
RC25117 (W1102-073) February 27, 2011
Electrical Engineering

IBM Research Report

Parallel Implementation of Relational Database Management
Systems Operations on a Multi-Core Network-Optimized

System on a Chip

Elahe Khorasani, Brent D. Paulovicks, Vadim Sheinin, Hangu Yeo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



 1 

Parallel Implementation of Relational Database Management Systems 

Operations on a Multi-Core Network-Optimized System on a Chip 

Elahe Khorasani, Brent D. Paulovicks, Vadim Sheinin, and Hangu Yeo 

 

Abstract  

In a commercial Relational Database Management System (RDBMS), sort and 

join are the most demanding operations and it is quite beneficial to 

improve the performance of external sort and external join algorithms 

that handle large input data sizes. This paper proposes parallel 

implementations of multi-threaded external sort and external hash join 

algorithms to accelerate IBM DB2, one of leading RDBMSs, in sort and 

join operations using an IBM Power Edge of Network (IBM PowerEN
TM
) 

Peripheral Component Interconnect Express (PCIe) card. The PowerENTM PCIe 

card is used as an accelerator, and is based on PowerENTM chip that runs 

at 2.3 GHz. The PowerENTM chip consists of sixteen embedded 64-bit 

PowerPC cores, and each of sixteen cores supports four hardware threads. 

The main advantage of using features of PowerEN
TM
 such as multithreaded 

multi-core, 10 GE Ethernet interface and hardware compression and 

decompression coprocessor is to execute the algorithms in parallel and 

reduce the size of data stored externally, and hence reduces the 

execution time as well as the size of external storage and bandwidth 



 2 

between the accelerator and external disk. Simulations are done on 

PowerENTM PCIe card using input records streamed from DB2, and results 

are compared with the performance of DB2 sort and join operations. The 

preliminary results show that the proposed parallel execution of 

external sort and join algorithm speeds up the DB2 sort and join 

performance about two times. 

 

Introduction  

Relational database management system now form the majority of database 

management systems, and lets users create, update, and find specific 

information much easier than the original flat databases without working 

sequentially through the entire information. Relational database stores 

data based on the relationship among the elements of data, and hence 

allows users to access to data easier than conventional database models 

such as hierarchical database and network database models. In the 

relational database system, the data is stored in the form of a table, 

and the related data are stored across multiple tables. Each row of the 

table is called a record, and each record contains fields which are 

columns of the table. A key is a logical way to identify and access a 

record in a table, and distinguishes one record from another. The key 

can be an individual column or a group of columns to differentiate 



 3 

records from one another. It is important to store data into the 

database and retrieve data out of database efficiently and quickly. In 

relational database, structured query language (SQL) is a standard 

language to access and manipulate databases. The SQL allows the users to 

create databases, create tables in a database, insert and delete records, 

execute queries on the data, and supports arithmetic, equality, and 

logical operators to perform operations on the data stored in the RDBMS.  

 

The sort and join operations are classic standard relational database 

operations, and are the most demanding operations of RDBMS for building 

indexes, binary searches, grouping, aggregation, etc, and hence 

obviously it is beneficial to improve performance of those operators by 

parallelizing the operations. There have been efforts to implement 

parallel versions of the algorithms for multi-core single instruction 

multiple data (SIMD) processors or hardware accelerators such as 

graphics processing units (GPUs). Bitonic sort and radix sort algorithms 

are well suited for SIMD processors and GPUs [2]-[6], and quicksort is 

reported to scale well when the number of core increases using 

hyperthreading technology [7]. There have been considerable studies on 

the parallel hash join algorithm [8]–[11], and parallelism was easily 

exploited for the high performance hash join operation. 



 4 

 

Although a single pass in-memory sort or join operations are the fastest, 

but not always the fastest one with limited resources (limited main 

memory size). To handle huge input data size, multi-pass operations are 

more appropriate. External sort algorithm is applicable when the data to 

be sorted is too large to fit in the primary memory, and external merge 

sort is one of the most popular algorithms [1]. The data to be sorted is 

divided into runs so that the size of the run is small enough to fit 

into the main memory. Each run is sorted within the main memory using a 

sort algorithm, and the sorted runs are stored on the external storage 

device until all the runs are sorted. The sorted runs are read from the 

external storage, merged together to form fewer but larger run lists, 

and this merge process continues until the data is completely sorted.  

