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Abstract

Influence diagrams are a widely used framework for decision making under
uncertainty. These models allow for a concise graphical representation of both
probabilistic as well as utility information which in turn supports efficient graph-
based algorithms for computing an optimal decision policy that maximizes the
expected utility of the decision maker. In this paper we extend the framework to
incorporate a qualitative rather than quantitative representation of the information
based on order-of-magnitude probability and utility function. We also develop a
variable elimination algorithm that generates an order-of-magnitude optimal pol-
icy. Furthermore, our model supports totally as well as partially ordered utilities.
Numerical experiments on random influence diagrams analyzethe quality of the
order-of-magnitude policy with respect to the optimal policy derived from a corre-
sponding regular influence diagram with exact probabilities and utility values.

1 Introduction

An influence diagram is a graphical model for decision makingunder uncertainty. It
is composed by a directed acyclic graph where utility nodes are associated to profits
and costs of actions, chance nodes represent uncertaintiesand dependencies in the
domain and decision nodes represents actions to be taken. Given an influence diagram,
a policy defines which decision to take at each node, given theinformation available at
that moment. Each policy has a corresponding expected utility and the most common
task is to find an optimal policy with maximum expected utility.
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Over the past decades, several exact methods have been proposed to solve influ-
ence diagrams using local computations [1, 2, 3, 4]. These methods adapted clas-
sical variable eliminationtechniques, which compute a type of marginalization over
a combination of local functions, in order to handle the multiple types of informa-
tion (probabilities and utilities), marginalizations (sum and max) and combinations (×
for probabilities,+ for utilities) involved in influence diagrams. Variable elimination
based techniques are known to exploit the conditional independencies encoded by the
influence diagram, however, they require time and space exponential in theconstrained
treewidthof the influence diagram.

An alternative approach for evaluating influence diagrams is based onconditioning
(or search). These methods unfold the influence diagram into adecision graph(or tree)
in such a way that an optimal solution graph corresponds to anoptimal policy of the
influence diagram. In this case, the problem of computing an optimal policy is reduced
to searching for an optimal solution of the decision graph [5, 6, 7]. In contrast with
variable elimination, search algorithms are not sensitiveto the problem structure, use
time exponential in the number of variables, but may operatein linear space.

In recent years, a number of proposals have been extended forthe purpose of reliev-
ing domain experts from having to specify point probabilityas well as utility values.
Many of these proposals offer concrete methods that allow Bayesian reasoning as well
as decision making under uncertainty to commence without a commitment to complete
probability distributions and utility functions. An example of this is Qualitative Proba-
bilistic Networks [8], which allow one to reason about probabilistic influences among
variables in a qualitative manner that is consistent with Bayesian reasoning. A sec-
ond class of proposals attempts to relief experts from providing point probabilities by
requiring more abstract and intuitive belief measures which are consistent with point
probabilities. In this direction, a key proposal is thekappa calculus[9, 10] and its
probabilistic interpretation usingǫ-semantics [11]. In the context of decision making,
the Possibilistic Influence Diagrams [12] allow to model in acompact form problems
of sequential decision making under uncertainty, when onlyordinal data on transitions
likelihood or preferences are available.

In this paper, we propose a new framework for qualitative decision making under
uncertainty based on an Order of Magnitude calculus [13]. Inparticular, we introduce
the Order of Magnitude Influence Diagram (OOMID) that extends the regular influence
diagram by allowing one to work with different forms of uncertainty and other notions
of utility. The graphical part of a OOMID is exactly the same as that of usual influence
diagrams, however the semantics differ. Transition likelihoods are expressed as order-
of-magnitude probability functions and rewards are replaced by order-of-magnitude
utility functions as well. We also develop a variable elimination algorithm for com-
puting the optimal policy that maximizes the expected utility. We consider both totally
ordered as well as partially ordered utilities, thus allowing one to model the utility
function in terms of both costs (negative values) and benefits (positive values). Nu-
merical experiments on random influence diagrams analyze the quality of the order-
of-magnitude policy with respect to the optimal policy derived from a corresponding
regular influence diagram with exact probabilities and utility values.
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2 Background

Influence diagrams extend belief networks by adding alsodecision variablesand re-
ward functional components. Formally, an influence diagramis defined byID =
〈X,D,P,R〉, whereX = {X1, ..., Xn} is a set of chance variables on multi-valued
domains (the belief network part) andD = {D1, ..., Dm} is a set of decision variables
(or actions). The chance variables are further divided intoobservablemeaning they
will be observed during the execution, orunobservable. The discrete domains of the
decision variables denote its possible set of actions. An action at the decision variable
Di is denoted bydi. Every chance variableXi is associated with a conditional prob-
ability (CPT)Pi = P (Xi|pai), wherepai ⊆ X ∪D − {Xi}. Each decision variable
Di has a parent setpaDi

⊆ X ∪D, denoting the variables whose values will be known
and may affect directly the decision. The reward functionsR = {v1, ..., vj} are defined
over subsets of variablesQ = {Q1, ..., Qj},Qj ⊆ X∪D, calledscopes, and the utility
function is defined byu(x) =

∑

j vj(xQj
).

The graph of an ID contains nodes for chance variables (drawnas circles), decision
variables (drawn as rectangles) and for reward components (drawn as diamonds). The
arcs in an ID can be partitioned into three disjoint sets, corresponding to the type of
nodes they go into. Arcs into reward (or value) nodes represent functional dependencies
by indicating the scope of the associated reward component.Arcs into chance nodes,
denoteddependency arcs, represent probabilistic dependencies, whereas arcs intode-
cision nodes, denotedinformational arcs, imply information precedence; ifDk ∈ D
and there is a directed arc fromY ∈ X ∪D toDk, then the state ofY is known when
decisionDk is made.

