
RC25115 (W1011-164) November 30, 2010
Computer Science

IBM Research Report

A Flexible Solutions Methodology for Resource Allocation with
Applications to Sensor Network Operations

Srikanth Hariharan
ECE Department

The Ohio State University
Columbus, OH 43210

Chatschik Bisdikian
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Lance M. Kaplan, Tien Pham
U.S. Army Research Laboratory

Adelphi, MD 20783

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Flexible Solutions Methodology for Resource Allocation
with Applications to Sensor Network Operations∗

Srikanth Hariharan
†

Chatschik Bisdikian
‡

Lance M. Kaplan,

Tien Pham
§

ABSTRACT
Motivated by the need to judiciously allocate scarce sensing
resources to attain the highest benefit for the applications
that sensor networks serve, in this paper, we develop a flex-
ible solutions methodology for maximizing the overall re-
ward attained subject to constraints on the resource demands
under fairly general reward or demand functions. We map a
broad class of related problems into an integer programming
problem and provide an iterative Lagrangian relaxation tech-
nique to solve it. Each iteration step involves solving for a
maximum weight independent set of an appropriately con-
structed graph, which, in many cases, can be obtained in
polynomial time. We apply our methodology to the prob-
lem of tracking targets moving over a period of time through
a non-homogeneous, energy-constrained sensor field. With
rewards represented by the quality of information attained in
tracking, we study its trade-offs and relationship with energy
consumption and periodic measurement taking. We further
illustrate how to apply our methodology to an entirely differ-
ent problem of how an unmanned air vehicle must traverse
through a network of unattended ground sensors such that
it maximizes the information collected from these sensors
under delay constrains.

1. INTRODUCTION
In a wireless sensor network, sensors with multiple

modalities can be used to estimate a variety of features
∗Research was sponsored by the US Army Research Lab-
oratory and was accomplished under Agreement Number
W911NF-06-3-0002-P00013. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the US Army Research
Laboratory, or the U.S. Government. The US Government
is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation
hereon.
†Srikanth is with the ECE Dept., The Ohio State University,
Columbus, OH 43210, USA, harihars@ece.osu.edu.
‡Chatschik is with the IBM T. J. Watson Research Center,
Hawthorne, NY 10532, USA, bisdik@us.ibm.com.
§Lance and Tien are with the U.S. Army Re-
search Laboratory, Adelphi, MD 20783, USA,
{lance.m.kaplan,tien.pham1}@us.army.mil.

from objects of interest. For example, in target track-
ing, a radar can be employed to estimate the location
and velocity of a target, while an imaging sensor can
be employed to estimate its physical dimensions. Fur-
thermore, fusing the information collected from the dif-
ferent modalities provide us with a more complete and
accurate description providing a richer quality of in-
formation (QoI) [3], such as reducing the uncertainties
regarding the tracks of the targets sensed.

Sensor networks can potentially perform multiple sens-
ing and processing tasks at will. However, due to their
limited bandwidth, energy, and computing resources,
it becomes imperative to design and operate them in a
way that is respectful of these limitations by judiciously
allocating their resources to the tasks at hand. It is,
thus, a goal of our work to develop a flexible solutions
methodology (the “framework”) for maximizing the re-
ward obtained by allocating resources to tasks subject
to constraints on the resource demands.

Resource allocation problems are typical applications
of integer programming [4] and our framework falls in
this category. However, with our interest to the prob-
lem rooted in sensor networks, our framework specifi-
cally focus on ensuring that the reward that is obtained
by, say, fusing information from multiple sources can
be represented as a general function of the rewards ob-
tained from individual sources. This is of particular
importance in heterogeneous, and multi-modal sensor
networks. For example, the reward obtained by fus-
ing information from an imagery sensor (e.g., camera)
and an acoustic sensor may not be a sum (or even a
weighted sum) of the rewards obtained by the indi-
vidual sensors. Further, our framework takes into ac-
count demand constraints from non-homogeneous sen-
sors, where, for example, a camera may require more
energy than an acoustic sensor.

We show that without demand constraints, the prob-
lems at hand map to maximum weight independent set
problems. Though, in general, these problems are NP-
Hard, we also show that we can find such sets in poly-
nomial time in a number of cases because of the struc-
tures of the graphs in which they are obtained. When

1

demand constraints are present, a particularly challeng-
ing problem in integer programming, we use Lagrange
multipliers to formulate the dual problem and provide
an iterative solution, which again involves maximum
weight independent sets.

Our framework constitutes a novel and flexible use of
a Lagrangian-based integer programming solution method-
ology to sensor networks, where it finds a number of
applications. We study two such (entirely different)
applications, a multi-target tracking case, and a case
where an unmanned air vehicle (UAV) traverses a sensor
network collecting information from unattended ground
sensors (UGSs). Our framework can be directly ap-
plied to the multi-target tracking problem, and we ex-
tensively study the convergence properties of our algo-
rithms, and the trade-offs between the QoI and a num-
ber of system parameters such as the energy utilized
by the system, the period of sensing, and the number
of sensors. For the UAV case, we show how a minor
modification of our framework results in a problem that
maximizes the information collected from the UGS sub-
ject to deadline constraints. This modified framework
allows the UAV to visit a sensor multiple times before
the deadline, and also a reward function that allows a
general relationship between the amount of information
possessed by a sensor, and the delay for the UAV to col-
lect information from it.

Considering the operation of a system over slotted
time, our main contributions in this paper are:

• the development of a general integer programming
framework for allocating a constrained pool of re-
sources to one or more tasks in each slot, with a
system-level reward function comprising a general
function of the rewards from individual resources
for each task;

• the use of the framework to model a class of prob-
lems as a maximum weight independent set prob-
lem having a polynomial complexity for a large
number of cases;

• an iterative solution for the integer programming
problem using a primal-dual gradient projection
algorithm;

• the application of the framework to the efficient
operation of sensor networks including multi-target
tracking with non-homogeneous sensors, and delay-
constrained, flight-path scheduling of a UAV col-
lecting data from UGSs; and

• extensive performance, simulation, and trade-off
evaluation while tuning system parameters for im-
proving the QoI for the multi-target tracking prob-
lem.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the system model. In Section 3,
we put forth our framework for assigning resources to
multiple tasks. In Section 4, we develop an iterative al-
gorithm to solve the problems formulated in Section 3,
and discuss analytical results on optimality and con-
vergence. In Section 5, we quantify our analytical re-
sults through extensive numerical evaluations for the
multi-target tracking problem. In Section 6, we provide
various additional applications of our framework, and
detail the case of the UAV collecting information from
UGSs in a delay-constrained manner. In Section 7, we
discuss related work and finish in Section 8 with some
concluding remarks.

2. SYSTEM MODEL
We consider a system comprising a pool of resources

S of size N and a pool of tasks T of size M , where a
group of resources from S is allocated to perform (or
service) a group of tasks from T . Each such allocation
has a demand and a reward associated with it, where for
example, the demand could represent the energy con-
sumed by a group of sensors (the resources) for tracking
a group of targets (the tasks). The reward could repre-
sent the QoI, e.g., the variance of the tracking estima-
tors obtained by such an allocation. Various objectives
and constraints may be considered such as maximizing
the total reward subject to a constraint on the total
demand, or minimizing the total demand subject to a
constraint on the total reward. There could also be ad-
ditional constraints such as a particular group of tasks
must obtain at least a certain amount of reward.