Hash join algorithm is commonly used in database systems to implement 

equijoins efficiently.  

 

In an equijoin, equality is an operator to compare key values. The hash 

join algorithm consists of two phases, build phase and probe phase. The 

build phase creates an in-memory hash table using records of the smaller 

table (build table). During the probe phase, the hash table built in the 

build phase is probed using records of the larger table (probe table) to 



 5 

generate joined output records from the pairs of matching records. 

Hybrid hash join algorithm is an external join operation developed to 

handle the case where the input tables are too big to be stored in the 

available main memory. In the hybrid hash join algorithm, the two input 

tables are partitioned such that a pair of partitions, one partition 

from each table, can fit in the main memory. Once the input tables are 

partitioned and stored in the external storage deice, pairs of build and 

probe partitions are loaded in the main memory, and joined sequentially.  

 

The PowerEN
TM
 chip [12] is a network-optimized processor system on a chip 

developed by IBM. The chip consists of four AT chiplets where each 

chiplet has four 64-bit embedded PowerPC A2 cores and 2 MB shared eDRAM 

L2 cache (8 MB L2 cache per chip), two memory controllers, four 10 GE 

Ethernet interfaces and five acceleration engines. Each core supports 

four hardware threads (64 total threads per chip) which share L1 and L2 

caches, and provides memory management unit (MMU) and separate 

instruction and data cache controllers and arrays. The five acceleration 

engines include Host Ethernet acceleration for network protocol 

processing, Compression/Decompression engine, Cryptographic co-processor, 

Extensible Markup Language (XML) engine and Regular Expression/Pattern-

matching engine. The compression engine works as a coprocessor to the A2 



 6 

core, and used Lempel-Ziv (LZ77) compression followed by the Huffman 

Coding. The compression engine runs at 10 Gbps with the compression 

ratio between two and five when tested with various TPC-H tables 

generated as depicted in Table 1. The PowerEN
TM
 PCIe card is an 

integrated board design based on PowerEN
TM
 chip intended to be used for 

software developer platform, and x3650 M2 is used as a host for the card. 

 

In this paper, we implemented efficient parallel external sort algorithm 

and external join algorithm (hybrid hash join algorithm) designed to 

accelerate the performance of DB2 in the area of sort and hash join 

operations by taking advantage of features of PowerENTM chip. The DB2 

code is altered so that the input records are intercepted to feed the 

sort and hash join processes that runs on an external multi-core 

accelerator, where they are implemented in a highly parallel manner and 

the results are returned to DB2. Since the speed of a single threaded 

external sort or join process is mainly limited by the speed of the 

processor and speed of data transfer rate to the disk, the implemented 

algorithms are mainly designed to take advantages of multi-threaded 

execution, compression and decompression units and 10 GE Ethernet 

interfaces. 

 



 7 

Overview of DB2 Sort and Hash Join 

From a very high level view, when a sort or hash join of one or more 

tables are required DB2 creates a sort (SORT) or hash join (HSJN) 

process. If the table data is not already in the buffer pool (the area 

allocated in the main memory by data base manager for cashing the table 

or index data), it is read from storage into the buffer pool, based on 

the size of the buffer pool, for fast access. In the case of sort, table 

records are “inserted” from the buffer pool into the SORT one row at a 

time. The SORT processes the input rows by inserting them in the in-

memory sort list. If the whole table’s data does not fit in the sort 

memory it is called external sort. In external sort, as the sort memory 

gets exhausted, temporary tables of the sorted lists are created and 

spilled to the disk to be merged later before returning to the client. 

Each one of these temporary tables is called a sorted run. After the 

last row is processed, the “fetch” process starts, in which records 

are retrieved from the sorted list and returned to the client one row at 

a time. If the sort is external, the spilled sorted runs have to be 

merged so that the retrieved rows are in order.  

