation:

e y < D;, if (Y — D;)isadirected arcin IDD; € D).

e D; <Y, if (D;, X1,Xs,...,Xp,Y) is adirected path in IDY € X UD and
D; € D)



D1 D2 D3

(a) Influence diagram

B| E| A| P(ABE) || C| D2 | E| P(EIC,D2) || D1 | C| P(C|D1) || A| D3 | V(A,D3)
o/o|lo| 0003|/0l0o |0l 000007|/0 |0o| 0005]||0]0 -3000
ojo|1] 0997 ||0l0 |1 099993 |0 |1| o0995]/|0]1 -50
o[1|0] 09998 |/0/ 1 |0 0882 |/ 1 |ol 09998 || 1]0 0
0| 1|1 00002 01 |1 0118 [ 1 1] 00002 || 1]1 80
1100/ o0992|[1/0 |o 0.003

1]0[1] o0.008| 1/0 |1 0.997 || B| P(B)

111/0] 099996 || 1]1 |0 0.9996 || 0 | 0.99

10 1|1 0.00004 || 1|1 |1]| 0.0004 || 1| 0.01

(b) Conditional probability and utility functions

Figure 1: An influence diagram with elimination order D1, @,[E, A, D3, B.

e D, <A ifAAD;forall Dj € D(A e X andD; € D).

e D; < A/it A A D;and3D; € Dsit. D; < DyjandA < D; (A € X and
DiED).

Example 1 Figure 1 shows an influence diagram with 3 decision variaifles, D2,

D3), 4 chance variables (A,B,C,E) and 1 value node (V), retbpdy. The partial
order induced by the influence diagram i®21 < C < D2 < {A,E} < D3 <

B. The optimal policy of the diagram has maximum expectedyuiB.19754 and
is represented by the decision rule&D1) :— Qp;, 6(D2) : {C} — Qps and
0(D3) : {A} — Qps, respectively, where:

5(D1) =0



1 if C=0;
‘5<D2):{1 it ¢ =1:
1 it A=0;
5(D3):{1 it A=1;

3 Order-of-Magnitude Calculus

In this section, we introduce the Order-of-Magnitude chisas a representation frame-
work for imprecise probabilities as well as imprecise tiék.

3.1 Definition of Order of Magnitude Calculus

LetO = {{o,n) : n€ Z,0 € {+,—, £} } U{(0,00)}, whereZ is the set of integers.
The element+, co) will sometimes be written a8, element+, 0) as1, and element
(—,0) as—1.

If a = {0, n) then definer(a) (the sign ofa) to bes, anda to ben. We also define
Or ={(x£,n) : ne€ZU{oo}}, andO; = {(+,n) : n € Z}.

Multiplication:

For (o,m), (c’,n) € O, let (o,m) x (¢/,n) = (¢ ® ¢',m + n), whereco + m =
m + oo = oo form € Z U {c0}, and® is the natural multiplication of signs: it is the
commutative operation ofy-, —, £} suchthatt ® — = —, +®+ = — @ — = +,
andforany € {+,—,+}, o ®+ = +. As usuala x b will be sometimes abbreviated
to ab. This multiplication is associative and commutative, 88 O, x) is an abelian
group. Also—1 x —1 =1andforanya € O,a x 0 =0anda x 1 = a.

Forb € O\ O defineb~! to be the multiplicative inverse @f and fora € O let
a/b=axb"t {o,m)~! = (o,—m) foro € {+,—}.

Addition:

For (o, m), (¢',n) € O, let

(o, m) if m <mn;
(o,m) + (o',n) =< (0/,n) if m > n;
(c®a’,m) ifm=n

where+ @ + = +, — & — = —, and otherwises © ¢’ = +.

Addition is associative and commutative, and- 0 = a for anya € O. We have
distributivity: fora,b,c € O, (a + b)c = ac + be.

Fora,b e Olet—b = —1xb,anda—b = a+ (—b). We have— (o, m) = (—o, m)
where, as one would expeet(+) = —, —(—) = +and—(+) = +.



Ordering

We use a slightly stronger ordering than that defined in [13].
Let « andb be some elements @. Write a as (o, m) andb as(r,n). Then we
define binary relatiok on O by a = b if and only if either:

e 0 =+ andr = + andm < n; or

e 0 =+ andr = £+ andm < n; or

e 0=+ andr=—;or
e 0 =+ andr7 = — andm > n; or
e 0 = —andr = — andm > n.