A decision rulefor a decision variableDi is a mapping:

δi : ΩpaDi
→ ΩDi

where forS ⊆ X ∪ D, ΩS is the cross product of the individual domains of the
variables inS. A policy is a list of decision rules∆ = (δ1, ..., δm) consisting of one
rule for each decision variable. To evaluate an influence diagram is to find theoptimal
policy that maximizes the expected utility (MEU) and to compute theoptimal expected
utility. Assume thatx is an assignment over both chance and decision variablesx =
(x1, ..., xn, d1, ..., dm), the MEU task is to compute:

E = max∆=(δ1,...,δm)

∑

x1,...,xn

∏

P (xi, e|x
∆
pai

)× u(x∆)

wherex∆ denotes an assignmentx = (x1, ..., xn, d1, ..., dm) where eachdi is deter-
mined byδi ∈ ∆ as a function ofx, namelydi = δi(x), ande is an instantiated subset
of variables.

The set of informational arcs induces apartial order≺ onX ∪D as defined by the
transitive closure of the following relation:

• y ≺ Di, if (Y → Di) is a directed arc in ID (Di ∈ D).

• Di ≺ Y , if (Di, X1, X2, ..., Xp, Y ) is a directed path in ID (Y ∈ X ∪ D and
Di ∈ D).
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(a) Influence diagram

(b) Conditional probability and utility functions

Figure 1: An influence diagram with elimination order D1, C, D2, E, A, D3, B.

• Di ≺ A, if A ⊀ Dj for all Dj ∈ D (A ∈ X andDi ∈ D).

• Di ≺ A, if A ⊀ Di and∃Dj ∈ D s.t. Di ≺ Dj andA ≺ Dj (A ∈ X and
Di ∈ D).

Example 1 Figure 1 shows an influence diagram with 3 decision variables(D1, D2,
D3), 4 chance variables (A,B,C,E) and 1 value node (V), respectively. The partial
order induced by the influence diagram is:D1 ≺ C ≺ D2 ≺ {A,E} ≺ D3 ≺
B. The optimal policy of the diagram has maximum expected utility 78.19754 and
is represented by the decision rules:δ(D1) :→ ΩD1, δ(D2) : {C} → ΩD2 and
δ(D3) : {A} → ΩD3, respectively, where:

δ(D1) = 0
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δ(D2) =

{

1 if C = 0;
1 if C = 1;

δ(D3) =

{

1 if A = 0;
1 if A = 1;

3 Order-of-Magnitude Calculus

In this section, we introduce the Order-of-Magnitudecalculus as a representation frame-
work for imprecise probabilities as well as imprecise utilities.

3.1 Definition of Order of Magnitude Calculus

LetO = {〈σ, n〉 : n ∈ Z, σ ∈ {+,−,±}} ∪ {〈0,∞〉}, whereZ is the set of integers.
The element〈±,∞〉 will sometimes be written as0, element〈+, 0〉 as1, and element
〈−, 0〉 as−1.

If a = 〈σ, n〉 then defineσ(a) (the sign ofa) to beσ, andâ to ben. We also define
O± = {〈±, n〉 : n ∈ Z ∪ {∞}}, andO+ = {〈+, n〉 : n ∈ Z}.

Multiplication:

For 〈σ,m〉, 〈σ′, n〉 ∈ O, let 〈σ,m〉 × 〈σ′, n〉 = 〈σ ⊗ σ′,m + n〉, where∞ + m =
m+∞ = ∞ for m ∈ Z ∪ {∞}, and⊗ is the natural multiplication of signs: it is the
commutative operation on{+,−,±} such that+⊗− = −, +⊗+ = −⊗− = +,
and for anyσ ∈ {+,−,±}, σ⊗± = ±. As usual,a×b will be sometimes abbreviated
toab. This multiplication is associative and commutative, and(O\O±,×) is an abelian
group. Also−1×−1 = 1 and for anya ∈ O, a× 0 = 0 anda× 1 = a.

For b ∈ O \ O± defineb−1 to be the multiplicative inverse ofb, and fora ∈ O let
a/b = a× b−1. 〈σ,m〉−1 = 〈σ,−m〉 for σ ∈ {+,−}.

Addition:

For 〈σ,m〉, 〈σ′, n〉 ∈ O, let

〈σ,m〉+ 〈σ′, n〉 =







〈σ,m〉 if m < n;
〈σ′, n〉 if m > n;
〈σ ⊕ σ′,m〉 if m = n

where+⊕+ = +,−⊕− = −, and otherwise,σ ⊕ σ′ = ±.
Addition is associative and commutative, anda + 0 = a for anya ∈ O. We have

distributivity: for a, b, c ∈ O, (a+ b)c = ac+ bc.
Fora, b ∈ O let−b = −1×b, anda−b = a+(−b). We have−〈σ,m〉 = 〈−σ,m〉

where, as one would expect,−(+) = −, −(−) = + and−(±) = ±.
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Ordering

We use a slightly stronger ordering than that defined in [13].
Let a andb be some elements ofO. Write a as〈σ,m〉 andb as〈τ, n〉. Then we

define binary relation� onO by a � b if and only if either:

• σ = + andτ = + andm ≤ n; or

• σ = + andτ = ± andm ≤ n; or

• σ = + andτ = −; or

• σ = ± andτ = − andm ≥ n; or

• σ = − andτ = − andm ≥ n.

As usual we writea ≻ b if and only if a � b and it is not the case thatb � a. We
write a � b if and only if b � a, anda ≺ b if and only if b ≻ a.

We sum up some basic properties of�:

Proposition 1 Leta, b, c be arbitrary elements ofO.

• � is a partial order onO.

• a � b if and only if−b � −a.

• a ≻ 0 if and only ifa ∈ O+.

• If a � b thena+ c � b + c.

• If a � b andc ∈ O+ thena× c � b× c.

3.2 Lower Simplified Order of Magnitude Calculus

We define the Lower Simplified Order of Magnitude Calculus as follows.
Define the setL to consist of pairs〈σ, n〉 whereσ ∈ {+,−} andn is an integer.