For the case of sensor networks, we further consider
time-slotted operation with resource allocations occur-
ring at each slot. In this case, we refer to the time slots
during which a sensor takes measurements as sampling
instants or sampling periods. An example of our system
model for a target tracking application is provided in
Figure 1. The black sensors track multiple targets dur-
ing the same sampling instant, the blue sensors track
only one target, and the red sensor tracks no targets
during that sampling instant.

3. PROBLEM MODEL AND FRAMEWORK
In this section, we start with a general problem for-

mulation and in the next section we present its solu-
tions methodology. We consider two problem models,
a task-oriented model (TOM), and a resource-oriented
model (ROM) and discuss the applicability conditions
for each. We then describe a number of extensions that
these models can handle. In this (and the next) section,
we focus on allocations happening in a single time slot
only, and, hence, no time index will be used. In later
sections, we consider applications of these models on
sensing systems running over a number of slots.

2

Figure 1: Model

3.1 Task-Oriented Model (TOM)
According to this model, a task is assigned to a group

of resources. Specifically, for each task i ∈ T , i =
1, . . . ,M , we associate a collection of sets Ki that rep-
resents the possible groups of resources that can be as-
signed simultaneously to that task. Let Ki = {Ki

1,K
i
2, . . . ,K

i
mi
}

where for each l ∈ {1, . . . ,mi}, Ki
l ⊆ {0} ∪ S. The “0”

element represents the case that task i is not assigned
to any resource (during a slot). Clearly, the “0” element
can be a member of only one of the sets in Ki and that
set must be a singleton. The introduction of the {0} set
in Ki allows us to explicitly model the penalty for not
assigning task i to any resource.

For each i ∈ T , and j ∈ Ki, we define xij to be the
assignment indicator variable:

xij =

 1, if task i is assigned to all (and only)
the resources in the set j; and

0, otherwise.
(1)

Let qij represent the reward obtained from task i when
xij = 1 holds true, i.e., when task i is assigned to (and
serviced by) all the resources in the set j ∈ Ki (and
only in this set). Likewise, let eij denote the resource
demand for task i when xij = 1 holds true, and let e
be the total demand constraint on the system. Now the
optimization problem ΠT for TOM can be formulated
as follows:

Problem ΠT:

maximize
∑
i∈T

∑
j∈Ki

qijxij s.t. (1)
∑
j∈Ki

xij = 1 for each i ∈ T ;

(2)
∑
i∈T

∑
j∈Ki

eijxij ≤ e; and

(3) xij ∈ {0, 1}. (2)

The objective of ΠT is to maximize the sum of the
rewards obtained by all the tasks in the system. Con-
straint (1) is a matching constraint and it states that

each task i must be assigned to exactly one of the sets
of resources in Ki, which by construction contains all
permissible alternatives for assigning task i to the re-
sources (even the {0} set). Note that the reward qij
obtained when resources in the set j ∈ Ki perform task
i can be an arbitrary function of the rewards obtained
from each resource separately. Constraint (2) is the de-
mand constraint. This constraint implies that if a single
resource is assigned to multiple tasks, the total demand
required by this resource must be the sum of the in-
dividual demands for performing each task. Therefore,
the demand function cannot be arbitrarily chosen here.

When considering sensor networks, because of the
aforementioned arbitrary relationship between qij and
the per-resource rewards, TOM can be used even when,
say, the QoI (the reward) attained by fusing information
from multiple sensors (the resources) is not restricted to
be the sum of the individual QoIs as was the case in [9],
[15]. For this reason, we may also refer to this model
as the Fusion-Oriented Model. This objective function
also allows modeling correlations among sensor read-
ings related to the same task, such as a specific target
in multi-target tracking.

3.2 Resource-Oriented Model (ROM)
According to this model, a resource is assigned to

a group of tasks. In analogy to TOM, for each re-
source i ∈ S, i = 1, . . . , N , we associate a collection of
sets Ji that represents the possible groups of tasks that
can be assigned simultaneously to the resource. Let
Ji = {J i1, J i2, . . . , J ini

} where for each l ∈ {1, . . . , ni},
J il ⊆ {0} ∪ T . The “0” element represents the case
that resource i is not assigned to any task. Clearly, the
“0” element can be a member of only one of the sets in
Ji and that set must be a singleton. The introduction
of the {0} set in Ji allows us to explicitly model the
penalty for not assigning resource i to any task.

Defining xij , qij , and eij correspondingly to their
TOM counterparts, the optimization problem ΠS for
ROM can be formulated as follows:

Problem ΠS:

maximize
∑
i∈S

∑
j∈Ji

qijxij s.t. (1)
∑
j∈Ji

xij = 1 for each i ∈ S;

(2)
∑
i∈S

∑
j∈Ji

eijxij ≤ e; and

(3) xij ∈ {0, 1}. (3)

While TOM and ROM appear structurally identical,
there are important semantic differences between the
two. For instance, with ROM, the demand required by
a resource when assigned to multiple tasks can be an
arbitrary function of the demand required for individ-
ual tasks. This can be easily seen from the fact that
we associate a separate demand eij for every different

3

set j of tasks to which resource i is assigned. This can
cover cases, where, for example, an acoustic sensor may
not require any additional energy to track more targets
in its vicinity, but a radar might need to use more en-
ergy to track multiple targets. This aspect is captured
by this constraint, and for this reason, we also refer
to this model as the Demand-Oriented Model. On the
other hand, ROM can only model the overall reward ob-
tained from a task as the sum of the individual rewards
from each resource that is assigned to it. Therefore,
the use of this model is not recommended when, say, a
fusion function for information from multiple sensors is
arbitrary.

Table 1 summarizes the differences between these mod-
els. Note that due to their respective structures, TOM
can accommodate correlations in the rewards obtained
from each resource assigned to a given task, while ROM
can accommodate correlations in the rewards obtained
by each task performed by a given resource.

Attribute TOM ROM
Reward Arbitrary Sum
Demand Sum Arbitrary

Correlations Among resources Among tasks for
for a given task a given resource

Table 1: Differences between the task (TOM)
and resource (ROM) oriented models

Note that the analyses developed in [15], [6], [10] are
all special cases of the frameworks developed in this
section.

3.3 Extensions
We focus on TOM here; similar extensions can be

made for ROM as well.

A resource can perform only one task but a task
can be serviced by multiple resources

We can model this constrained problem by including
the following linear constraint in problem ΠT :

for each resource k ∈ S,
∑
i∈T

∑
{j∈Ki:k∈j}

xij ≤ 1 (4)

The meaning of this constraint is that for all sets j for
which a given resource k is a part of, at most one of the
resource assignment indicators xij can equal 1. How-
ever, it is possible that multiple tasks are not assigned
to any resource. So k = 0 is not included in this con-
straint. We study this extension in our multi-target
tracking application example in Section 5.

Minimize the total demand subject to minimum
reward q

This problem is the dual problem of ΠT . The solution
to this problem can be found by combining a binary

search to the solution of ΠT . The algorithm is given
below.

1. Initialize eleft = 0 and eright = emax, where emax
is the maximum demand required by the system
(when all the resources are used). Set e = 1

2 (eleft+
eright).

2. Solve ΠT with demand constraint e. If the reward
obtained is greater than q, set eright = e; else, set
eleft = e. Set e = 1

2 (eleft + eright).

3. Repeat Step 2 until eright − eleft is less than a
threshold.

The reason this algorithm minimizes the total demand
is because the objective function of ΠT cannot decrease
as the amount of resources used by the system increases.