As usual we writex = b if and only ifa > b and it is not the case that= a. We
write ¢ < bifand only ifb = a, anda < b if and only if b > a.
We sum up some basic properties-af

Proposition 1 Leta, b, c be arbitrary elements ap.
e = is a partial order onO.
e g = bifandonly if—b = —a.
e a > 0ifandonlyifa € Oy.
o Ifa>bthena+c>b+ec.

e Ifa=bandce O; thena x c=b x c.

3.2 Lower Simplified Order of Magnitude Calculus

We define the Lower Simplified Order of Magnitude Calculusa®is.
Define the seL. to consist of pairgo, n) whereos € {+, —} andn is an integer.

Multiplication:
(o,m) x (o/,n) = (¢ ®o';m + n), whereX is the natural multiplication of

signs: it is the commutative operation ¢, —} suchthat+ K — = —, + X+ =
— X — = 4. This multiplication is associative and commutative, aad mverses:
(o,m)~! = (o,—m) foro € {+,-}.
Addition: Let
(o,m) if m <mn;
(o,m)+ (¢',n) =< (¢/,n) if m > n;

(cHBo',m) ifm=n

where+ 8 + = 4, and otherwiseg B o' = —.



3.3 Upper Simplified Order of Magnitude Calculus

Given a setl consisting of pairg§o, n, ), wheres € {4, —} andn is an integer, we
define the Upper Simplified Order of Magnitude Calculus (SWQ@® a similar way,
as follows.

Multiplication:
(o,m) x (o/,n) = (¢ ®o’,m + n), whereX is the natural multiplication of

signs: it is the commutative operation s, —} suchthaty K — = —, + K+ =
— X — = 4. This multiplication is associative and commutative, aad mverses:
(o,m)~t = (o,—m) foro € {+,—}.
Addition: Let
(o,m) if m <mn;
(o,m) + (¢',n) =< (o/,n) if m > n;

(cBo’,m) ifm=n

where+ B8 + = 4, and otherwiseg B ¢’ = +.

3.4 Ordering for the Simplified Calculus
For the simplified (upper and lower) order of magnitude dalswe can define a total
order as follows. Lef be a set of elements of the forfm, n), wheren is an integer.
Ordering
(o,m) = (r,n) if and only if either

e o0 =+andr=—;or

e 0 =+ andr =+, andm < n; or

e 0 = —andr = —, andm > n.
Lemma 1 = respects additior-.

For the totally ordered case we have a total ordern the setU of utilities. The
maz-marginalization operation on utility-value pairs uses éiperatiomax,, returns
the maximum (with respect te) of a pair of utility values.

In order for combination of pairs to distribute over theixz-marginalization we
need that addition of utilities- distributes ovemax, . We say that- respectst if the
following (monotonicity) property holds:

Va,b,ce U,ifa>=bthena+c > b+c;

Theorem 1 Given total order> on U which respectst+ (addition of utilities), the
operationmaxy is commutative and associative, asdlistributes ovemax, .



4 Max Marginalization over Sets of Partially Ordered
Order-of-Magnitude Utilities

4.1 Ordering on utilities

We assume a partial orderirgon U which satisfies the following monotonicity prop-
erties, i.e.;~ respectst and x:

e foralla,b,ce U,ifa = bthena+c¢ = b+ ¢

e foralla,b € U andforallg € Q, if a = btheng x a = ¢ x b.

If @ > bthen we say that dominated. We write - for the strict part of-, so
thata > bif and only ifa > b anda # b. For A C U, definemaxy (A), the maximal
elements of4, to consist of alk € A such that there does not exise€ A with b > a.
Hencemax; (A) is the set of undominated elementbf

In many cases, every element of a des dominated by some maximal element; in
particular this holds if4 is finite. This can allow a set of utilities to be summarized by
its maximal elements. However, this is not universally fgirce we may have infinite
chainsa; < as < as < --- which have no upper bound ia. Consider, for example,
the open interval0, 1) of the real numbers, which has no maximal elements.

Definition 1 Given partial ordering= on setA, we say thatd satisfies property MAX
if for all a € A there exists somiee max, (A) with b > a.

For any finite setd and any partial order- on A, then A satisfies MAX. For
A C U we define subseR - (A) of A to consist of all elements o which are not
strictly dominated by some maximal elementAfthat is:

Re(A)={acA: e max(A) suchthat b > a}.

Clearly, we always haveaxs(A4) C R (A). If Ais such that every element of
A is dominated by some maximal element4f(in particular, this is the case H is
finite), thenR - (A) = maxy(A).

Lemma 2 Let> be a partial order on sefl.
(i) max,(A) C Ry-(A)
(i) If A satisfies MAX themaxs(A) = Ry (A).

Lemma 3 Let A and B be subsets df.
maxy (maxx-(A) U B)) = maxx- (AU B).