Multiplication:
(σ,m) × (σ′, n) = (σ ⊠ σ′,m + n), where⊠ is the natural multiplication of

signs: it is the commutative operation on{+,−} such that+ ⊠ − = −, + ⊠ + =
− ⊠ − = +. This multiplication is associative and commutative, and has inverses:
(σ,m)−1 = (σ,−m) for σ ∈ {+,−}.

Addition: Let

(σ,m) + (σ′, n) =







(σ,m) if m < n;
(σ′, n) if m > n;
(σ ⊞ σ′,m) if m = n

where+⊞+ = +, and otherwise,σ ⊞ σ′ = −.
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3.3 Upper Simplified Order of Magnitude Calculus

Given a setL consisting of pairs〈σ, n, 〉, whereσ ∈ {+,−} andn is an integer, we
define the Upper Simplified Order of Magnitude Calculus (SUOOM) in a similar way,
as follows.

Multiplication:
(σ,m) × (σ′, n) = (σ ⊠ σ′,m + n), where⊠ is the natural multiplication of

signs: it is the commutative operation on{+,−} such that+ ⊠ − = −, + ⊠ + =
− ⊠ − = +. This multiplication is associative and commutative, and has inverses:
(σ,m)−1 = (σ,−m) for σ ∈ {+,−}.

Addition: Let

(σ,m) + (σ′, n) =







(σ,m) if m < n;
(σ′, n) if m > n;
(σ ⊞ σ′,m) if m = n

where+⊞+ = +, and otherwise,σ ⊞ σ′ = +.

3.4 Ordering for the Simplified Calculus

For the simplified (upper and lower) order of magnitude calculus we can define a total
order as follows. LetL be a set of elements of the form〈σ, n〉, wheren is an integer.

Ordering

〈σ,m〉 � 〈τ, n〉 if and only if either

• σ = + andτ = −; or

• σ = + andτ = +, andm ≤ n; or

• σ = − andτ = −, andm ≥ n.

Lemma 1 � respects addition+.

For the totally ordered case we have a total order� on the setU of utilities. The
max-marginalization operation on utility-value pairs uses the operationmax�, returns
the maximum (with respect to�) of a pair of utility values.

In order for combination of pairs to distribute over themax-marginalization we
need that addition of utilities+ distributes overmax�. We say that� respects+ if the
following (monotonicity) property holds:

∀a, b, c ∈ U , if a � b thena+ c � b+ c;

Theorem 1 Given total order� on U which respects+ (addition of utilities), the
operationmax� is commutative and associative, and+ distributes overmax�.
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4 Max Marginalization over Sets of Partially Ordered
Order-of-Magnitude Utilities

4.1 Ordering on utilities

We assume a partial ordering� onU which satisfies the following monotonicity prop-
erties, i.e.,� respects+ and×:

• for all a, b, c ∈ U , if a � b thena+ c � b+ c;

• for all a, b ∈ U and for allq ∈ Q, if a � b thenq × a � q × b.

If a � b then we say thata dominatesb. We write≻ for the strict part of�, so
thata ≻ b if and only if a � b anda 6= b. ForA ⊆ U , definemax�(A), the maximal
elements ofA, to consist of alla ∈ A such that there does not existb ∈ A with b ≻ a.
Hencemax�(A) is the set of undominated element ofA.

In many cases, every element of a setA is dominated by some maximal element; in
particular this holds ifA is finite. This can allow a set of utilities to be summarized by
its maximal elements. However, this is not universally true, since we may have infinite
chainsa1 ≺ a2 ≺ a3 ≺ · · · which have no upper bound inA. Consider, for example,
the open interval(0, 1) of the real numbers, which has no maximal elements.

Definition 1 Given partial ordering� on setA, we say thatA satisfies property MAX
if for all a ∈ A there exists someb ∈ max�(A) with b � a.

For any finite setA and any partial order� on A, thenA satisfies MAX. For
A ⊆ U we define subsetR�(A) of A to consist of all elements ofA which are not
strictly dominated by some maximal element ofA, that is:

R�(A) = {a ∈ A : ∄b ∈ max
�

(A) such that b > a}.

Clearly, we always havemax�(A) ⊆ R�(A). If A is such that every element of
A is dominated by some maximal element ofA (in particular, this is the case ifA is
finite), thenR�(A) = max�(A).

Lemma 2 Let� be a partial order on setA.

(i) max�(A) ⊆ R�(A)

(ii) If A satisfies MAX thenmax�(A) = R�(A).

Lemma 3 LetA andB be subsets ofU .

max�(max�(A) ∪B)) = max�(A ∪B).

Lemma 4 LetA andB be subsets ofU .

max�(R�(A) ∪B)) = max�(A ∪B).
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Ordering on sets of utilities

ForA,B ⊆ U we say thatA < B if every element ofB is dominated by some element
of A (so thatA contains as least as large elements asB), i.e., if for all b ∈ B there
existsa ∈ A with a � b. Moreover,< is a reflexive and transitive relation. We define
equivalence relation≈ byA ≈ B if and only ifA < B andB < A.

If A is such that every element ofA is dominated by some maximal element ofA
(for example, ifA is finite), thenA ≈ B if and only if max�(A) = max�(B).

Lemma 5 Let� be a partial order on setA, which satisfies MAX. Then

A ≈ B if and only ifmax�(A) = max�(B).

Lemma 6 LetA, B andC be subsets ofU , and letq be an element ofQ. Suppose that
A ≈ B. Then

(i) q ×A ≈ q ×B;

(ii) A+ C ≈ B + C;

4.2 The Equivalence Relation≡ Between Utility Sets

Throughout this section we assume a setU of order-of-magnitude utility values and
that� is a partial order onU which respects+ and respects×QU . We define relation
≡ on subsets ofU by: A ≡ B if and only if C(A) ≈ C(B), whereC(X) is the convex
closure of the subsetX ⊆ U .