Guarantee that certain tasks achieve at least a
given minimum reward

Suppose that task i requires a reward of at least q.
The solution to this problem is the following.

1. For each j ∈ Ki, if qij < q, set xij = 0.

2. Solve ΠT with this modification.

Since with TOM, the reward obtained by a task is ex-
plicitly given by the set j ∈ Ki assigned to it, by remov-
ing the sets that provide a reward that is lower than
the constraint, we can guarantee a minimum reward for
that task.

Guarantee that certain resources satisfy a given
maximum demand

Suppose that resource k can satisfy a demand of at
most ek. This can be modeled by the following linear
constraint: ∑

i∈T

∑
{j∈Ki:k∈j}

xije
(k)
ij ≤ ek, (5)

where e
(k)
ij is an arbitrary function of eij representing

the demand contribution of resource k in the set j of
sensors. Note that eij represents the demand required
by all the resources in the set j to perform the task

i: eij =
∑
l∈j e

(l)
ij . Individual resources could have re-

quired less demand. This problem can be solved in the
same manner (using a Lagrange multiplier for this con-
straint) as ΠT is solved in the next section.

4. SOLUTIONS METHODOLOGY
In this section, we develop iterative algorithms for

problems ΠS and ΠT , and discuss optimality and con-
vergence results. We first find the optimal solution for
the problem without demand constraints. Then, we use
this to find an optimal solution for the problem with de-
mand constraints.

4

4.1 Without Demand Constraints
We show that an optimal solution can be obtained

by finding a maximum weight independent set. An in-
dependent set in a graph is a set of nodes no two of
which have an edge between them. A maximum weight
independent set is an independent set with maximum
total weight of nodes. Finding a maximum weight in-
dependent set in a general graph is NP-Hard–it follows
from the fact that finding a maximum clique in a gen-
eral graph is NP-Hard [11]. Nonetheless, in many of our
cases, due to the structure of the graphs involved, it is
not NP-Hard to find such a set.

Theorem 4.1. Optimal solutions to the problems ΠS

and ΠT (without demand constraints) can be obtained
by finding a maximum weight independent set in the
graph G constructed as follows:

• for each variable xij, create a node (i, j) in G;

• for each node (i, j) in G, associate a weight qij;
and

• for every two nodes (i1, j1) and (i2, j2), create an
edge between them if and only if i1 = i2.

Proof. From the above construction, two nodes (i1, j1)
and (i2, j2) in G can both be in an independent set of
G if and only if i1 6= i2. This implies that the variables
xi1j1 and xi2j2 can both equal 1 simultaneously if and
only if i1 6= i2. Therefore, for TOM, an independent set
cannot consist of any two nodes in G that correspond to
the same task. Similarly, for ROM, an independent set
cannot consist of any two nodes in G that correspond to
the same resource. Thus, the constraints are satisfied.

Since by finding a maximum weight independent set,
we maximize

∑
i∈T

∑
j∈Ki

qijxij for TOM, and
∑
i∈S
∑
j∈Ji qijxij

for ROM, while satisfying the constraints, this maxi-
mum weight independent set provides an optimal so-
lution to both problems ΠS and ΠT (without demand
constraints).

Corollary 4.1. When a resource can perform only
one task (in a given time slot), an optimal solution to
TOM (without demand constraints) can be obtained by
finding a maximum weight independent set in the graph
H, where H is constructed as follows:

• construct G as in Theorem 4.1; and

• for any two nodes (i1, j1) and (i2, j2) where {0} /∈
j1 and {0} /∈ j2, create an edge between them if
and only if j1 ∩ j2 6= ∅.

Proof. In the case where a resource can perform
only one task, we have all the original constraints in
problem ΠT (apart from the demand constraint), and
the additional constraint given in (4). G represents all
the constraints except the constraint in (4). Since for

Figure 2: The graph G is a disjoint union of
cliques

any node (im, jm), jm represents the set of resources
performing task im, if j1∩j2 6= ∅, one of the resources in
j1 and j2 is performing both tasks i1 and i2. Therefore,
we create an edge between these two nodes. Further,
we do not create an edge in G if j1 and j2 do not have
any common resource. Therefore, an independent set
in H will satisfy the required constraints, and hence a
maximum weight independent set in H will provide an
optimal solution for this case in the absence of demand
constraints.

We now show that a maximum weight independent
set in G can be found in polynomial time.

Theorem 4.2. G is a union of disjoint cliques, and
hence a maximum weight independent set in G can be
found in polynomial time.

Proof. By the construction of G in Theorem 4.1,
two nodes (i1, j1) and (i2, j2) will have an edge between
them if and only if i1 = i2. Hence, there is no edge
between these nodes when i1 6= i2. Therefore, the set of
nodes having the same first label i1 form a clique, and,
thus, G is a union of cliques. Since there are no edges
between any node in a clique and any node in another
clique, G is a union of disjoint cliques.

Hence, a maximum weight independent set in G is
obtained by simply selecting the node in each clique
with maximum weight. This can clearly be obtained in
polynomial time.

Figure 2 illustrates the result in Theorem 4.2 for the
case of two resources and two tasks. The figure is appli-
cable to both TOM and ROM; for example, for TOM
the node label (1, {1, 2}) means that task 1 is assigned
to both resources 1 and 2, while for ROM, the same
node label means that resource 1 performs both tasks
1 and 2. It can be easily seen that G is a disjoint union
of cliques.

In Figure 3, we provide an example of the special case
where a resource can perform only one task. The graph
H is not a disjoint union of cliques. For instance, we can
see that there is an edge between (1, {1, 2}) and (2, 1)
since if task 1 is assigned to both resources 1 and 2 (in
TOM), then task 2 cannot be assigned to resource 1. It

5

Figure 3: Graph H: A resource can perform only
one task

is NP-Hard in general to find a maximum weight inde-
pendent set in this case. However, when the number of
tasks is a constant, the complexity of finding a maxi-
mum weight independent set in this graph is polynomial
in the number of nodes in the graph. The reason is as
follows: Since we can only select one group of resources
for each task, if there are k tasks in the system, and n
nodes in this graph, the complexity of finding a maxi-
mum weight independent set in this graph is O((n/k)k).

4.2 With Demand Constraints
We now take the demand constraints into account as

well. We only present the solution for TOM; the solu-
tion for ROM is identical. Associating a Lagrange mul-
tiplier λ for the demand constraint, the dual objective
function for ΠT can be obtained as follows:

D(λ) = max
(2.1),xij∈{0,1}

{∑
i∈T

∑
j∈Ki

(qij−λeij)xij
}

+λe, (6)

where the (2.1) qualifier for the “max” operator refers to
constraint (1) in the maximization formulation for ΠT

in (2). From (6), it can be immediately seen that for a
given λ, D(λ) can be obtained by finding a maximum
weight independent set in G where the weight of each
node (i, j) in G (see Theorem 4.1) is modified from qij
to (qij − λeij).

The dual optimization problem of ΠT is given by

min
λ≥0

D(λ). (7)

We can solve this dual optimization problem using the
following gradient projection algorithm.

Algorithm 1:

1. Initialize λ = 0.

2. At iteration k, compute ~x(k) = {x(k)ij : i ∈ T, j ∈
Ki} as

~x(k) = arg max
(2.1),xij∈{0,1}

{∑
i∈T

∑
j∈Ki

(qij−λ(k−1)eij)xij
}
.