Lemma 4 Let A and B be subsets df.
maxy (R=(A) U B)) = max~ (AU B).



Ordering on sets of utilities

For A, B C U we say thatd = B if every element o3 is dominated by some element
of A (so thatA contains as least as large element$33si.e., if for all b € B there
existsa € A with a = b. Moreover,= is a reflexive and transitive relation. We define
equivalence relatiors by A =~ Bifandonly if A = B andB = A.

If Ais such that every element df is dominated by some maximal elementof
(for example, ifA is finite), thenA ~ B if and only if maxs (4) = max- (B).

Lemma 5 Let> be a partial order on sefl, which satisfies MAX. Then
A =~ Bifand only ifmaxs- (A) = max(B).

Lemma 6 Let A, B andC be subsets df/, and letq be an element af. Suppose that
A=~ B. Then

() g x A~ qXx B;
(i) A+C~B+C,

4.2 The Equivalence Relation= Between Utility Sets

Throughout this section we assume a Beodf order-of-magnitude utility values and
that> is a partial order o/ which respects- and respects oy We define relation
= on subsets o/ by: A = Bifandonly if C(4) ~ C(B), whereC(X) is the convex
closure of the subset C U.

The definition immediately implies that is an equivalence relation, i.e., it is re-
flexive, symmetric and transitive, sinegis an equivalence relation. Thus two sets of
utility values are considered equivalent if, for every caxeombination of elements
of one, there is a convex combination of elements of the atiéch is at least as good
(with respect to the partial order onU).

Proposition 2 For any subsefl of U, A = R (A) andA = C(A). If A satisfies MAX
(in particular, if A is finite) thend = max, (A).

Proposition 3 If A andC(A) satisfy property MAX the® (C(A)) = maxy(C(A)) =
maxy (C(maxy (A)).

Combining this result with Lemma 5 gives:

Proposition 4 If A, B,C(A) andC(B) satisfy property MAX thedl = B if and only
if maxx-(C(A4)) = max-(C(B)).

Proposition 5 Let A, B andC be subsets df, and letq be an element af. Suppose
that A = B. Then

() g x A=qx B;
(i) A+C=B+C,
(i) AuC=DBuUC.



4.3 Generating Small Equivalent Sets

The key resultin this section is Proposition 7, that implres in the (partially ordered)
Order of Magnitude computation (OOM), one needs only to weitk sets of values
which have either one or two elements. The result refersa@tfuivalence relatios
defined byA = B if and only if C(A) ~ C(B).

Consider two elements, m) and(r, n) in O, where we can assume, without loss
of generality, thatn < n. Any convex combination of these two elements is of the
form (0, 1) wherel € [m,n] and

if | < nthenf = o,
if l=nthenfd =c®B7o0rf =r7.

This means that convex sets are of a relatively simple forrpatticular, it implies
that the convex combination of a finite number of non-zerenelets is finite (since
every element in the convex combination hasrestricted to be within a finite range),
and so, in particular, satisfies the important MAX propessg Definition 1 in Section
4.1). In fact, even if we allow the zero eleméit, oo), C(A) still satisfies MAX?

Lemma 7 Let A be a finite subset af. ThenA andC(A) both satisfy the MAX
property

Lemma 7, Proposition 3, and Proposition 4 imply the follogviesult, which gives
a simpler definition of equivalence.

Proposition 6 Let A and B be finite subsets af). ThenA = B if and only if
maxy(C(A)) = max,(C(B)). Also, maxs(C(A)) = maxs(C(max~(A)), and
maxx (C(B)) = maxx (C(maxx(B)).

In fact, it turns out thatnax,- (C(maxx(A)) = C(maxsx(A)), and similarly forB.
To prove Proposition 7 below we use Lemmas 8 and 9.

Lemma 8 Let A be any subset @ with maxs- (A4) = A. Then there is at most one
elementu € A with o(a) # =, i.e.., witho(a) = + or —. Furthermore, Ifa € A is
such thaio(a) # =+ then for all other elementsof A, b < a.

Lemma 9 Let A be any finite subset @ with maxs (4) = A. Then eithefA4| = 1
or there exists somey,n € Z withm < nando € {+,—,+} such thatC(A) =

C({(£,m), (o,n)}).

Proposition 7 Let A be any finite subset @. Then eithetd = {a} for somea € O,
or there exists somer,n € Z withm < n ando € {+,—, £} such thatd =

{{(£,m), (o,n)}.

This implies that, when computing with paifg, A), in order to perform variable
elimination for OOM-based influence diagrams, we alwaysa@psetA by a setA’
which has either one or two elements, such that= A. This affects the complexity
of the procedure, which is related to the size of skthat are used in the computation.