The definition immediately implies that≡ is an equivalence relation, i.e., it is re-
flexive, symmetric and transitive, since≈ is an equivalence relation. Thus two sets of
utility values are considered equivalent if, for every convex combination of elements
of one, there is a convex combination of elements of the otherwhich is at least as good
(with respect to the partial order� onU ).

Proposition 2 For any subsetA ofU ,A ≡ R�(A) andA ≡ C(A). If A satisfies MAX
(in particular, if A is finite) thenA ≡ max�(A).

Proposition 3 If A andC(A) satisfy property MAX thenR(C(A)) = max�(C(A)) =
max�(C(max�(A)).

Combining this result with Lemma 5 gives:

Proposition 4 If A,B, C(A) andC(B) satisfy property MAX thenA ≡ B if and only
if max�(C(A)) = max�(C(B)).

Proposition 5 LetA, B andC be subsets ofU , and letq be an element ofQ. Suppose
thatA ≡ B. Then

(i) q ×A ≡ q ×B;

(ii) A+ C ≡ B + C;

(iii) A ∪ C ≡ B ∪ C.
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4.3 Generating Small Equivalent Sets

The key result in this section is Proposition 7, that impliesthat in the (partially ordered)
Order of Magnitude computation (OOM), one needs only to workwith sets of values
which have either one or two elements. The result refers to the equivalence relation≡
defined byA ≡ B if and only if C(A) ≈ C(B).

Consider two elements〈σ,m〉 and〈τ, n〉 in O, where we can assume, without loss
of generality, thatm ≤ n. Any convex combination of these two elements is of the
form 〈θ, l〉 wherel ∈ [m,n] and

if l < n thenθ = σ;

if l = n thenθ = σ ⊞ τ or θ = τ .

This means that convex sets are of a relatively simple form. In particular, it implies
that the convex combination of a finite number of non-zero elements is finite (since
every elementa in the convex combination haŝa restricted to be within a finite range),
and so, in particular, satisfies the important MAX property (see Definition 1 in Section
4.1). In fact, even if we allow the zero element〈±,∞〉, C(A) still satisfies MAX:1

Lemma 7 Let A be a finite subset ofO. ThenA and C(A) both satisfy the MAX
property

Lemma 7, Proposition 3, and Proposition 4 imply the following result, which gives
a simpler definition of equivalence.

Proposition 6 Let A and B be finite subsets ofO. ThenA ≡ B if and only if
max�(C(A)) = max�(C(B)). Also, max�(C(A)) = max�(C(max�(A)), and
max�(C(B)) = max�(C(max�(B)).

In fact, it turns out thatmax�(C(max�(A)) = C(max�(A)), and similarly forB.
To prove Proposition 7 below we use Lemmas 8 and 9.

Lemma 8 LetA be any subset ofO with max�(A) = A. Then there is at most one
elementa ∈ A with σ(a) 6= ±, i.e.., withσ(a) = + or −. Furthermore, Ifa ∈ A is
such thatσ(a) 6= ± then for all other elementsb ofA, b̂ < â.

Lemma 9 LetA be any finite subset ofO with max�(A) = A. Then either|A| = 1
or there exists somem,n ∈ Z with m < n andσ ∈ {+,−,±} such thatC(A) =
C({〈±,m〉, 〈σ, n〉}).

Proposition 7 LetA be any finite subset ofO. Then eitherA ≡ {a} for somea ∈ O,
or there exists somem,n ∈ Z with m < n and σ ∈ {+,−,±} such thatA ≡
{〈±,m〉, 〈σ, n〉}.

This implies that, when computing with pairs(q, A), in order to perform variable
elimination for OOM-based influence diagrams, we always replace setA by a setA′

which has either one or two elements, such thatA′ ≡ A. This affects the complexity
of the procedure, which is related to the size of setsA that are used in the computation.

1Even thoughC(A) is not necessarily finite: consider e.g.,C({〈±,∞〉, 〈−,m〉}) which includes all
elements〈−, n〉 with n ≥ m.
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5 Order-of-Magnitude Influence Diagrams

An order-of-magnitude influence diagram (OOM-ID) is a formalism for decision mak-
ing using imprecise probabilistic as well as imprecise utility information by consid-
ering an order-of-magnitude approximation of the probabilities and utilities, respec-
tively. Specifically, the graphical structure of anorder-of-magnitude influence diagram
is identical to that of a regular influence diagram, in terms of chance nodes, decision
nodes, value (or utility) nodes, as well as the dependency relationships among them.
However, the entries of the conditional probability tablesas well as of the utility func-
tions are represented as order-of-magnitudevalues, namely elements of the form〈σ, n〉,
wheren is an integer andσ ∈ {+,−,±} is the sign, respectively.

One can always approximate a regular influence diagram by an order-of-magnitude
influence diagram using the following conversion procedureof the exact probability
and utility values. This conversion which only maintains the order of magnitude of the
respective probability or utility value, is a way of capturing some degree of imprecision
and was also used previously by [14] in the context of Bayesian networks.

Given a point probability valuep ∈ [0, 1] and0 < ǫ ≤ 1, the corresponding order-
of-magnitude approximation is(+, n) where

n =

{

⌊logǫ p⌋ if 0 < p ≤ 1;
∞ if p = 0;

Similarly, given a point utility valueu ∈ R and0 < ǫ ≤ 1, the corresponding
order-of-magnitude approximation is:(σ, n) where

n =

{

⌈logǫ |u|⌉ if |u| ≥ 1;
⌊logǫ|u|⌋ if 0 < |u| < 1;
∞ if u = 0

and

σ =

{

+ if u ≥ 0;
− if u < 0;

Example 2 For illustration, Figure 2 shows the order-of-magnitude approximation of
conditional probability tables and utility (reward) components of the influence dia-
gram of Figure 1 forǫ = 0.1. For example, the OOM approximation of the point
probabilityP (A = 0|B = 0, E = 0) = 0.002 is computed as(+, ⌊log0.1 0.002⌋) =
(+, ⌊ log 0.002

log 0.1 ⌋) = (+, ⌊2.698⌋) = (0, 2). Similarly, the OOM approximation of the
point utility V (A = 0, D3 = 0) = −3000 is computed as(−, ⌈log0.1 3000⌉) =
(−, ⌈ log 3000

log 0.1 ⌉) = (−,−3).