This can be computed by finding a maximum weight
independent set in G with the weights modified as
described before.

3. At iteration k, update λ as follows.

λ(k) =
[
λ(k−1) + α(k)(

∑
i∈T

∑
j∈Ki

eijx
(k)
ij − e)

]+
, (8)

where [y]+ = max{0, y}. The coefficient α(k) is a
positive step-size used at iteration k and it can be
chosen according to Theorem 4.3 later on. One of
the possible choices of α(k) is 1/k.

4. Stop when λ(k) − λ(k−1) < γ, where γ is a thresh-
old.

It follows from step 3 that λ increases when the de-
mand required by the system is greater than e, and it
decreases when the demand required by the system is
less than e. Hence, a binary search algorithm can be
used instead for updating λ as well. This algorithm
results in much faster convergence than the gradient
projection algorithm. However, the gradient projection
algorithm is very useful when multiple Lagrange multi-
pliers need to be updated simultaneously (correspond-
ing to multiple constraints).

Note that we can also easily modify the algorithm of
finding a maximum weight independent set to find, in-
stead, a minimum weight independent set by subtract-
ing each of these weights from a large number (that
is greater than all the weights in the graph). We can
then find an assignment such that a task i is assigned
to at least one of the groups of resources in Ki for TOM
(correspondingly, a resource i is assigned to at least one
of the groups of tasks in Ji for ROM). This gives the
required solution to this problem. A minimum weight
independent set is useful when the objective is to mini-
mize, say, the sum of the errors over all the tasks. Note
that this is also a representation of the reward obtained.

4.3 Computational Complexity
We consider the binary search algorithm for updat-

ing λ. The number of iterations required by the bi-
nary search algorithm is O(dlog2(d/γ)e), where γ is the
threshold in Algorithm 1, and d = emax is the maximum
demand that the system can utilize, i.e., the system uses
all the resources available.

(i) Resources perform multiple tasks: The complex-
ity of finding a maximum weight independent set in
this case is simply the number of nodes in the graph G.
Assume that there are s resources, t tasks, and that at
most k of the resources can be combined for a task, e.g.,
information from k out of s sensors can be fused for a
sensing task. Then the number of nodes in G for TOM
is at most t ×

(
1 + s +

(
s
2

)
+ . . . +

(
s
k

))
∼ O(tsk). Fur-

ther, since this computation needs to be performed at
most dlog2(d/γ)e times (for binary search), the overall
complexity is given by O(tskdlog2(d/γ)e).

(ii) Resources perform one task : In this case, the
complexity of finding a maximum weight independent

6

set is O(skt); the k is as in the case (i) above. There-
fore, the overall complexity with demand constraints is
O(sktdlog2(d/γ)e).

4.4 Optimality and Convergence
If the xij ’s were relaxed to take continuous values in

[0, 1], then for diminishing step-sizes (α(k) → 0,
∑∞
k=1 α

(k) →
∞), as k → ∞, Algorithm 1 would converge to an op-
timal solution for both the primal and dual problems,
and there would be no duality gap [2]. However, since
the xijs are indicator ({0-1}-valued) variables, we would
need post-processing to obtain valid values for the xij ’s.
It is, in general, very hard to analytically compare this
post-processed integer solution with the optimal integer
programming solution.

With our framework, we do not relax the integer vari-
ables xij . In this case, while the dual program is a linear
optimization program for λ, the primal program is an
integer optimization program. Therefore, there could
potentially exist a duality gap. The following result
shows the convergence of λ.

Theorem 4.3. For any ε > 0, for diminishing step-
sizes (α(k) → 0,

∑∞
k=1 α

(k) → ∞), ∃B > 0 such that
∀k > B, |λ(k)−λ∗| < ε, where λ∗ is the optimal solution
to the dual problem.

The proof follows from [8].
While λ converges to the optimal solution of the dual

problem, we cannot guarantee that the primal objective
function converges. Suppose that the primal objective
function does not converge. When the algorithm stops,
we will obtain two values of λ, λ1 and λ2, where, say,
λ1 < λ2, and λ2 − λ1 < γ. λ1 will result in an infeasi-
ble solution to the primal problem, while λ2 will result
in a feasible solution to the primal problem. This has
been proven in [1, 12] and we also observed it during
our numerical evaluations in Section 5.2. One way to
find the primal optimal solution is to perform a branch
and bound starting with these solutions that we ob-
tained from Algorithm 1. Recently, it was shown in
[12] that given a ρ-approximation algorithm for Step 2
of Algorithm 1, a (ρ

ρ+1 − ε)-approximation algorithm
for the primal problem can be obtained using the fea-
sible and infeasible solutions obtained either by binary
search or by Algorithm 1. In our case, since some of
the maximum weight independent sets can be solved in
polynomial time because of the graph structure, using
Algorithm 1 and the algorithm provided in [12], we can
obtain a (0.50− ε)-approximation for our primal prob-
lem.

5. EXAMPLE APPLICATION:
MULTI-TARGET TRACKING

In this section, we first provide an example of how
to apply our framework to a typical sensor-based multi-

target tracking scenario. We then study a multi-target
tracking scenario focusing on the system trade-offs (along
various system parameters such as energy, number of
sensors, QoI, etc.) and the framework’s convergence
performance. In these examples, sensors and the en-
ergy they consume correspond to resources and resource
demands, respectively; also, tracking targets and QoI
attained correspond to tasks and rewards received, re-
spectively.

5.1 A Multi-target Example Scenario
Suppose that there are M = 2 targets to be tracked.

The sensor field comprises N = 3 sensors: a radar R
and two acoustic sensors A1 and A2. In order to es-
timate the location of a target, we need information
from at least one radar, or at least two acoustic sen-
sors. The measurement from a radar can also be fused
with the measurement from two acoustic sensors. So in-
formation can be fused either by two acoustic sensors,
or by a radar and two acoustic sensors. If the targets
are moving along a straight line, the radar can use a lin-
ear Kalman filter to estimate the location. The acoustic
sensors can get the direction of arrival estimate from the
targets. One could relate the QoI for the radar with the
variance of the Kalman filter estimates and the QoI for
the acoustic sensors with the log-likelihood ratio of the
corresponding estimates.

Suppose that a sensor can sense only one target. The
energy required to obtain fused information can depend
not only on the energy required for sensing by the indi-
vidual sensors but also on the energy required for com-
municating information between the sensors. There-
fore, the energy required for fused information could
be modeled by a super-additive expression. Also, the
QoI obtained by fusion can be modeled by an arbitrary
function of the QoIs obtained by individual sensors.

Figure 4: Multi-Target Tracking Example

For this system scenario, let us now construct the
graph H. The number of nodes in H is given by 2 (# of
targets) × { 1 (target sensed by no sensor) + 1 (for the
radar) + 1 (# of ways of selecting two acoustic sensors)
+ 1 (for a combination of the radar and two acoustic
sensors) } = 8. The edges are shown in Figure 4. The
edges representing the constraint that a target can be
tracked by at most one group of sensors are shown in
red, while those representing that a sensor cannot track
more than one target are shown in blue. It is possible

7

to track both the targets if the radar is assigned to one
target, and the two acoustic sensors are assigned to the
other target. It is also possible to track just one target
if all the three sensors are assigned to the same target.
These solutions correspond to two different independent
sets in H, and we can find the optimal solution by find-
ing the independent set with maximum total weight.