1Even thoughC(A) is not necessarily finite: consider e.g({(%, oo), (—, m)}) which includes all
elementy—, n) with n > m.
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5 Order-of-Magnitude Influence Diagrams

An order-of-magnitude influence diagram (OOM-ID) is a folisra for decision mak-
ing using imprecise probabilistic as well as impreciseitytinformation by consid-
ering an order-of-magnitude approximation of the probitdd and utilities, respec-
tively. Specifically, the graphical structure of arder-of-magnitude influence diagram
is identical to that of a regular influence diagram, in terrhslance nodes, decision
nodes, value (or utility) nodes, as well as the dependeriaiaaships among them.
However, the entries of the conditional probability tatdssvell as of the utility func-
tions are represented as order-of-magnitude values, yaieshents of the forno, n),
wheren is an integer and € {+, —, =} is the sign, respectively.

One can always approximate a regular influence diagram bydar-of-magnitude
influence diagram using the following conversion procedfrthe exact probability
and utility values. This conversion which only maintaine tirder of magnitude of the
respective probability or utility value, is a way of captigisome degree of imprecision
and was also used previously by [14] in the context of Bayes&tworks.

Given a point probability valug € [0, 1] and0 < e < 1, the corresponding order-
of-magnitude approximation ist+, n) where

_J|log.p] fO0<p<1;
n = .
00 if p=20;
Similarly, given a point utility valuex € R and0 < ¢ < 1, the corresponding
order-of-magnitude approximation i&r, n) where

[log, ul] i ul = 1;
n = { [loge|ul] if 0 < |u] <1,
00 if u=0
and

o= + if u>0;
Tl - ifu<O;

Example 2 For illustration, Figure 2 shows the order-of-magnitudepagximation of
conditional probability tables and utility (reward) compents of the influence dia-
gram of Figure 1 fore = 0.1. For example, the OOM approximation of the point
probability P(A = 0|B = 0, E = 0) = 0.002 is computed a$+, [log, ; 0.002]) =
(+, Ll‘ﬁgo'oo_?ﬂ) = (+,]2.698]) = (0,2). Similarly, the OOM approximation of the
point utility V(A = 0,D3 = 0) = —3000 is computed ag—, [log, ; 3000]) =
(7 "10g3000*|) — (7 73)

» | TTog 0.1 ) :

Example 3 For e = 0.1, the OOM approximation of the influence diagram in Example
1 has the following optimal policy with maximum expectetityt{+, —1), which is
identical to the optimal policy of the original influence dram:

5(D1) =0
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B| E| A| P(AIB,E) || C| D2 | E| P(E|C,D2) || D1 | C| P(C|D1) || A| D3 | V(A,D3)
ojojo| +2//ojo |0 +4 o o] *2]l0]o0 (- -3)
0|0]1 (+,0)[|0l0 |1 *+0)|lo [1] (oy||l0][1 (- -1)
o100 l0[1 |0 ®0|l1 o] ol 1]0 | =
0| 1]1 +3)[]of1 |1 Ol 1 [1] @wa|l 1] (+,-1)
1100 (+0) (|10 |0 (+,2)

11ol1] 2] 110 |1 (+,0) || B|P®

111]0 +0 |11 |o (+,0) || 0| (+0)

1011 =4y |11 | =3[ 1] =1

Figure 2: Order-of-magnitude approximation of the influed@agram from Figure 1

1 ifC=0;
Msz{lifCL
1 if A=0;
MD@{1ifAL

For e = 0.001, the OOM approximation of the influence diagram in Exampled h
the following optimal policy with maximum expected utifity, 0):

§(D1) ={0,1}
1 fC=0;
o(D2) = { {0,1} :f c=1;

Note that in the latter case, both decision alternativesadieved bys(D1) and by
6(D2) for C = 1, respectively. Namely, the more imprecise one is aboutthditional
probabilities and/or utility values (corresponding to dsiiea ¢ values), the number of
undecided decision rules in the optimal policy of the OOMragimation increases.