Example 3 For ǫ = 0.1, the OOM approximation of the influence diagram in Example
1 has the following optimal policy with maximum expected utility (+,−1), which is
identical to the optimal policy of the original influence diagram:

δ(D1) = 0

11



Figure 2: Order-of-magnitude approximation of the influence diagram from Figure 1

δ(D2) =

{

1 if C = 0;
1 if C = 1;

δ(D3) =

{

1 if A = 0;
1 if A = 1;

For ǫ = 0.001, the OOM approximation of the influence diagram in Example 1 has
the following optimal policy with maximum expected utility(±, 0):

δ(D1) = {0, 1}

δ(D2) =

{

1 if C = 0;
{0, 1} if C = 1;

δ(D3) =

{

1 if A = 0;
1 if A = 1;

Note that in the latter case, both decision alternatives areallowed byδ(D1) and by
δ(D2) forC = 1, respectively. Namely, the more imprecise one is about the conditional
probabilities and/or utility values (corresponding to smaller ǫ values), the number of
undecided decision rules in the optimal policy of the OOM approximation increases.

In this case, the optimal strategy of the order-of-magnitude influence diagram is
represented by apolicy set∆s = {∆1,∆2,∆3,∆4} containing the following policies:

The policy∆1 = {δ1(D1), δ1(D2), δ1(D3)} is:

δ1(D1) = 0

δ1(D2) =

{

1 if C = 0;
0 if C = 1;

12



δ1(D3) =

{

1 if A = 0;
1 if A = 1;

The policy∆2 = {δ2(D1), δ2(D2), δ2(D3)} is:

δ2(D1) = 0

δ2(D2) =

{

1 if C = 0;
1 if C = 1;

δ2(D3) =

{

1 if A = 0;
1 if A = 1;

The policy∆3 = {δ3(D1), δ3(D2), δ3(D3)} is:

δ3(D1) = 1

δ3(D2) =

{

1 if C = 0;
0 if C = 1;

δ3(D3) =

{

1 if A = 0;
1 if A = 1;

The policy∆4 = {δ4(D1), δ4(D2), δ4(D3)} is:

δ4(D1) = 1

δ4(D2) =

{

1 if C = 0;
1 if C = 1;

δ4(D3) =

{

1 if A = 0;
1 if A = 1;

Notice that in the latter case, namelyǫ = 0.001, only ∆2 is equal to the opti-
mal policy of the original influence diagram. When we evaluated the policy set in the
original influence diagram we obtained the following expected utilities:

policy expected utility
∆1 -49.02544
∆2 78.19754
∆3 63.16252
∆4 63.18809

However, all four decision rules are optimal in the OOM influence diagram since
they are all of the same order of magnitude forǫ = 0.001, namely(±, 0).
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Algorithm 1 : Variable Elimination: ELIM-OOM-ID

Data: Order-of-magnitude influence diagram〈X,D,P,R〉, a legal elimination
ordering of the variableso.

Result: The optimal policy∆ = {δ1, ..., δl} that maximizes the expected utility.
/* initialize: partition functions into buckets */
create a setbuckets of sizen1

for p = n downto 1do2

let Xp be thepth variable in orderingo and associatebuckets[p] to Xp3

let Λp be the set of functions inP that containXp in their scope4

if Xp is a chance variablethen5

let Θp be the set of functions inR that containXp in their scope6

else ifXp is a decision variablethen7

let Θp be the set of remaining functions inR8

placeΛp into buckets[p] and updateP ← P − Λp9

placeΘp into buckets[p] and updateR← R− Θp10

/* top-down phase: eliminate variables */
for p = n downto 1do11

let Λp = {λ1, ..., λj} be probabilistic components inbuckets[p]12

let Θp = {θ1, ..., θk} be utility components inbuckets[p]13

if Xp is a chance variablethen14

λp ← ⊞Xp
⊠

j
i=1 λi15

θp ← ⊞Xp
((⊠j

i=1λi)⊠ (⊞k
j=1θj))16

θp ← θp ⊠ λ−1
p17

else ifXp is a decision variablethen18

if Λp = ∅ then19

θp ← ∨Xp
⊞k

j=1 θj20

else21

λp ← ∨Xp
((⊠j

i=1λi)⊠ (⊞k
j=1θj))22

placeλp in the bucket of the largest-index variable in its scope23

placeθp in the closest chance bucket of a variable in its scope or in the24

closest decision bucket
/* bottom-up phase: compute optimal policy */
∆← ∅25

for p = 1 to n do26

if Xp is a decision variablethen27

let Λp = {λ1, ..., λj} be probabilistic components inbuckets[p]28

let Θp = {θ1, ..., θk} be utility components inbuckets[p]29

δp ← argmaxXp
((⊠j

i=1λi)⊠ (⊞k
j=1θj))30

∆← ∆ ∪ δp31

return ∆32
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6 Variable Elimination for Order-of-Magnitude Influ-
ence Diagrams

A variable elimination procedure for computing the optimalpolicy of an order-of-
magnitude influence diagram is described by Algorithm 1. Given a legal elimination
ordering of the variables, the algorithm constructs a bucket structure calledbuckets
where each bucket is associated with a single variable. The input probability and util-
ity functions are then partitioned into the buckets as follows. Each probability function
is placed in the bucket of its argument that appears latest inthe ordering. A utility func-
tion is placed in the bucket of its highest chance variable inits scope or in the bucket
of the highest decision variable in the ordering (lines 1–10). The algorithm has two
phases.