5.2 Numerical Results
We now investigate a multi-target tracking problem

with Kalman filters and study the performance of the
QoI obtained; we use the variance of the track estimate
as the QoI. As we mentioned before, any filter can be
used, any fusion technique can be applied, and any QoI
metric can be used. We use Kalman filters here for the
purpose of illustrating how our framework can be ap-
plied. Even with these basic filters, we obtain insightful
results on how QoI behaves with energy. We consider
the case where a sensor can track only one target dur-
ing a sampling instant, but a target can be tracked by
multiple sensors.

5.2.1 Setup
We a assume as system with M = 3 targets and

N = 9 sensors, three of which are high energy sensors
and six are low energy. Information is required from
two low energy sensors, or one high energy sensor, or a
combination of one high energy sensor and two low en-
ergy sensors in order to estimate the location of a target.
The mobility model for the targets are given by the fol-
lowing equations, where k = 0, 1, 2, . . . is the slot index
(we use a scalar formulation for ease of presentation):

xi(k + 1) = aixi(k) + vi(k), i ∈ {1, 2, 3}, (9)

where vi(k) is AWG process noise with distributionN (0, Qi).
The measurement model for each of the high energy and
low energy sensors are is (we drop the sensor index for
brevity):

zei (k) = xi(k) + yei (k), e ∈ {h, l}, and i ∈ {1, 2, 3},
(10)

where h and l stand for high and low energy, respec-
tively, and yei (k) is AWG measurement error with dis-
tribution N (0, Rei). We assume that Rei , e ∈ {h, l},
depends on the distance between the sensor and the
target. Specifically, the measurement error variance is
4 for a high energy (h) sensor and 9 for a low energy (l)
sensor, if the distance between the sensor and the target
is less than 10 units; the measurement error variance in-
creases by 1 if the distance is between 10 and 20 units,
and increases by 2 if the distance is more than 20 units.

The locations of the sensors and the initial locations
of the targets are random. Table 2 provides the numer-
ical values of the parameters in the setup. eh, el, ell,
and ehll represent the energies used by a high energy
sensor only, a low energy sensor only, a combination of

two low energy sensors, and a combination of one high
energy and two low energy sensors, respectively.

Parameter Value Parameter Value
a1 1.5 Q1 4
a2 1.2 Q2 6
a3 1.1 Q3 4
Rh 4 eh 2
Rl 9 el 1
ehll 6 ell 2.4

Table 2: Simulation Parameters

Let P pi (k) represent the one-step predicted variance
for target i at slot k, and P ci (k) represent the corrected
variance after the measurement for target i at slot k
is received. The variance update of the Kalman filters
are given by the following equations, k = 1, 2, · · · (i =
1, 2, 3):

P pi (k) = a2iP
c
i (k − 1) +Qi, (11)

P ci (k) = P pi (k)−Gi(k)P pi (k), (12)

whereGi(k) is the Kalman filter gain and equals P pi (k)/(P pi (k)+
Re), e ∈ {h, l}. Substituting the gain back to (12)
yields:

P ci (k) =
P pi (k) ·Rei
P pi (k) +Rei

⇔ 1

P ci (k)
=

1

P pi (k)
+

1

Rei
. (13)

Thus, when “knowledge” is added, which in this case is
the newly arriving measurement with variance Rei , the
tracking variances before and after incorporating the
new knowledge exhibit a harmonic relationship; this is
a classical result from estimation theory [16]. We adopt
a similar relationship for the QoI obtained when fusing
across track estimates from different sensors. One could
use alternative fusion expressions but these would not
alter the application of our framework, and hence we
do not consider them in the context of illustrating our
framework.

With this setup, and interested in minimizing the sum
the QoI (variance) over all the targets, we now study
a number of performance metrics such as the conver-
gence of our algorithms, the performance of the overall
variance with energy, and over a time horizon.

5.2.2 Algorithm Convergence
We start with an experimental study of the conver-

gence for the algorithms developed in Section 4. Note
that while the Lagrange multiplier always converges,
the primal objective function may not converge. This,
however, does not mean that the primal objective func-
tion will diverge to ±∞, but rather that it will oscil-
late within ε of the optimal solution for some ε > 0.
We study two cases, one in which the primal objective
function converges, and one where it does not.

8

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Iterations

λ
0.4350

0 5 10 15 20
6

8

10

12

14

16

18

Iterations

E
ne

rg
y

10.8

0 5 10 15 20
4

5

6

7

8

9

Iterations

Q
oI

 (
V

ar
ia

nc
e) 7.3464

(a) λ (b) Total Energy (c) Variance

Figure 5: Instance where the primal objective function converges

We first consider a total energy constraint of 10.8.
The values of the total energy used by the system at
each iteration, the Lagrange multiplier λ, and the value
of the primal objective function (variance) are shown in
Figure 5. We initialize λ = 0. We use Algorithm 1 for
this experiment, and we choose the step-size at iteration
k to be α(k) = 0.05/k and γ is set to 10−4. When λ = 0,
there are no constraints on the energy, and hence the
network uses the maximum possible energy available
(which equals 18, as can be easily derived). Since this
is greater than 10.8, λ increases. As λ keeps increasing,
the network starts using less energy. Ultimately, it con-
verges to using a total energy equal to the constraint
(=10.8). Since the QoI is the variance here, when the
system uses higher total energy we get a lower variance.
These can be seen in Figure 5. We see that the QoI,
the energy, and λ all converge within 5 iterations.

We now consider a total energy constraint of 10. We
run the same algorithm as before. We observe from
Figure 6 that while λ still converges, the total energy
used by the system, and the primal objective function
do not converge. In fact, the total energy oscillates be-
tween 7.2 and 10.8. One reason that this happens here
is because there is no optimal solution that exactly uses
a total energy of 10 while there are solutions that use a
total energy of 7.2 and 10.8 respectively. Note that 7.2
is a feasible solution while 10.8 is an infeasible solution.
Therefore, we can use the two values of λ corresponding
to these energies, and determine the optimal solution
using other techniques discussed in Section 4. In this
case, it turns out that the optimal solution uses a total
energy of 7.2 (which corresponds to using all six low
energy sensors but no high energy sensor). Further, we
can see that our algorithm reaches a total energy of 7.2
within 5 iterations.

5.2.3 QoI vs. Energy and Sampling Period
Energy can be saved by a sensor network not only

by reducing the total energy used for taking a measure-
ment but also by varying the time period over which a
measurement is taken. Here, we still consider a single

sampling instant. However, the period of sampling is
changed. When the period of sampling is i, the mobil-
ity equations for the targets can be modified as follows.

xj(k+i) = aijxj(k)+ai−1j vj(k)+...+vj(k+i−1), (14)

where j = 1, 2, 3. The variance of a target’s mobility is
given by Qj(i) = Qj ∗ (a2ij − 1)/(a2j − 1).

Figure 7 shows how the overall variance (QoI) changes
with energy for different sampling periods. We notice
that the overall variance decreases as energy increases.
Note that when the total energy constraint is less than
6, the overall variance is much higher than otherwise.
This is because one or more targets cannot be tracked
when the total energy that can be used is less than 6.
The drop in the overall variance is much lower when the
total energy constraint varies from 6 to 18. When the
total energy constraint is increased above 18, there is
no change in the overall variance. This is because the
maximum energy that can be used by the system is 18.
Therefore, we do not get any additional information by
further increasing the energy.