 

HSJN follows a similar process. First the build table is inserted into 

HSJN one row at a time and grouped into logical partitions based on a 



 8 

hash code. If memory is exhausted the partitions are spilled to the disk. 

Then the probe table is inserted one row at a time. As the probe records 

are inserted, if the record’s hash code matches the build hash code 

that is in memory the keys are compared for a match. If a match is found 

it is returned to the client. If the record’s hash code does not match 

the in-memory build hash code the probe record is sent to the disk for 

later processing. When the entire probe table is scanned, the leftover 

process begins, in which all the records that had been spilled to the 

disk are processed for finding matches to be returned to the client.  

 

Algorithm Implementation 

The external sort and hybrid hash join algorithms are implemented in two 

passes, and each pass is implemented using multiple threads to take 

advantages of multi-core designs and parallelism at the chip level. In 

the first pass, the external sort algorithm (hybrid hash join algorithm) 

produces sorted runs (hashed partitions) using the records streamed from 

DB2, and the sorted runs (hashed partitions) are compressed and stored 

on a file server through the 10 GE Ethernet interface. In the second 

pass, the sorted runs (hashed partitions) are read from the file server, 

decompressed, and merged (joined). The sorted records are returned back 

to DB2 to complete the external sort process, and the join process packs 



 9 

matched records using a record from the build table and a record from 

the probe table, and the packed records are returned to DB2. Figure 1 

depicts an overview of aforementioned DB2 sort and join process 

accelerated with a PowerEN
tM
 PCIe card. The sort and join requests are 

made by DB2 (sort or join client), and the records are streamed from DB2 

to the accelerator through 10 GE interface. Both the DB2 and file server 

are integrated on IBM System X3650 M2 with two Intel Xeon 5500 (Nehalem) 

processors (x3650).  

 

External Sort Algorithm 

The external sort algorithm is implemented based on the quick sort and 

merge algorithm. The quick sort algorithm [13] is considered to be one 

of the simplest and fastest algorithms, and the algorithm uses a divide-

and-conquer method to sort data. The records to be sorted is segmented 

into two segments by choosing a comparison element (pivot value) so that 

all records whose key values are less than the pivot value is assigned 

to the first segment, and all records whose key values are greater than 

the pivot value is assigned to the second segment. The two segments are 

further segmented recursively using the same procedure until each 

segment consists of a single record only. The quick sort algorithm does 

not perform well when there is huge discrepancy in size between the two 



 10 

newly created segments, and it is important that each step produces two 

segments of equal size.   

The external sort algorithm is depicted in Figure 2. During the first 

pass, the input records are sent to the accelerator and collected 

sequentially into run buffers allocated in the main memory (typical run 

buffer size is 512 MB), and the run buffers are sorted concurrently. 

When each run buffer has enough records and is ready to be sorted, each 

run is split into sixteen short, fixed-length segments sub-runs (32 MB). 

The sub-runs contain a “sort” record generated from each input record. 

Unlike the input record which might be variable length, a “sort” 

record is fixed length (multiple of 8 bytes in length), and the key 

values (possibly multiple keys) are extracted from the input record and 

translated from floating point, character, decimal, etc values into 

unsigned integer values and packed into the sort record. Each sub-run is 

then quick sorted in parallel by sixteen threads, and the sixteen sub-

runs are merged in parallel by sixteen threads. Using the pointers in 

the “sort” records, the Asynchronous Data Mover (ADM), which is one of 

accelerators on PowerEN
TM
, is used to reorder the original input records 

into output buffers, output buffers are passed to the compression engine, 

and the compressed buffers are written to the file server. During the 

second pass, all the runs are retrieved from the file server and merged. 



 11 

First, the first buffer (64 KB) from each run is read into memory, and 

each buffer is passed to the decompression engine. After the 

decompression is done, the last record in each buffer is examined and 

the smallest key value is determined. All the buffers are merged in 

parallel into a single (sorted) intermediate buffer. The intermediate 

buffers are now merged up to the smallest key value found, and the 

merged records are returned to the client. The aforementioned process of 

read and merge buffers from each run is repeated until the runs are 

exhausted.  