During the first, top-down phase, it processes each bucket, from the last variable to
the first. Each bucket containing utility componentsΘp = {θ1, ..., θk} and probabil-
ity componentsΛp = {λ1, ..., λj}, respectively, is processed by a variable elimination
procedure that computes new probability and utility components which are placed in
lower buckets (lines 11–24). The algorithm generates theλp of a bucket by combin-
ing all probability components and eliminating the bucket variable. Theθp of a chance
variableXp is computed as the average utility of the bucket, normalizedby the bucket’s
compiledλp. For a decision variable we compute aλp component by∨-maximization,
and simplify when no probabilistic components appear in thedecision bucket. We note
therefore that processing a decision variable does not in general allow exploiting a de-
composition in the utility components. The procedure uses the following combination
and elimination operators:

• ⊠-combination:λ1 ⊠ λ2 ≡ λ1 × λ2

• ⊞-combination:θ1 ⊞ θ2 ≡ θ1 + θ2

• ⊠-combination:λ⊠ θ ≡ λ× θ

• ⊞-elimination:⊠X ≡
∑

X

• ∨-elimination: this is the closure defined in the previous sections. Note the
the∨-elimination becomes the regularmax when we consider totally ordered
order-of-magnitude values (i.e., SLOOM/SUOOM simplified calculus), and is
the max marginalization over partially ordered sets of order-of-magnitude values
when we consider OOM calculus with both positive and negative utility values.

In the second, bottom-up phase, the algorithm computes the optimal policy or the
set of decision rules for each decision variable. The decision buckets are processed in
reversed order, from the first variable to the last (thus taking into account the temporal
order of the decision induced by the influence diagram). Eachdecision rule is computed
by the argument of the∨-elimination operator applied over the combination of the
probability and utility components in the respective bucket (including original as well
as intermediate functions). We note that the scope of the decision rule (also called its
domain) is the union of the scopes of all functions in the that bucketminus the bucket
variable.
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7 Empirical Evaluation

In this section, we evaluate empirically the quality of the decision policies produced by
the order-of-magnitude approximation of influence diagrams.

7.1 Random problem generator

We experimented with random problems using the following parametric model. A
random influence diagram class is defined by〈nc, nd, u, kc, kd, p, r, a〉 wherenc is the
number of chance variables,nd is the number of decision variables (usually,nd ≪ nc),
u is the number of utility (or reward) components,kc is the domain size of the chance
variables,kd is the domain size of the decision variables,p is the number of parents for
each of the chance or decision variables,r is the number of root variables (without any
parents) anda is the arity of the utility components.

The structure of the influence diagram is created by randomlypickingnc + nd − r
variables out ofnc+nd and, for each, randomly selectingp parents from their preceding
variables, relative to some ordering. We also ensure that the decision variables are
connected by a directed path in the resulting directed acyclic graph. Then,u utility
nodes are added to the graph, each one havinga parents selected randomly from the set
of chance and decision nodes. The fraction of chance nodes that are assigned extreme
CPTs is a parameter, called theextreme ratioand denoted bye, respectively. The CPTs
of these nodes were filled with numbers between(10−5, 10−4) ensuring that they are
properly normalized; in the remaining chance nodes, the CPTs were randomly filled
using a uniform distribution between 0 and 1. The table of each utility component was
filled with integersv of the form:

v =







10i if i > 0;
−10i if i < 0;
0 if i = 0;

wherei is an integer uniformly distributed at random in the interval [a, b], with a, b ∈ Z.

7.2 Measures of performance

In order to measure the quality of the optimal policies computed in the order-of-
magnitude influence diagrams we consider the following scenario.

Let I be a regular influence diagram and letIǫ be its order-of-magnitude approx-
imation for some value ofǫ obtained using the conversion procedure outlined before.
Let ∆∗(I) be the optimal policy ofI and letE∗(I) be its maximum expected util-
ity, respectively. Also, let∆∗(Iǫ) = {∆∗

1(Iǫ),∆
∗
2(Iǫ), ...,∆

∗
m(Iǫ)} be the policy

set ofIǫ. We then draw a subset of policies∆∗
s(Iǫ) = {∆∗

i1
(Iǫ), ...,∆∗

in
(Iǫ)} uni-

formly at random out of∆∗(Iǫ) and for each policy∆∗
ij
(Iǫ) ∈ D∗

s(Iǫ) we compute
its corresponding expected utilityE∗

ij
(Iǫ) in the original influence diagramI. Let

Es = {E∗
i1
(Iǫ), ..., E∗

in
(Iǫ)} and we denote byE∗

avg(Iǫ) be the average expected util-
ity over the sample setEs.

We define next the average relative error (should get a betterword) as follows:
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REOOM
avg =

|E∗(I)− E∗
avg(Iǫ)|

|E∗(I)|
· 100

Similarly, we can define the minimum, maximum and median relative errors:

REOOM
min =

|E∗(I) − E∗
min(Iǫ)|

|E∗(I)|
· 100

REOOM
max =

|E∗(I)− E∗
max(Iǫ)|

|E∗(I)|
· 100

REOOM
med =

|E∗(I) − E∗
med(Iǫ)|

|E∗(I)|
· 100

whereE∗
min(Iǫ), E

∗
max(Iǫ) andE∗

med(Iǫ) are the minimum, maximum and the me-
dian expected utility over the sample setEs, respectively.

In the following subsection we will useREOOM
avg (resp. REOOM

min , REOOM
max and

REOOM
med ) to characterize the quality of the order-of-magnitude decision policies with

respect to the optimal decision policy of the correspondingregular influence diagram.

7.3 Results

7.3.1 Influence diagrams with positive utilities

We generated a set of random influence diagrams using the random model generator
with parameters〈nc, nd = 5, u = 1, p = 2, r = 2, a = 5, e〉 while varying the
number of chance variablesnc and the extreme ratioe, respectively. Each problem
instance hadnd = 5 decision variables,u = 1 utility nodes andr = 2 variables were
selected randomly as roots from the set of chance and decision variables. Each of the
remaining chance and decision variables hadp = 2 parents, while the cost function
corresponding to the utility node had an arity ofa = 5. The extreme probabilities
were distributed according to the extreme ratioe which we varied between0 and0.95,
respectively. The utility function contained only positive utility values which were
generated uniformly randomly using the interval[a = 0, b = 5] (see previous sections
again for a refreshment). In all test cases we considered a sample setEs of 100 decision
policies drawn uniformly at random from the policy set of therespective order-of-
magnitude influence diagram.

