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ABSTRACT
We consider MapReduce clusters designed to support multi-
ple concurrent jobs, concentrating on environments in which
the number of distinct datasets is modest relative to the
number of jobs. Many datasets in such scenarios will wind
up being scanned by multiple concurrent Map phase jobs.
As has been noticed previously, this scenario provides an op-
portunity for Map phase jobs to cooperate, sharing the scans
of these datasets, and thus reducing the costs of such scans.
Our paper has two main contributions. First, we present a
new, novel and highly general method for sharing scans and
thus amortizing their costs. This concept, which we will call
cyclic piggybacking, is an alternative to the more traditional
batching scheme described in the literature, and seems to
have a number of advantages over that scheme. Second,
we describe a method for optimizing schedules within the
context of this cyclic piggybacking paradigm. This scheme,
a significant but natural generalization of the recently in-
troduced flex scheduler for MapReduce, can optimize a
wide variety of metrics. Such cost functions include aver-
age response time, average stretch, and any minimax-type
metric. The overall approach, including both cyclic piggy-
backing and the flex generalization, is called circumflex.
We demonstrate the excellent performance of circumflex
via a variety of simulation experiments, and we describe a
practical implementation strategy.

Keywords: MapReduce, Shared Scans, Scheduling, Al-
location, Optimization, Amortization

1. INTRODUCTION
Google’s MapReduce [1] and its open source implementa-
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tion Hadoop [2] have become highly popular in recent years.
There are many reasons for this success: MapReduce is sim-
ple to use, even for users of limited sophistication. It is
automatically parallelizable, naturally scalable, and can be
implemented on large clusters of commodity hardware. Im-
portant built-in features include fault tolerance, communi-
cations and scheduling.

We focus on the problem of scheduling MapReduce work
in this paper, and more specifically on a specialized but com-
mon and important variant first introduced by Agrawal et.
al [3]: optimizing the amortized costs of shared scans of Map
jobs. Before describing this “shared scan” problem in detail,
however, it will help to provide a brief overview of some
popular generic MapReduce schedulers. Understanding the
original MapReduce scheduling problem and its history will
motivate our approach to the shared scan special case, and
put our solution to that problem in the proper context.

Early MapReduce implementations, including Hadoop,
employed First In First Out (fifo) scheduling. But while
simple and almost universally applicable, fifo is known to
have problems with job starvation in most environments. A
large job can “starve” a small job which arrives even mod-
estly later. Worse, if the large job was a batch submission
and the small job was an ad-hoc query, the exact completion
time of the large job would not be particularly important,
while the completion time of the small job would be.

The Hadoop Fair Scheduler (fair) is a slot-based MapRe-
duce scheme designed to avoid starvation by ensuring that
each job is allocated at least some minimum number of
slots [4–6]. (Slots are the basic unit of resource in a MapRe-
duce environment.) But fair does not attempt to actually
optimize any specific scheduling metric. And a schedule de-
signed to optimize one metric will generally perform quite
differently from a fair schedule, or one designed to optimize
another metric.

By contrast, the Flexible Scheduler (flex) [7] can optimize
a wide variety of standard scheduling theory metrics while
ensuring the same minimum job slot guarantees as in fair,
and maximum job slot guarantees as well. The desired met-
ric can be chosen from a menu that includes response time,
stretch, and any of several metrics which reward or penal-
ize job completion times compared to possible deadlines.
This last includes the number of tardy jobs, tardiness, late-
ness and also Service Level Agreements (slas). There are
16 combinatorial choices in all, because the metrics can be
either weighted or unweighted, and one can optimize either
their average (or, equivalently, from the perspective of opti-
mization, their sum) across all jobs, or the maximum such



value. Moreover, flex can be regarded as an add-on module
that sits on top of fair, works synergistically with it, and
employs its extensive infrastructure.

But, as pointed out in [3], there is another, more subtle
opportunity for scheduling optimization in many common
MapReduce environments. This is because the number of
distinct datasets is often modest relative to the number of
MapReduce jobs. Consider a particular MapReduce dataset.
It will not be uncommon to have multiple simultaneously
active jobs in their Map phases which need to scan this
dataset. Also, for many MapReduce jobs the execution time
cost of the Map phase is primarily that of scanning the data.
Furthermore, the Map phase is often the most expensive
(and sometimes the only) phase of a MapReduce job. Given
all of the above, there seems to be considerable leverage in
having Map phase jobs cooperate in some fashion on dataset
scans, thus amortizing the costs of these scans.

In fact, [3] introduced a pair of schedulers designed for
MapReduce environments with shared scans. (The two sched-
ulers in question will henceforth be known collectively as
ako, for the authors, Agarwal, Kifer and Olsten.) The
ako schemes determine, for each “popular” dataset, an op-
timized batching window. The idea is that Map jobs asso-
ciated with this dataset will delay starting work until this
window expires, and the scans of all the delayed Map jobs
will then be batched together, so that a single scan can
be performed for all of them. An ako off-line optimiza-
tion algorithm assumes Poisson arrivals of known rates for
the jobs associated with each dataset, and uses a heuristic
scheme based on Lagrange multipliers to find batching win-
dows which minimize either the average or the maximum
value of a metric somewhat analogous to stretch.

There do seem to be some limitations to the ako ap-
proach, which we will now enumerate.