We also note that as the sampling period increases,
the overall variance also increases. While there is a
significant change in the variance when the sampling
period is increased to 2 from 1, the difference in the
overall variance between sampling periods i and i + 1
decreases as i increases. These results can be used to
appropriately select a sampling period for the required
application.

0 5 10 15 20 25

5

10

15

20

25

30

Energy

Q
oI

 (
V

ar
ia

nc
e)

Period = 1
Period = 2
Period = 3
Period = 4

Figure 7: QoI vs. Energy and Sampling Period

9

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

Iterations

λ
0.454

0 20 40 60
6

8

10

12

14

16

18

Iterations

E
ne

rg
y

10.8

7.2

0 20 40 60
4

5

6

7

8

9

10

Iterations

Q
oI

 (
V

ar
ia

nc
e)

8.7788

7.1436

(a) λ (b) Total Energy (c) Variance

Figure 6: Instance where the primal objective function does not converge

5.2.4 QoI over a Time Horizon
Finally, we study how the QoI behaves over a time

horizon for different energies and different sampling pe-
riods. The targets move according to their mobility
models described in the setup. When we do not make
a measurement during a time slot (due to the sampling
period chosen), we use the predicted variance of the
Kalman filter as the QoI. When we make a measure-
ment, we use the corrected variance of the Kalman filter
to represent the QoI.

Figure 8 shows the performance of the system over
a time horizon for four different values of energy, and
three different sampling periods. Note that the energy
here is the average energy used over the time horizon.
When the sampling period is i and the average energy
used is eavg, then the energy used during the sampling
slot is ieavg, and zero during all other slots. From all
the figures, we can observe that as the energy increases,
the overall variance decreases and hence we get a better
QoI. When the sampling period is one, we can see from
Figure 8(a) that the overall variance converges in a few
time slots. For sampling periods greater than one, we
observe that the predicted variance is much higher than
the corrected variance. Therefore, when we do not take
a measurement we get a high overall variance. This is
the reason that we see an oscillating function for higher
sampling periods.

Figure 9(a) represents the QoI averaged over the time
horizon for various values of the total energy. It shows
that as the sampling period increases, the average QoI
becomes worse. This is because of the fact that the
predicted variance is much higher than the corrected
variance. Therefore, if we have a choice of reducing en-
ergy consumption by either increasing the sampling pe-
riod or decreasing the energy, we should opt to decrease
the energy since a higher sampling frequency achieves a
lower time-averaged variance for a given time-averaged
energy.

Figure 9(b) shows the behavior of the QoI over the
time horizon for various sampling periods when the av-
erage energy over the time horizon is fixed at 7. This

figure is particularly interesting because we observe that
for the time slots at which we take measurements, the
QoI for a higher sampling period actually performs bet-
ter than the QoI for a lower sampling period. This is
because for a higher sampling period, we can use higher
energy while still maintaining the average energy at 7.
However, because the maximum total energy that can
be used by the system is fixed (18 in our case), we can-
not arbitrarily keep increasing the sampling period and
still get improving QoI. When the sampling period is
3, we use an energy of 21 (which is greater than the
maximum total energy available in the system). There-
fore, when the sampling period increases above 3, the
variance will again start increasing. For instance, we
numerically observed that the variance obtained by the
first measurement for sampling period 3 was 5.5151
while that for sampling period 4 was 5.5707. For a
given maximum energy emax, we observe that there is a
critical sampling period at which the QoI obtained dur-
ing a sampling slot is minimum. This will depend on the
system parameters in general. Here, it can be calculated
as demax/eavge.

Finally, we compute a ratio of the average QoI at-
tained until the current time slot to the average energy
used until the current time slot, and study how it be-
haves over the time horizon (Figure 9(c)) when the av-
erage energy used over the entire time horizon is 7. We
observe that ultimately the high value of the predicted
variance again dictates the behavior of this metric. For
a higher sampling period, we get a higher ratio.

5.2.5 QoI vs. No. of Sensors
In this experiment, we modify the original setup, and

study how the QoI varies with the number of sensors,
the number of targets, and the level of fusion. We as-
sume that a sensor can simultaneously track multiple
targets. Each sensor uses a bank of Linear Kalman Fil-
ters to compute an estimate of the predicted variance
for each target (which represents the QoI here). There
are no energy constraints in this experiment. The mea-
surement error variance for a sensor is chosen randomly

10

2 4 6 8 10 12
6

8

10

12

14

16

18

Time

Q
oI

 (
V

ar
ia

nc
e)

Energy = 2
Energy = 4
Energy = 7
Energy = 10

2 4 6 8 10 12
0

10

20

30

40

50

60

70

Time

Q
oI

 (
V

ar
ia

nc
e)

Energy = 2
Energy = 4
Energy = 7
Energy = 10

2 4 6 8 10 12
0

10

20

30

40

50

60

70

Time

Q
oI

 (
V

ar
ia

nc
e)

Energy = 2
Energy = 4
Energy = 7

(a) Sampling Period = 1 (b) Sampling Period = 2 (c) Sampling Period = 3

Figure 8: QoI over a time horizon

2 4 6 8 10
5

10

15

20

25

30

Energy

Q
oI

 (
V

ar
ia

nc
e)

Period = 1
Period = 2
Period = 3

2 4 6 8 10 12
5

10

15

20

25

30

35

40

Time

Q
oI

 (
V

ar
ia

nc
e)

Period = 1
Period = 2
Period = 3

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

Time

A
vg

. Q
oI

/A
vg

. E
ne

rg
y

Period = 1
Period = 2
Period = 3

(a) Average QoI vs. Energy (b) QoI vs. Time (c) Avg. QoI/Avg. Energy vs. Time

Figure 9: Various QoI metrics

between 0 and 6. The experiment is repeated 300 times,
and the results are averaged.

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Sensors

Q
oI

 (
V

ar
ia

nc
e)

No fusion
Fuse 2 sensors
Fuse 3 sensors

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Sensors

Q
oI

 (
V

ar
ia

nc
e)

2 targets
4 targets
6 targets
8 targets
10 targets

(a) No. of Targets = 5 (b) Level of Fusion = 3

Figure 10: QoI vs. No. of Sensors

From Figure 10, we see that as the number of sen-
sors is increased, the total variance decreases. This is
because as the number of sensors increases, there are
more, on the average, sensors with lower measurement
error variances to track targets. However, note that the
drop in variance is significantly lower when the number
of sensors is increased from 15 to 50 (say) than from 5
to 15. Therefore, in many applications, it may not be
necessary to have a high density of sensors to track a
group of targets.

In Figure 10(a), we fix the number of targets to 5.
We vary the levels of fusion, i.e., the maximum number
of sensors whose information can be combined. As ex-

pected, we get a lower variance with a higher level of
fusion. For instance, we get a lower variance when the
level of fusion is 3 and there are 15 sensors in the system
than when there is no fusion and there are 35 sensors
in the system. Therefore, by performing fusion, for the
same QoI, we can deploy fewer sensors in the system.
Further, we can see that as the number of sensors that
are allowed to perform fusion increases, the drop in vari-
ance decreases. For instance, there is a higher drop in
variance between fusion levels 2 and no fusion than be-
tween fusion levels 3 and 2. This means that increasing
the fusion level beyond a certain amount in this case
does not necessarily result in a significant improvement
in performance.