Figures 3(a)-(e) display the relative errorREOOM
avg as a function of the problem size

(which is given by the total number of variables), for five levels of the extreme ratio
e ∈ {0, 0.25, 0.50, 0.75, 0.95}. Each data point in each of the plots represents the me-
dian value obtained for 10 random instances of the respective size. We conducted three
sets of experiments forǫ = 0.5, ǫ = 0.05 andǫ = 0.005, respectively. Informally, the
smaller theǫ value is, the more imprecise one is about the corresponding probability
and utility values. Each experiment involved settingǫ, evaluating the original influ-
ence diagram, translating the influence diagram into an order-of-magnitude influence
diagram using the procedure from a previous section, and then evaluating the resulting
order-of-magnitude influence diagram using the ELIM-OOM-ID algorithm.
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Figure 3: Results for influence diagrams with positive utility values. Shown is the rel-
ative errorREOOM

avg of the OOM policies forǫ ∈ {0.5, 0.05, 0.005} and extreme ratio
e ∈ {0%, 25%, 50%, 75%, 95%}. Average treewidth is between 8 and 23, respectively.
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When ǫ = 0.5, the relative errorREOOM
avg is the smallest, ranging between 8%

and 13% fore = 0 (see Figure 3(a)), between 8% and 16% fore = 0.25 (see Figure
3(b)), between 8% and 17% fore = 0.50 (see Figure 3(c)), between 7% and 14% for
e = 0.75 (see Figure 3(d)) and between 0.06% and 9% fore = 0.95 (see Figure 3(e)),
respectively.

Whenǫ = 0.05, the relative errorREOOM
avg is larger, ranging between 13% and

31% for e = 0 (see Figure 3(a)), between 17% and 34% fore = 0.25 (see Figure
3(b)), between 20% and 42% fore = 0.50 (see Figure 3(c)), between 21% and 32%
for e = 0.75 (see Figure 3(d)) and between 0.4% and 15% fore = 0.95 (see Figure
3(e)), respectively.

Whenǫ = 0.005, the relative errorREOOM
avg is the largest, ranging between 15%

and 41% fore = 0 (see Figure 3(a)), between 24% and 46% fore = 0.25 (see Figure
3(b)), between 28% and 55% fore = 0.50 (see Figure 3(c)), between 30% and 46% for
e = 0.75 (see Figure 3(d)) and between 8% and 44% fore = 0.95 (see Figure 3(e)),
respectively.

Note that the results obtained for the other two error measures, REOOM
max and

REOOM
med , respectively, follow the same pattern (results to be included). Namely, the

error was the smallest forǫ = 0.5 and it was the largest forǫ = 0.005.
Figures 4(a)-(e) display all four error measures, namelyREOOM

avg ,REOOM
med ,REOOM

min

andREOOM
max , as a function of the problem size fore ∈ {0, 0.25, 0.50, 0.75, 0.95} and

ǫ = 0.5, respectively. We can see thatREOOM
max is virtually zero especially for problems

with a relatively large ratio of extreme probabilities (fore > 0.5 see Figures 4(c)-(e)).
This means that the decision policy with maximum expected utility over the sample set
Es generated from the order-of-magnitude influence diagram for ǫ = 0.5 was in most
of the test cases identical to the optimal policy of the corresponding regular influence
diagram. Furthermore, we can also see that onREOOM

avg stayed below 20% in all cases,
which means that on average the order-of-magnitude decision policy was at most 20%
off of the optimal policy of the corresponding regular influence diagram. Finally, we
observed that for smaller values ofǫ, the results follow a similar pattern, however the
errors were significantly larger than those obtained for theǫ = 0.5 case (results for
ǫ = 0.05 andǫ = 0.005 to be included as soon as they become available).

7.3.2 Influence diagrams with positive and negative utilities

For this experiment we generated random influence diagrams with the same parameters
as before, except that in this case the utility values were generated uniformly randomly
using the interval[a = −5, b = 5], thus allowing for negative utility values as well (see
again the model generator description for a refreshment).

Figures 5(a)-(e) display the relative errorREOOM
avg as a function of the problem

size (which is given by the total number of variables), for five levels of the extreme
ratioe ∈ {0, 0.25, 0.50, 0.75, 0.95}. Each data point in each of the plots represents the
median value obtained for 10 random instances of the respective size. As before, we
have three sets of experiments forǫ = 0.5, ǫ = 0.05 andǫ = 0.005, respectively.

As before, we can see that the relative errorREOOM
avg is the smallest forǫ = 0.5

and it is the largest forǫ = 0.005, respectively. Note that in this case the differ-
ences between the different relative errors correspondingto different values ofǫ are
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Figure 4: Results for influence diagrams with positive utility values. Shown are the
relative errorsREOOM

avg , REOOM
med , REOOM

min andREOOM
max of the OOM policies for

ǫ = 0.5 and extreme ratioe ∈ {0%, 25%, 50%, 75%, 95%}. Average treewidth is
between 8 and 23, respectively.