In this case, the optimal strategy of the order-of-magretitfluence diagram is
represented by policy setA, = {A1, As, Az, Ay} containing the following policies:

The policyA; = {61(D1),61(D2),5.(D3)} is:

51 (D1) =0
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51(D3) ={} y
)

The policyAy = {62(D1), 62(D2),d2(D3)} is:

52(D1) =0
1 if C=0;
52(D2):{1 it ¢ =1:
1 if A=0;
%2(D3) :{1 it A=1:
The policyAs = {d3(D1),03(D2),5(D3)} is:
65(D1) =1
1 if C:
93(D2) = {0 if C=
1 if A=0;
53(D3){1 if A=1;
The policyAy = {64(D1),04(D2),4(D3)} is:
34(D1) =
1 if C=0;
54(D2):{1 it ¢ =1:
1 if A=0;
%4(D3) :{1 it A=1:

Notice that in the latter case, namely= 0.001, only A, is equal to the opti-
mal policy of the original influence diagram. When we evatdahe policy set in the
original influence diagram we obtained the following expeéattilities:

policy | expected utility

Aq -49.02544
Ag 78.19754
Ag 63.16252
Ay 63.18809

However, all four decision rules are optimal in the OOM inflge diagram since
they are all of the same order of magnitude o 0.001, namely(+, 0).
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Algorithm 1: Variable Elimination: ELIM-OOM-ID

Data: Order-of-magnitude influence diagralt, D, P, R), a legal elimination
ordering of the variables.

Result The optimal policyA = {é1, ..., ;} that maximizes the expected utility.
[+ initialize: partition functions into buckets */

1 create a sdiuckets of sizen

2 for p = n downto 1do

3 let X,, be thep!” variable in ordering and associatuckets[p] to X,

4 | letA, bethe set of functions i that containX,, in their scope

5 if X, is a chance variabl¢hen

6 | let®, be the set of functions if that containX,, in their scope

7 else if X, is a decision variable¢hen
8 | let®, be the set of remaining functions #

9 placeA,, into buckets[p] and update® < P — A,
10 | place®, into buckets[p] and update? < R — O,

/* top-down phase: elimnate variables */
11 for p = n downto 1do

12 let A, = {\1,..., A;} be probabilistic components tnuckets[p]

13 let©, = {61, ..., 0, } be utility components ibuckets[p]

14 | if X, is achance variabl¢hen

15 )\p — BHXP &5:1 i

16 O = Bx, (K- A) B (B]_,6;))

17 | Oy 0, RN

18 | elseifX, is a decision variablehen

19 if A, =0 then

20 | 0y vx, B5_, 0;

21 else .

22 | A Vi, (R \) R (BE_,0)))

23 place), in the bucket of the largest-index variable in its scope
24 | placed, in the closest chance bucket of a variable in its scope oren th
L closest decision bucket

[+ bottomup phase: conpute optinmal policy */
25 A+ )
26 for p=1ton do
27 if X, is a decision variableéhen

28 let A, = {)\1,..., A;} be probabilistic components tnuckets[p]
29 let©, = {61, ..., 6} be utility components ibuckets[p]

30 Op < argmazxx, ((K/_; \;) X (EE?:lGj))

31 A+~ AU,

32 return A
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6 Variable Elimination for Order-of-Magnitude Influ-
ence Diagrams

A variable elimination procedure for computing the optinpalicy of an order-of-
magnitude influence diagram is described by Algorithm 1.eBGia legal elimination
ordering of the variables, the algorithm constructs a buskeicture calledbuckets
where each bucket is associated with a single variable. ijng probability and util-
ity functions are then partitioned into the buckets as fefioEach probability function
is placed in the bucket of its argument that appears latélseinrdering. A utility func-
tion is placed in the bucket of its highest chance variabli¢siscope or in the bucket
of the highest decision variable in the ordering (lines I-IThe algorithm has two
phases.

During the first, top-down phase, it processes each buaken, the last variable to
the first. Each bucket containing utility componesits = {0, ..., 0, } and probabil-
ity components\,, = {1, ..., A, }, respectively, is processed by a variable elimination
procedure that computes new probability and utility comgada which are placed in
lower buckets (lines 11-24). The algorithm generates\thef a bucket by combin-
ing all probability components and eliminating the buckatable. The),, of a chance
variableX, is computed as the average utility of the bucket, normalietthe bucket’s
compiled),. For a decision variable we compute acomponent by/-maximization,
and simplify when no probabilistic components appear irddsgsion bucket. We note
therefore that processing a decision variable does notrirrgéallow exploiting a de-
composition in the utility components. The procedure ukegdllowing combination
and elimination operators:

e X-combination:A; X Ao = A1 X Ao
e tH-combination?®; B 02 = 61 + 6
e X-combinationAX 6 =\ x 0

e H-elimination:Xx ="

¢ V-elimination: this is the closure defined in the previoustises. Note the
the v-elimination becomes the regulatax when we consider totally ordered
order-of-magnitude values (i.e., SLOOM/SUOOM simplifieddatilus), and is
the max marginalization over partially ordered sets of oifenagnitude values
when we consider OOM calculus with both positive and negatiity values.