 

External Hash Join Algorithm 

The external join algorithm implementation is based on the hybrid hash 

join algorithm. Using the classic hash join algorithm, the joining of 

two input tables creates output records by combining columns of two 

input tables using the join predicate. When the key values are matched, 

the combined rows using each matched rows of the two tables are 

generated as matching results.  The simple join algorithm requires that 

the hash table built using the smaller table fits into memory. The grace 

hash join algorithm [14] is introduced to handle the case when the 

memory available is too small to hold the hash table. The grace hash 

join algorithm partitions the two input relations so that each partition 



 12 

can fit in the memory, and pairs of build and probe partitions are 

joined sequentially and independently. The hybrid hash join algorithm 

[15] is very similar to the grace hash join algorithm, but the hybrid 

hash join algorithm is more optimized one that takes advantage of the 

available memory. The major difference between the grace hash join 

algorithm and the hybrid hash join algorithm is that the records belong 

to the first build partition are used to build a hash table in the 

memory without being written to the disk, and the record belong to the 

first probe partition are used to probe the hash table to perform actual 

join of the first pair of partitions.  

 

The external join algorithm is depicted in Figure 3. During the first 

pass, the input records are sent to the accelerator from either a record 

generator or DB2, and the records are collected in hash buffers 

allocated in the main memory, and the records in the hash buffers are 

hashed into a number of partitions concurrently using multiple threads. 

For example, when each hash buffer has enough records and is ready to be 

hashed, a thread is created, and the records in the buffer are hashed 

into a number of partitions using the thread. The number of partitions 

is pre-estimated using the estimated number of build records and 

estimated size of the records provided by the DB2 so that the hash table 



 13 

fits into the main memory. Unlike external sort, the join algorithm 

requires two input tables (build table and probe table), and each input 

table is partitioned into the same number of disjoint partitions using 

the same hash function one after another. The hash function converts 

either a variable length character strings or 4 byte key values into 4 

byte hash codes. The records having hash codes within the same range 

belong to the same partition as shown in Figure 3.  The hashed records 

as well as hash codes are sent to output buffers corresponding to each 

partition, each output buffer is passed to the compression engine when 

it is filled with hashed records, and compressed records are stored the 

file server.  On the second pass, the pairs of partition files (one 

build partition and one probe partition) are decompressed and loaded 

into the main memory, and joined recursively using multiple threads. 

Each partition will be sub-partitioned into a number of sub-partitions, 

and hence a joining of two large partitions becomes multiple joining of 

smaller sub-partitions using multiple threads, each thread processes 

joining of each sub-partition independently. The output of matched 

records are concatenated and returned to the client. This process of 

joining each pair of partition is repeated until the partitions are 

exhausted on the file server.  

 



 14 

To reduce the amount of records stored on the file server, during the 

first pass, bloom filter is built while hashing the build records. Bloom 

filter is a bit filter representation of the set of keys which can be 

queried to check if a key is present. The corresponding bit for hashed 

joining key value of record is set while hashing each build record. Then 

while hashing probe records, the joining key is hashed using the same 

set of hash functions, and the filter is checked to see whether the 

corresponding bit was set. If the bit was not set, the probe record is 

filtered out, and is not stored in the file server. Use of bloom filter 

reduces the amount of records stored on the file server and reduces 

“hash probe” time dramatically especially when there is only small 

number of matches between two input tables. 

 

DB2 Sort and Hash Join Accelerator 

Sort and Hash Join are high demanding processes in terms of resources, 

and accelerating them will improve the overall performance of DB2. In 

our implementation the DB2 code is altered to export the sort and hash 

join processes to an external multi-core accelerator, where they are 

implemented in a highly parallel manner and the results are returned to 

DB2. In both cases, the DB2’s internal sort and hash join 

implementations are bypassed. The SORT and HSJN processes are 



 15 

intercepted in the insert and retrieval of rows and the data flow is 

directed to and from the accelerator. The changes to the DB2 code are 

limited to the SORT and HSJN components and do not affect the rest of 

DB2. The interface between the DB2 and the Accelerator is implemented in 

a shared library. 