20



random IDs with e=0%

m
e
d

ia
n

 R
E
-A

V
G

-O
O

M
-P

O
L
IC

Y
 (

%
)

101

102

103103

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

(a)

random IDs with e=25%

m
e
d

ia
n

 R
E
-A

V
G

-O
O

M
-P

O
L
IC

Y
 (

%
)

100

101

102

103103

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

(b)
random IDs with e=50%

m
e
d

ia
n

 R
E
-A

V
G

-O
O

M
-P

O
L
IC

Y
 (

%
)

10-1

100

101

102

103103

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

(c)

random IDs with e=75%
m

e
d

ia
n

 R
E
-A

V
G

-O
O

M
-P

O
L
IC

Y
 (

%
)

101

102

103103

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

(d)
random IDs with e=95%

m
e
d

ia
n

 R
E
-A

V
G

-O
O

M
-P

O
L
IC

Y
 (

%
)

10-2

10-1

100

101

102

103103

variables

10 20 30 40 50 60 70

ε=0.5

ε=0.05

ε=0.005

(e)

Figure 5: Results for influence diagrams with positive and negative utility values.
Shown is the relative error of the OOM policies forǫ ∈ {0.5, 0.05, 0.005} and ex-
treme ratioe ∈ {0%, 25%, 50%, 75%, 95%}. Average treewidth is between 8 and 23,
respectively.
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much more pronounced than those observed in the previous experiment, in many cases
reaching two or more orders of magnitude (notice the logarithmic scale). For example,
on problems with 35 variables and extreme ratioe = 0.95 (Figure 5(e)), the relative
errorREOOM

avg for ǫ = 0.5 is about 2 and 4 orders of magnitude smaller than that for
ǫ = 0.05 andǫ = 0.005, respectively.

Whenǫ = 0.5, we can see that the relative error is virtually zero, especially for
e = 0.95. In this case,REOOM

avg ranges between 0.006% and 0.02%, respectively (see
Figure 5(e)). However, when the extreme ratio decreases, the relative error increases.
Specifically, fore = 0.75 the error is between 1% and 36% (see Figure 5(d)), for
e = 0.50 the error is between 0.05% and 24% (see Figure 5(c)), fore = 0.25 the error
is between 1% and 25% (see Figure 5(b)) and fore = 0 the error is between 2% and
30% (see Figure 5(a)), respectively.

Whenǫ = 0.05 andǫ = 0.005, the relative errorREOOM
avg is much higher spanning

over several orders of magnitude as compared with the previous case (ǫ = 0.5).
Figures 6(a)-(e) display all four error measures, namelyREOOM

avg ,REOOM
med ,REOOM

min

andREOOM
max , as a function of the problem size, fore ∈ {0, 0.25, 0.50, 0.75, 0.95}and

ǫ = 0.5, respectively. As before, we can see that on problems with extreme ratio
greater than 50%,REOOM

max is very close zero (see Figures 6(c)-(e)). Whene < 0.50,
REOOM

max is larger, reaching a as much as 14% on some problems withe = 0.25 (see
Figure 6(b)). When looking at the average order-of-magnitude policies, we see that
REOOM

avg is below 0.02% on problems withe = 0.95, and increases up to 30% on
problems withe ∈ {0, 0.25, 0.50, 0.75}, respectively. This demonstrates again the
robustness of the order-of-magnitude approximation for relatively large values ofǫ.
Whenǫ is small (typically less than 0.05), the relative error to the optimal policy of
the corresponding regular influence diagram increases dramatically and therefore the
quality of the order-of-magnitude policy degrades significantly.

7.3.3 Influence diagrams with negative utilities

Figures 7(a)-(e) display the relative errorREOOM
avg as a function of the problem size

(which is given by the total number of variables), for five levels of the extreme ratio
e ∈ {0, 0.25, 0.50, 0.75, 0.95}. Each data point in each of the plots represents the
median value obtained for 10 random instances of the respective size. As before, we
have three sets of experiments forǫ = 0.5, ǫ = 0.05 andǫ = 0.005, respectively.

Figures 8(a)-(e) display all four error meaures, namelyREOOM
avg ,REOOM

med ,REOOM
min

andREOOM
max , as a function of the problem size, fore ∈ {0, 0.25, 0.50, 0.75, 0.95}and

ǫ = 0.5, respectively. As before, we can see that on problems with extreme ratio
greater than 50%,REOOM

max is very close zero (see Figures 8(c)-(e)). On the other
hand,REOOM

avg on average spans one or two orders of magnitude across all reported
values ofe andǫ, respectively.

8 Conclusion and Future Work

The paper presents a new framework for qualitative sequential decision making un-
der uncertainty based on an Order-of-Magnitude representation of probabilities and
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Figure 6: Results for influence diagrams with positive and negative utility values.
Shown are the relative errorsREOOM

avg , REOOM
med , REOOM

min andREOOM
max of the OOM

policies for ǫ = 0.5 and extreme ratioe ∈ {0%, 25%, 50%, 75%, 95%}. Average
treewidth is between 8 and 23, respectively.
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Figure 7: Results for influence diagrams with negative utility values. Shown is the
relative error of the OOM policies forǫ ∈ {0.5, 0.05, 0.005} and extreme ratioe ∈
{0%, 25%, 50%, 75%, 95%}. Average treewidth is between 8 and 23, respectively.
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Figure 8: Results for influence diagrams with negative utility values. Shown are the
relative errorsREOOM

avg , REOOM
med , REOOM

min andREOOM
max of the OOM policies for

ǫ = 0.5 and extreme ratioe ∈ {0%, 25%, 50%, 75%, 95%}. Average treewidth is
between 8 and 23, respectively.
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utilities. In particular, we introduce the Order-of-Magnitude Influence diagrams that
extend the usual influence diagrams by replacing the point probability and utility val-
ues by order-of-magnitude probability and utility values,respectively. We also derive a
sound variable elimination algorithm for computing an optimal policy that maximizes
the order-of-magnitude expected utility. Numerical experiments on random influence
diagrams show that in many cases the optimal policy of an order-of-magnitude in-
fluence diagram is almost identical to the optimal policy of acorresponding regular
influence diagram.

Future work includes the computation of the optimal policy using depth-first or
best-first heuristic search over a weighted AND/OR search graph associated with an
order-of-magnitude influence diagram. In this direction wealso plan to compile the
policy set of an order of magnitude influence diagram into a multi-valued AND/OR
decision diagram (AOMDD) to support sensitivity analysis tasks.
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