In the second, bottom-up phase, the algorithm computesgti@al policy or the
set of decision rules for each decision variable. The decibuckets are processed in
reversed order, from the first variable to the last (thustgkinto account the temporal
order of the decision induced by the influence diagram). Backsion rule is computed
by the argument of the/-elimination operator applied over the combination of the
probability and utility components in the respective budkecluding original as well
as intermediate functions). We note that the scope of thisideaule (also called its
domain is the union of the scopes of all functions in the that buckigtus the bucket
variable.
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7 Empirical Evaluation

In this section, we evaluate empirically the quality of teeidion policies produced by
the order-of-magnitude approximation of influence diaggam

7.1 Random problem generator

We experimented with random problems using the followingapeetric model. A
random influence diagram class is defined'by, n4, u, k¢, k4, p, r, a) wheren,. is the
number of chance variables, is the number of decision variables (usually,< n.),

w is the number of utility (or reward) components,is the domain size of the chance
variablesk, is the domain size of the decision variabless the number of parents for
each of the chance or decision variableis the number of root variables (without any
parents) and is the arity of the utility components.

The structure of the influence diagram is created by randpiokingn. + ng — r
variables out of..+n4 and, for each, randomly selectipgarents from their preceding
variables, relative to some ordering. We also ensure tlet#tision variables are
connected by a directed path in the resulting directed acgchph. Theny utility
nodes are added to the graph, each one havpayents selected randomly from the set
of chance and decision nodes. The fraction of chance nodearh assigned extreme
CPTs is a parameter, called teetreme raticand denoted by, respectively. The CPTs
of these nodes were filled with numbers betwédr >, 10~*) ensuring that they are
properly normalized; in the remaining chance nodes, thesGkdre randomly filled
using a uniform distribution between 0 and 1. The table ohagiity component was
filled with integersv of the form:

10 if ¢>0;
v=4¢ —10° if i <O0;
0 if i=0;
wherei is an integer uniformly distributed at random in the intéfuab], with a, b € Z.

7.2 Measures of performance

In order to measure the quality of the optimal policies cotagun the order-of-
magnitude influence diagrams we consider the following aigen

Let Z be a regular influence diagram andIetbe its order-of-magnitude approx-
imation for some value of obtained using the conversion procedure outlined before.
Let A*(Z) be the optimal policy o and letE*(Z) be its maximum expected util-
ity, respectively. Also, letA*(Z,) = {Aj(Z.),A5(Ze),..., AL (Z:)} be the policy
set ofZ.. We then draw a subset of policiés;(Z.) = {A] (Zc),...,A; (Z)} uni-
formly at random out ofA*(Z.) and for each policyA} (Z.) € D;(Z.) we compute
its corresponding expected utiliti/; (Z.) in the original influence diagrarii. Let
& ={E} (Ze), ..., Ef ()} and we denote by, (Z.) be the average expected util-
ity over the sample sef;.

We define next the average relative error (should get a bettat) as follows:
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r_ |ET(Z) — Egy(Z)]
REOOM — | g -100
! |E*(T)]

Similarly, we can define the minimum, maximum and mediarntiredarrors:

in " - 100
[E*(Z)]
EY(I) = Efan(Ze)]
REQOM - | mas ¢ 100
[E*(Z)]
(  |E*(Z) — E}, (L)l
REnOmeOIu _ | med . 100
‘ [E*(Z)]
whereE? . (Z.), E},..(Z.) andEY . (Z.) are the minimum, maximum and the me-

dian expected utility over the sample $gt respectively.
In the following subsection we will us&ES9M (resp. RESOM, RESOM and

RE99M) to characterize the quality of the order-of-magnitudeslen policies with
respect to the optimal decision policy of the correspondagular influence diagram.

7.3 Results
7.3.1 Influence diagrams with positive utilities

We generated a set of random influence diagrams using themantbdel generator
with parametergn.,nqg = 5,u = 1,p = 2,r = 2,a = 5,e) while varying the
number of chance variables. and the extreme ratie, respectively. Each problem
instance hady = 5 decision variables; = 1 utility nodes and- = 2 variables were
selected randomly as roots from the set of chance and deaiaitables. Each of the
remaining chance and decision variables pag¢ 2 parents, while the cost function
corresponding to the utility node had an arityof= 5. The extreme probabilities
were distributed according to the extreme ratiwhich we varied betweetand0.95,
respectively. The utility function contained only posdtiutility values which were
generated uniformly randomly using the interfial= 0, b = 5] (see previous sections
again for a refreshment). In all test cases we consideremhpleaett; of 100 decision
policies drawn uniformly at random from the policy set of ttespective order-of-
magnitude influence diagram.