 

In the SORT process, the “insert” phase is intercepted and the record 

data is directed to the accelerator instead of the DB2 routine. When all 

the data is sent, the “fetch” routine is intercepted and sorted 

records are retrieved from the external accelerator instead of the 

internal buffers that are managed by DB2. Because there is no sorting or 

merging in DB2, memory allocation, and managing of temporary tables are 

all bypassed. The initial table processing and formatting the records, 

as well as unformatting the results and sending them to the user remain 

unaffected by the changes. 

  

In the HSJN process, the routines that manage build and probe tables are 

intercepted and the records for both tables are sent to the accelerator. 

There is no intermediate retrieval of matched records from the 

accelerator. After the last row of the probe table is sent, and the hash 

join process is completed by the accelerator, all of the matched records 



 16 

are retrieved. Similar to the sort process, because DB2 does not 

implement the hash join process there is no memory management or 

temporary storing of spilled records. Processing of the input table 

records and returning the results to the client are not affected.  

 

Simulation Results 

The simulation results of external sort and hybrid hash join algorithms 

are compared in Table 2 - Table 5. Table 2 compares performance (sort 

rate) of external sort algorithm executed on two platforms, DB2 and 

PowerEN
TM
 PCIe card. Performance is measured in megabytes per second 

(MB/sec), and relative sort performance in depicted in Table 2 and Table 

3. Table 2 shows the scalability behavior of multithreaded external sort 

algorithm when the number of threads increases, and Table 3 shows that 

the accelerator sorts the input records two times faster than DB2 sort. 

If four simultaneous sort requests are made to the accelerator, four 

concurrent sort operations are executed in the sort accelerator. Each 

sort operation successfully finishes each sort request, and the 

aggregated sort rate measured was about seven times faster than DB2 

single sort rate (RDB2).  

 



 17 

Table 4 compares performance of external join algorithm executed in the 

join accelerator using various numbers of threads. Input table sizes of 

26 GB and 30 GB are used for build and probe tables. The “hash build” 

is an execution time (TB) to map build records into partitions, and the 

“hash probe” is an execution time (TP) to map probe records into the 

same number of partitions as build partitions. It was tested that the 

build records and probe records are evenly distributed across the same 

number of partitions. Unbalanced record distribution across the 

partitions may diminish the performance of parallelized join operation. 

The partitioned data is compressed using a software compression module 

before stored on the file server (x3650). A record generator (x3650) is 

used to request a join operation to the join accelerator (x3650). The 

record generator generates TPC-H tables and streams input records 

through the 10 GE interface to the join server, and receives matched 

records from the join server. This implementation is to test the 

scalability behavior of multithreaded hash join algorithm when the 

number of threads increases. The test results show that most of the 

speedup is obtained during the second pass for the join (TJ), and the 

first pass (TB and TP) yields speedup less than that of the first pass. 

This is not surprising since bloom filter pre-filters out unmatched 

probe records and optimizes the first pass, and only small amount of 



 18 

records are stored on the file server. Table 5 compares relative 

performance of DB2 hash join and external join operation executed on 

PowerEN
TM
 PCIe card. The join server implemented on the PowerEN

TM
 PCIe 

card uses hardware compression and decompression coprocessors to reduce 

data size stored on the file server. The test results show that the 

multithreaded join implementation on the PowerEN
TM
 PCIe card accelerates 

DB2 hash join operation by a factor of two.  

 

Conclusion 

The goal of the work was to accelerate DB2 relational database 

operations which cannot be processed in a single pass of operation due 

to limitations on resources. We have concentrated on parallel 

implementation of external sort and external hash join algorithms using 

a PowerENTM PCIe card developed by IBM as an accelerator, and integrated 

it with a host machine running DB2 as a client. In this paper, we have 

presented multi-threaded implementation of external sort and join 

operations to allow multiple threads to execute the operations 

concurrently. Our experimental results demonstrate that stand alone sort 

and join are good candidates to be offloaded to the accelerator and 

achieve almost by a factor of two acceleration of the DB2 performance 

with the help of compression and decompression engine in conjunction 



 19 

with parallel implementation of the algorithms. One interesting 

extension of the work would be to offload more than a single operation 

to the accelerator so that TPC-H queries benefited from the acceleration 

even more. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

References 

[1] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, 

Addison-Wesley, 1973. 