We now fix the level of fusion to 3, and vary the num-
ber of targets in the system (Figure 10(b)). Clearly, as
the number of targets increase, the total variance in-
creases. Notice the difference in variance when there
are 10 targets in the system, and when there are 2 tar-
gets. While this difference is nearly 3 when there are 5
sensors, it is around 0.75 when there are 25 sensors, and
0.5 when there are 50 sensors. Thus, increasing from 25
to 50 sensors only results in a drop of 0.25. This again
illustrates the fact that, depending on the system pa-
rameters, it may not be necessary to have a high sensor
density.

11

6. OTHER SENSOR APPLICATIONS
Target tracking is only one of the many applications

involving a sensor network. It may even be only one of
the many tasks the network performs; a network may
simultaneously need to track a target, capture images,
determine temperature, detect anomalous signals, etc.
Sensors in a network may be used to take temperature
readings and localize hot spots such as fires, and chem-
ical readings to localize and predict the movement of
hazardous gases. Our framework is applicable to a va-
riety of these sensor applications. Each sensor operation
can have its own interpretation of reward, such as the
QoI expressed as variance, precision, probability of de-
tection, false alarm, delay, amount of information, rele-
vancy, a combination of these, etc. Once the appropri-
ate reward expression is computed for any combination
(fusion) of sensors assigned to the various sensing oper-
ations, one can apply our resource allocation framework
to maximize the overall reward under energy (or other
demand) constraints.

Next we see how to apply our framework to the case
of scheduling the flight path of a UAV servicing UGSs.

6.1 UAV Example Application
UAVs are used, among other things, to service sen-

sor nodes on the ground such as collecting information
stored in UGSs [5]. The UAV will need to collect as
much information as possible under, say, time and/or
energy constraints. Let us now consider a specific ex-
ample in this context. Suppose that sensors (UGSs)
are deployed in a field collecting and storing informa-
tion, and a UAV flies from one sensor to another to col-
lect the stored information. The UAV knows the phys-
ical location of the sensors, the time it requires to fly
from any sensor to any other sensor, and, say, based on
historical data, the expected reward (such as the qual-
ity/amount of information) that it can collect from each
sensor. The UAV needs to complete its information-
collecting task by time δ. The UAV could potentially
visit a sensor multiple times within the deadline, if it is
known that the sensor has updated information during
multiple time slots within the deadline.

Assuming time-slotted operation, we now adapt our
framework in Section 3 to this scenario. For each sensor
i ∈ S, we associate a collection of sets Ti representing
the possible sets of time slots during which the UAV can
visit sensor i. Specifically, Ti = {T i1, . . . , T iki}, where for

each l ∈ {1, 2, . . . , ki}, T il ⊆ {1, 2, . . . , δ}. Let xij = 1,
if the UAV visits sensor i at each of the time slots in the
set j ∈ Ti, and 0 otherwise. Let tij be the number of
time slots it takes for the UAV to travel from sensor i to
sensor j. The problem at hand can now be formulated
as follows:

Problem ΠUAV:

maximize
∑
i∈S

∑
j∈Ti

qijxij

s.t. (1)
∑
j∈Ti

xij ≤ 1 for each i ∈ S;

(2) for any two sensors i1 and i2 and for any

two sets of slots j1 ∈ Ti1 and j2 ∈ Ti2 ,

if ∃k1 ∈ j1 and k2 ∈ j2 s.t. |k1 − k2| < ti1i2 :

xi1j1 + xi2j2 ≤ 1;

(3) xij ∈ {0, 1}. (15)

The weight of the variable xij is qij as shown in the
objective function. For this problem, qij can be any
function of the information stored in sensor i, such as its
quality, amount, etc., and the set of time slots j that the
UAV can visit the sensor. Thus, arbitrary relationships
between, say, the QoI and the delay can be modeled
within this expression. A very simple model would be to
simply consider a ratio, or a weighted difference between
the QoI and the delay; in other words, the later the time
the UAV can collect the stored information, the lower
its quality.

Constraint (1) is a matching constraint. The UAV
can collect information from a sensor i in at most one
of the sets of time slots in Ti. This is because Ti consists
of all possible sets of slots at which the UAV can visit
sensor i before the deadline. Constraint (2) is a topo-
logical constraint stating that it is impossible for the
UAV to fly from sensor i1 to i2 (or, vice versa) within a
time interval that is less than a required minimum ti1i2 .

Clearly, this problem formulation shares similarities
with the Traveling Salesman Problem (TSP). However,
there is an important difference between the two. With
our framework, we can explicitly model the weight ob-
tained by a sensor as an arbitrary function of the infor-
mation stored by the sensor, and the time at which the
UAV reaches the sensor. Further, we allow the weights
to be arbitrary when the UAV visits a sensor multiple
times. This is not possible in TSP. TSP can only model
the total weight as a difference between the total in-
formation obtained and the total delay to obtain the
information. Thus, our problem is more general than
TSP.

The next theorem describes finding a solution ΠUAV

through a properly constructed graph.

Theorem 6.1. An optimal solution to ΠUAV can be
obtained by finding a maximum weight independent set
in the graph G′ constructed as follows:

1. for each i ∈ S, and for each j ∈ Ti, create a node
(i, j);

2. assign a weight qij to a node (i, j); and

12

3. create an edge between two nodes (i1, j1) and (i2, j2)
if and only if one of the following conditions hold:

(a) i1 = i2, or

(b) there exists k1 ∈ j1 and k2 ∈ j2 such that
|k1 − k2| < ti1i2 .

Proof. The proof is similar to the constructive proof
of Theorem 4.1.

It follows easily that:

Corollary 6.1. A maximum weight independent set
in G′ explicitly provides the path that the UAV needs to
take in order to obtain the optimal solution to ΠUAV .

We could add additional constraints to this problem.
One possibility could be that the UAV must collect in-
formation from at least k sensors within the deadline.
Another possibility is having constraint on energy (e.g.,
fuel consumption). We can model these constraints as
linear constraints and use our Lagrangian approach to
solve these problems.

We now provide an example to illustrate this applica-
tion (Figure 11). Suppose that there are three sensors
in the system collecting information. As shown in Fig-
ure 11(a), suppose that it takes the UAV one time slot
to fly between sensors 1 and 2, and two time slots to
fly between sensor 3 and any of the other two sensors.
Suppose that δ = 4, and each sensor is visited by the
UAV only once within the deadline. Then the graph G′
constructed in Theorem 6.1 is as shown in Figure 11(b).
The edges representing the constraint that a sensor can
be visited at most once are marked in green, those rep-
resenting the constraint that at most one sensor can
be visited during a single time slot are marked in red,
and those representing the topological constraints are
marked in blue. It is easy to verify the construction.
For instance, there is an edge between (1, 2) and (3, 3)
because it is not possible for the UAV to fly from sen-
sor 1 to sensor 3 in one time slot. On the other hand,
there is no edge between (1, 1) and (2, 2), or (1, 1) and
(3, 4) because it is possible for the UAV to fly from
sensor 1 to sensor 2 in one slot, and from sensor 1 to
sensor 3 in three slots.