Figures 3(a)-(e) display the relative ern’éEgjOgM as a function of the problem size
(which is given by the total number of variables), for fivedts/of the extreme ratio
e € {0,0.25,0.50,0.75,0.95}. Each data point in each of the plots represents the me-
dian value obtained for 10 random instances of the respesitre. \We conducted three
sets of experiments far= 0.5, ¢ = 0.05 ande = 0.005, respectively. Informally, the
smaller thee value is, the more imprecise one is about the correspondiiggpility
and utility values. Each experiment involved settingevaluating the original influ-
ence diagram, translating the influence diagram into anrafimagnitude influence
diagram using the procedure from a previous section, anddhaluating the resulting
order-of-magnitude influence diagram using the ELIM-OOMallgorithm.
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Figure 3: Results for influence diagrams with positive ttilialues. Shown is the rel-

ative errorREggM of the OOM policies fok € {0.5,0.05,0.005} and extreme ratio
e € {0%, 25%, 50%, 75%, 95%}. Average treewidth is between 8 and 23, respectively.
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Whene = 0.5, the relative erronREggM is the smallest, ranging between 8%
and 13% fore = 0 (see Figure 3(a)), between 8% and 16%doct 0.25 (see Figure
3(b)), between 8% and 17% fer= 0.50 (see Figure 3(c)), between 7% and 14% for
e = 0.75 (see Figure 3(d)) and between 0.06% and 9%fer 0.95 (see Figure 3(e)),
respectively.

Whene = 0.05, the relative errod%EggM is larger, ranging between 13% and
31% fore = 0 (see Figure 3(a)), between 17% and 34%do+= 0.25 (see Figure
3(b)), between 20% and 42% fer= 0.50 (see Figure 3(c)), between 21% and 32%
for e = 0.75 (see Figure 3(d)) and between 0.4% and 15%cfer 0.95 (see Figure
3(e)), respectively.

Whene = 0.005, the relative errorREggM is the largest, ranging between 15%
and 41% fore = 0 (see Figure 3(a)), between 24% and 46%de* 0.25 (see Figure
3(b)), between 28% and 55% fer= 0.50 (see Figure 3(c)), between 30% and 46% for
e = 0.75 (see Figure 3(d)) and between 8% and 44%cfer 0.95 (see Figure 3(e)),
respectively.

Note that the results obtained for the other two error messESOM and

RE9Q9M respectively, follow the same pattern (results to be idetl). Namely, the
error was the smallest fer= 0.5 and it was the largest fer= 0.005.

Figures 4(a)-(e) display all four error measures, nanidi)>, REQOM , REQOM
andREQ9M | as a function of the problem size ferc {0,0.25,0.50,0.75,0.95} and

maxr !

¢ = 0.5, respectively. We can see thRaEEO9M is virtually zero especially for problems
with a relatively large ratio of extreme probabilities (for- 0.5 see Figures 4(c)-(e)).
This means that the decision policy with maximum expectéidpdver the sample set
&s generated from the order-of-magnitude influence diagrama fe 0.5 was in most
of the test cases identical to the optimal policy of the cgpoading regular influence
diagram. Furthermore, we can also see thak UOgM stayed below 20% in all cases,
which means that on average the order-of-magnitude degisiticy was at most 20%
off of the optimal policy of the corresponding regular infhee diagram. Finally, we
observed that for smaller values gfthe results follow a similar pattern, however the
errors were significantly larger than those obtained forethe 0.5 case (results for

e = 0.05 ande = 0.005 to be included as soon as they become available).

7.3.2 Influence diagrams with positive and negative utiligs

For this experiment we generated random influence diagrathdtve same parameters
as before, except that in this case the utility values weneigged uniformly randomly
using the intervala = —5, b = 5], thus allowing for negative utility values as well (see
again the model generator description for a refreshment).

Figures 5(a)-(e) display the relative errBrEggM as a function of the problem
size (which is given by the total number of variables), foeflevels of the extreme
ratioe € {0,0.25,0.50,0.75,0.95}. Each data point in each of the plots represents the
median value obtained for 10 random instances of the respegize. As before, we
have three sets of experiments éo 0.5, ¢ = 0.05 ande = 0.005, respectively.

As before, we can see that the relative erRE,ﬁgM is the smallest foe = 0.5

and it is the largest for = 0.005, respectively. Note that in this case the differ-
ences between the different relative errors corresponirtifferent values ot are
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Figure 4: Results for influence diagrams with positive gtilfalues. Shown are the

relative errorsRESOM, RESOM, RESOM and RESSM of the OOM policies for

e = 0.5 and extreme ratie € {0%, 25%, 50%, 75%,95%}. Average treewidth is
between 8 and 23, respectively.
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treme ratioe € {0%, 25%, 50%, 75%, 95%}. Average treewidth is between 8 and 23,
respectively.
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much more pronounced than those observed in the previoesimgnt, in many cases
reaching two or more orders of magnitude (notice the lolarit scale). For example,
on problems with 35 variables and extreme ratie- 0.95 (Figure 5(¢e)), the relative
error RESOM for e = 0.5 is about 2 and 4 orders of magnitude smaller than that for
e = 0.05 ande = 0.005, respectively.