[2] A. S. Arefin and M. A. Hasan, “An Improvement of Bitonic Sorting for Parallel 

Computing,” Proceedings of the 9th WSEAS International Conference on Distributed 

Computing, Athens, Greece, July 11-16, 2005. 

[3] J. Chhugani, A.D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y. K. Chen, A. Baransi, 

S. Kumar, and P. Dubey, “Efficient Implementation of Sorting on Multi-core SIMD CPU 

architecture,” in Proceedings of the VLDB Endowment, August 2008, pp 1313-1324. 

[4] N. Ramprasad and P. K. Baruah, “Radix Sort on the Cell Broadband Engine,” 

International Conference on High Performance Computing (HiPC), 2007. 

[5] M. Zagha and G. E. Blelloch, “Radix Sort for Vector Multiprocessors,” Proceedings 

Supercomputing, November, 1991, pp 712-721. 

[6] N. Satish, M. Harris, and M. Garland, “Designing Efficient Sorting Algorithms for 

Manycore GPUs,” in 23rd IEEE Internal Parallel and Distributed Processing 

Symposium, May 2009, pp 1-10. 

[7] R. Parikh, “Accelerating Quicksort on the Intel Pentium 4 Processor with Hyper-

Threading Technology,” http://software.intel.com, 2008. 

[8] S. Azadegan and A. Tripathi, “A Parallel Join Algorithm for SIMD Architectures,” 

Journal of Systems and Software, Vol. 39, December 1997, pp 265-280. 

[9] H. Lu, K. L. Tan, and M. C. Sahn, “Hash-based Join Algorithms for Multiprocessor 

Computers with Shared Memory,” Proceedings of the Sixteenth International Conference 

on Vary Large Database, 1990. 



 21 

[10] P. Garcia and H. F. Korth, “Database Hash-Join Algorithms on Multithreaded 

Computer Architectures,” Proceedings of the 3rd Conference on Computing Frontiers, 

2006. 

[11] T. P. Martin, P. A. Larson, and V. Deshpande, “Parallel Hash-Based Join 

Algorithms for a Shared-Everything Environment,” IEEE Transactions on Knowledge 

and Data Engineering, Vol. 6, October 1994 

[12] D. P. LaPotin, S. Daijavad, C. L. Johnson, S. W. Hunter, K. Ishizaki, H. Framke, 

H.D. Achilles, D. P. Dumarot, N. A. Greco, and B. Davari, “Workload and Network-

Optimized Computing Systems,” IBM Journal of Research and Development, Vol. 54, 

No. 1, January 2010. 

[13] A.R. Hoare, Algorithm 64: Quicksort, Commun. ACM, 4(7):321, 1961. 

[14] J. Goodman, “An Investigation of Multiprocessor Structures and Algorithms for 

Database Management,” Technical Report UCB/ERL M81/33, University of California, 

Berkeley, May 1981. 

 [15] D. J. Dewitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. 

Wood, “Implementation Techniques for Main Memory Database Systems,” Proceedings 

of the 1984 ACM SIGMOD International Conference on Management of Data, Vol. 14, 

June 1984. 

  

 

 



 22 

DB2

1)  Records

3) Retrieve data

2)  Store data

4)  Records

File Server

10 GE

Accelerator

Merge Runs /
Join Tables

Sort Runs /
Hash Records

IBM x3650 M2

IBM x3650 M2 (compressed)

(decompressed)

PowerEnTM

DB2

1)  Records

3) Retrieve data

2)  Store data

4)  Records

File Server

10 GE

Accelerator

Merge Runs /
Join Tables

Sort Runs /
Hash Records

IBM x3650 M2

IBM x3650 M2 (compressed)

(decompressed)

PowerEnTM

 

Figure 1 Overview of external sort and external join implementation 

using an accelerator. 