7. RELATED WORK
There is extensive literature related to assignments in

target-tracking scenarios which typically assume integer
programming formulations. In single target-tracking,
[10] studies how to select k out of m total sensors such
that the error variance of the combined measurements
of the k sensors is minimized. Using convex relaxation
techniques, [10] develops a solution for the case that
both k and m are large. The proposed solution has lim-
ited application when multiple targets are present in
the system. In [6], a similar problem is studied for an

(a) Sensor placement (b) Graph G′

Figure 11: Typical UAV setting

Extended Kalman Filter where the goal is to choose a
group of sensors such that the total energy is minimized
subject to constraints on the error variance. Both these
studies are computationally taxing as they are complex
to solve without relaxing the corresponding integer pro-
gram, because of the assumption that k is large. How-
ever, in practical scenarios, k can be a small number
(Figure 10(a)). For example, in order to find the loca-
tion of a target, one radar or two acoustic sensors are
sufficient. Moreover, the sensors whose information are
fused will typically be located closer to the target than
other sensors. Hence, it is usually not necessary to solve
the problem for a high value of k. Also, these studies
are limited to specific estimation techniques (such as
linear or extended Kalman Filters) and cannot be used
for general fusion operations that are considered by our
framework.

Regarding multi-target-tracking, [9] shows that this
problem is NP-Hard even when information can be fused
from only two sensors; it also provides approximation
algorithms for the problem by observing a relationship
to a bin-packing problem. This study does not con-
sider sensor resource limitations. In [15], this problem
is studied under constraints on the reward required for
each target, and a solution is obtained by modeling the
problem as a semi-matching problem. In both of these
studies, a sensor can track only one target, but a target
can be tracked by multiple sensors. Also, they assume
that the reward obtained from multiple sensors can be
expressed as the sum of the rewards obtained from in-
dividual sensors. Therefore, while this work takes some
constraints on the quality into account, it does not cap-
ture general reward metrics as considered in this paper.

Maximum weight independent set techniques have
been used for associating sensor measurements to tar-
gets in [14, 13]. This is a fundamentally different class of
assignment problems than what we considered with our
framework, and, for example, operational constraints
such as energy are not considered. Hence, we are deal-
ing with graphs whose structure is different from those
in these studies.

13

The use of Lagrangian techniques in our framework
has been inspired by the broader integer programming
literature, where the addition of constraints is partic-
ular challenging. For such problems, using Lagrangian
multipliers for the constraints is a powerful tool. In a
generalized assignment problem (GAP) [7] with linear
budget constraints, using a Lagrange multiplier for the
budget constraint results in a dual problem which can
be solved using iterative techniques such as the primal-
dual sub-gradient algorithm. [7] provides a comprehen-
sive tutorial of this approach. While this approach does
not always guarantee an optimal solution for the primal
problem, a number of works in integer programming
theory study how to obtain an optimal primal solution
from the solution that is obtained by the Lagrangian
approach [12], [1]. Exploiting similar techniques over a
broad set of problems related to sensor network opera-
tion, we observed and provided examples of these issues
in Sections 4 and 5.

8. CONCLUDING REMARKS
We studied the problem of assigning resources to tasks

in a system for performing multiple tasks simultane-
ously. We developed an integer programming frame-
work for this problem. Compared to existing work,
our framework can assign resources to multiple tasks,
can be used for maximizing a general function of the
reward when information from multiple resources are
fused, and satisfies demand constraints. In the absence
of demand constraints, we showed that these problems
can be solved by finding maximum weight independent
sets, many of which have a low computational complex-
ity because of the structure of the graphs in which they
were found. We then extended these solutions using
a Lagrangian approach when there exist demand con-
straints. While this approach has been widely used in
convex programming, it is of great use in integer pro-
gramming as well since it can efficiently solve integer
programs which become computationally harder when
additional constraints are added.

We illustrated a number of applications of our frame-
work for different sensor operations including a prob-
lem on how a UAV should traverse a sensor network
to gather information from ground sensors under delay
constraints. We provided extensive numerical results
applying our framework to a real multi-target tracking
problem, and gained insightful understandings on the
convergence of our algorithms, the performance of the
QoI over a time horizon, and the effects of varying the
sampling period. All these have profound impact on the
efficient (for the network) and beneficial (for its appli-
cations) operation and management of the network.

In closing, despite its broadness, we acknowledge that
our framework accounts only for the cases that either
the reward or the demand functions are arbitrary, but

not both of them. The latter cannot be modeled di-
rectly using a linear integer programming approach. For
TOM, the demand constraint will be non-linear, and
for ROM, the objective will be non-linear. Therefore,
we cannot utilize structures that occur in linear inte-
ger programming problems such as maximum weighted
matching, or maximum weight independent set. On
the other hand, if the demand function is convex, and
the reward function is concave, we can potentially use
convex-relaxation techniques to approach this problem.
This is an important open problem for future research
as is the potential of developing approximate solutions
that are built on a hybrid combination of the two mod-
els.

9. ACKNOWLEDGEMENTS
The authors would like to acknowledge Dr. Raju

Damarla and Dr. Ananthram Swami from ARL for the
long and fruitful discussions on the subject of this pa-
per.

10. REFERENCES

[1] A. Berger, V. Bonifaci, F. Grandoni, and
G. Schafer. Budgeted matching and budgeted
matroid intersection via the gasoline puzzle.
Integer Programming and Combinatorial
Optimization, Lecture Notes in Computer Science,
2008.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods.
Athena Scientific, 1997.

[3] C. Bisdikian, L. Kaplan, M. Srivastava,
D. Thornley, D. Verma, and R. Young. Building
principles for a quality of information
specification for sensor information. In 12th
International Conference on Information Fusion
(FUSION ’09), 2009.

[4] R. Burkard, M. Dell’Amico, and S. Martello.
Assignment Problems. Society for Industrial and
Applied Mathematics, 2009.

[5] J. Burman, J. Hespanha, U. Madhow, D. Klein,
J. Isaacs, S. Venkateswaran, and T. Pham.
Heterogeneous sensor networks: a bio-inspired
overlay architecture. In Proceedings of SPIE, 2010.

[6] A. S. Chhetri, D. Morrell, and
A. Papandreou-Suppappola. On the use of binary
programming for sensor scheduling. IEEE
Transactions on Signal Processing, 2007.

[7] M. L. Fisher. The Lagrangian relaxation method
for solving integer programming problems.
INFORMS Management Science, 2004.

[8] M. Held, P. Wolfe, and H. P. Crowder. Validation
of subgradient optimization. Mathematical
Programming, 1974.

14

[9] V. Isler, J. Spletzer, S. Khanna, and T. C. J.
Target tracking with distributed sensors: the
focus of attention problem. In IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), 2003.

[10] S. Joshi and S. Boyd. Sensor selection via convex
optimization. IEEE Transactions on Signal
Processing, 2009.

[11] R. Karp. Reducibility among combinatorial
problems. Complexity of Computer
Communications, 1972.

[12] A. Kulik and H. Shachnai. On Lagrangian
relaxation and subset selection problems.
Approximation and Online Algorithms, Lecture
Notes in Computer Science, 2009.

[13] D. J. Papageorgiou and M. R. Salpukas. The
maximum weight independent set problem for
data association in multiple hypothesis tracking.
Optimization and Cooperative Control Strategies,
Lecture Notes in Computer Science, 2009.

[14] A. B. Poore and A. J. R. III. A new Lagrangian
relaxation based algorithm for a class of
multidimensional assignment problems.
Computational Optimization and Applications,
1997.

[15] H. Rowaihy, M. P. Johnson, O. Liu, A. Bar-Noy,
T. Brown, and T. La Porta. Sensor mission
assignment in wireless sensor networks. ACM
Transactions on Sensor Networks (TOSN), 2010.

[16] H. L. van Trees. Detection, Estimation, and
Modulation Theory, Part I. John Wiley & Sons,
1968.

15