Whene = 0.5, we can see that the relative error is virtually zero, esplycior
e = 0.95. In this caseRE,gJOgM ranges between 0.006% and 0.02%, respectively (see
Figure 5(e)). However, when the extreme ratio decreaseggthtive error increases.
Specifically, fore = 0.75 the error is between 1% and 36% (see Figure 5(d)), for
e = 0.50 the error is between 0.05% and 24% (see Figure 5(c)}, fer0.25 the error
is between 1% and 25% (see Figure 5(b)) andefer 0 the error is between 2% and
30% (see Figure 5(a)), respectively.

Whene = 0.05 ande = 0.005, the relative erroREgjOgM is much higher spanning
over several orders of magnitude as compared with the prs\dased = 0.5).

Figures 6(a)-(e) display all four error measures, nanidly) ", REQOM , REQOM

andREQ9M as a function of the problem size, e {0,0.25,0.50,0.75,0.95} and
e = 0.5, respectively. As before, we can see that on problems wittemre ratio
greater than 50%REC9M s very close zero (see Figures 6(c)-(e)). Whes 0.50,

RES°M s larger, reaching a as much as 14% on some problemsewitt0.25 (see
Figure 6(b)). When looking at the average order-of-maglgtpolicies, we see that
REZOM is below 0.02% on problems with = 0.95, and increases up to 30% on
problems withe € {0,0.25,0.50,0.75}, respectively. This demonstrates again the
robustness of the order-of-magnitude approximation ftatikely large values ot.
Whene is small (typically less than 0.05), the relative error te tiptimal policy of
the corresponding regular influence diagram increasesatieaily and therefore the

quality of the order-of-magnitude policy degrades sigaifity.

7.3.3 Influence diagrams with negative utilities

Figures 7(a)-(e) display the relative errBE,QJOgM as a function of the problem size
(which is given by the total number of variables), for fivedts/of the extreme ratio
e € {0,0.25,0.50,0.75,0.95}. Each data point in each of the plots represents the
median value obtained for 10 random instances of the regpegize. As before, we
have three sets of experiments o 0.5, ¢ = 0.05 ande = 0.005, respectively.

Figures 8(a)-(e) display all four error meaures, nania§f, 9", REQOM, RESOM

med ! min

andRESQ9M | as a function of the problem size, fex {0,0.25,0.50,0.75,0.95} and
e = 0.5, respectively. As before, we can see that on problems witfemre ratio
greater than 50%REC9M is very close zero (see Figures 8(c)-(e)). On the other

max

hand, RE99M on average spans one or two orders of magnitude across alteep

avg

values ofe ande, respectively.

8 Conclusion and Future Work

The paper presents a new framework for qualitative secalesidicision making un-
der uncertainty based on an Order-of-Magnitude representaf probabilities and
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Figure 6: Results for influence diagrams with positive andatige utility values.
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Figure 7: Results for influence diagrams with negativetytiialues. Shown is the

relative error of the OOM policies for € {0.5,0.05,0.005} and extreme ratie €
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Figure 8: Results for influence diagrams with negativetytifalues. Shown are the
relative errorsRESOM, RESOM, RESOM and RESSM of the OOM policies for

e = 0.5 and extreme ratie € {0%, 25%, 50%, 75%,95%}. Average treewidth is
between 8 and 23, respectively.
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utilities. In particular, we introduce the Order-of-Matrde Influence diagrams that
extend the usual influence diagrams by replacing the pootiglility and utility val-
ues by order-of-magnitude probability and utility valuespectively. We also derive a
sound variable elimination algorithm for computing an ol policy that maximizes
the order-of-magnitude expected utility. Numerical expents on random influence
diagrams show that in many cases the optimal policy of anrarvfienagnitude in-
fluence diagram is almost identical to the optimal policy afaaresponding regular
influence diagram.

Future work includes the computation of the optimal poliging depth-first or
best-first heuristic search over a weighted AND/OR seareplgassociated with an
order-of-magnitude influence diagram. In this directional& plan to compile the
policy set of an order of magnitude influence diagram into dtimmalued AND/OR
decision diagram (AOMDD) to support sensitivity analysisks.
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