 

 

 

 

 



 23 

Main MemoryRun 1 Run 2 Run 3 Run 4 Run n…………

Key ABC Data qwerty

Key ABC Data asdfgh

Key XYZ Data zxcvbn

Table

Sub-run 1 Sub-run 2 Sub-run m…………

Sorted Sub-run 1 Sorted Sub-run 2 Sorted Sub-run m…………

Sorted Run 1 Sorted Run 2 Sorted Run 3 Sorted Run 4 Sorted Run n…………

Return to ClientMerged records

Parallel Sort

Parallel Merge and Compress

File Server

Decompress and Parallel Merge

Main MemoryRun 1 Run 2 Run 3 Run 4 Run n…………

Key ABC Data qwerty

Key ABC Data asdfgh

Key XYZ Data zxcvbn

Table

Sub-run 1 Sub-run 2 Sub-run m…………Sub-run 1 Sub-run 2 Sub-run m…………

Sorted Sub-run 1 Sorted Sub-run 2 Sorted Sub-run m…………Sorted Sub-run 1 Sorted Sub-run 2 Sorted Sub-run m…………

Sorted Run 1 Sorted Run 2 Sorted Run 3 Sorted Run 4 Sorted Run n…………Sorted Run 1 Sorted Run 2 Sorted Run 3 Sorted Run 4 Sorted Run n…………

Return to ClientMerged records

Parallel Sort

Parallel Merge and Compress

File Server

Decompress and Parallel Merge

 

Figure 2 External sort algorithm 



 24 

 

 

Figure 3 External join algorithm. 

 

 

 

 

 

 

 

 

 



 25 

Table 1 Comparison of compression ratio using various TPC-H tables) 

(GZIP on x3650 M2 vs hardware compression engine on PowerENTM) 

TPC-H Tables GZIP on x3650 Compression accelerator on 

PowerEN
TM
 

Customer 2.4 2.4 

Orders 3.2 3.2 

Lineitem (all) 3.2 3.2 

Lineitem (2 cols) 2.9 2.9 

Lineitem (3 cols) 5.1 5.0 

 

Table 2 Test results of external sort algorithm (sort and merge) using 

different number of threads. TS and TM are execution times measured for 

each module with a single thread. 

# threads Sort Merge 

1 TS TM 

2 0.5 x TS 0.5 x TM 

4 0.25 x TS 0.26 x TM 

8 0.13 x TS 0.13 x TM 

16 0.1 x TS 0.07 x TM 

32 0.07 x TS 0.05 x TM 

 



 26 

Table 3 Comparison of external sort algorithm (DB2 vs. accelerator). RDB2 

is a sort rate measured on DB2. The compression was turned on DB2 and 

PowerEN
TM.
 

Sort Client Sort Accelerator # sort Sort Rate  

DB2 None 1 RDB2 

DB2 PowerENTM 1 2.11 x RDB2 

DB2 PowerENTM 4 7.22 x RDB2 

 

Table 4 Test results of external join algorithm using different number 

of threads (record generator, accelerator and file server implemented on 

x3650). TB, TP, TJ and TTotal are execution times measured for each module 

with a single thread. 

# threads Hash build  Hash Probe Join  Total  

1 TB TP TJ TTotal 

2 0.92 x TB 0.93 x TP 0.70 x TJ 0.82 x TTotal 

4 0.77 x TB 0.92 x TP 0.36 x TJ 0.59 x TTotal 

8 0.64 x TB 0.92 x TP 0.18 x TJ 0.45 x TTotal 

16 0.5 x TB 0.88 x TP 0.10 x TJ 0.35 x TTotal 

32 0.23 x TB 0.92 x TP 0.05 x TJ 0.22 x TTotal 

 

 



 27 

Table 5 Comparison of test results of external join algorithm. TPowerEN is 

total join time measured on PowerENTM 

Join Client Join Accelerator compression Total Join Time  

DB2 PowerENTM hardware TPowerEN 

DB2 None software 1.89 x TPowerEN 

 

 