1. Batching forces the tradeoff of efficiency for latency.
In other words, batching a number of scans together causes
them to be delayed. A larger batching window is more effi-
cient but causes a longer average delay.

2. The assumption of Poisson arrivals allows the opti-
mization to be performed, but it is restrictive. Jobs do not
always arrive according to such a distribution.

3. The assumption that the arrival rates of the jobs can be
known in advance is similarly problematic. These estimates
will likely be fairly rough approximations, and thus may
affect the quality of the optimization solution.

4. The schedule produced is inherently static. The scheme
therefore cannot react dynamically to changing conditions.
(In fairness, the ako implementation is more dynamic than
the decisions produced by the scheduler itself.)

5. The ako scheme optimizes two variants of a some-
what unusual scheduling metric known as perceived wait
time (PWT). This is defined as the difference between ac-
tual response time of a job and its minimum possible re-
sponse time. (By contrast, the more natural metric stretch,
to which the authors briefly allude, is the ratio of the two
terms. But it is noted that optimizing stretch proved prob-
lematic for them.) So ako optimizes either average and
maximum PWT.

6. While average and maximum PWT are metrics which
try to philosophically capture the spirit of fairness, the ako
scheme does not specifically deal with minimum slot allo-
cation constraints. These minimum constraints are a key
guarantee in both fair and flex.

Our goal in this paper is to provide an amortizing MapRe-
duce scheduler without these limitations. We eliminate la-
tency due to batching by employing a different shared scan
concept which will be called cyclic piggybacking. Because
cyclic piggybacking essentially treats the dataset circularly
rather than linearly, the advantages of amortization are
achieved without the disadvantages of any latency: Map
jobs can begin immediately. There is no need for Poisson
assumptions. There is no need to have accurate job arrival
rate data. The scheme is dynamic rather than static, simply
dealing with Map jobs as they arrive. Indeed, cyclic piggy-
backing itself does not involve any optimization at all. It can
be performed entirely on the fly. Finding high quality slot
allocations among the jobs, of course, does still require an
optimization scheme, and our new scheme for this is a gen-
eralization of the flex algorithm in that it decomposes each
Map job into multiple subjobs based on cyclic piggybacking.
We then notice a natural chain precedence ordering that
can be assumed among these subjobs in the optimal solu-
tion, and solve a scheduling problem with these constraints.
A total of 11 of the 16 original flex scheduling metrics can
be optimized. (There may be heuristics available for the
other 5.) The 11 include the minisum metrics of average
or total response time, stretch, and the minimax metrics of
tardy jobs, tardiness, lateness and Service Level Agreements
(slas). All of these can either be weighted or unweighted.

We will call our full shared scan scheduling scheme cir-
cumflex. In summary, the circumflex scheme described
in this paper involves two main contributions.

First, we provide a novel method called cyclic piggyback-
ing for amortizing the cost of the shared scans of a set of mul-
tiple MapReduce jobs involving common datasets. This ap-
proach has a number of advantages over the batching scheme
described in [3].

Second, we notice that one can assume that the various
subjobs generated in this manner can be assumed to have a
natural chain precedence order. This allows us to formulate
a scheduling problem which is a generalization of flex. We
optimize the scheduling of the subjobs with respect to any of
a choice of 11 standard metrics, while respecting minimum
slot and chain precedence constraints.

Actually, the shared scan scenario considered above can
be generalized significantly. Consider semi-shared scans for
jobs in the case where these jobs scan arbitrarily overlapping
datasets, perhaps within one or more directories. Such a
scenario would occur quite naturally, for instance, if one job
scans a day of data, another scans a week and a third scans
a month. (Note that weeks are not necessarily contained
within a single month.) Considering the obvious Venn dia-
gram, the point is that there is a natural partitioning of the
union of the datasets based on the overlapping subsets of
various cardinalities. Although the term becomes something
of a misnomer in this generalized context, cyclic piggyback-
ing can be easily extended to the case of semi-shared scans.
It also turns out, at least for minimax objective functions,
that there is a natural precedence order among the over-
lapping subsets, from more overlapped to less overlapped.
This is not a chain precedence scenario, but at least for the
minimax case the circumflex scheduling scheme will work
as is. So one can optimize any of 8 separate metrics in this
general scenario, including maximum stretch.

While we will focus, for ease of exposition, on the non-
overlapping dataset scenario, we will point out the manner



in which each portion of circumflex can be extended as
we proceed. We should note that notions similar to what we
call cyclic piggybacking have been proposed in various other
contexts, for example in the broadcast delivery of digital
products [8] and in databases [9]. To our knowledge, these
have all been for the non-overlapping case: There does not
appear to have been any work on the general scenario.

Finally, we examine the performance of circumflex by
means of simulation experiments. Since the metrics opti-
mized by ako and circumflex are disjoint, we choose not
to compare them directly. That would seem unfair to one
scheme or the other. It would also be unfair to compare
circumflex with fair or fifo, because the latter two do
not attempt to optimize any particular metric. We there-
fore compare instead the quality of circumflex with that of
flex, and similarly with a batching scheme of our own de-
vising. (This scheme, called batch, actually employs a flex
optimization algorithm on the batched datasets.) Thus, we
are examining the performance benefits of high quality cyclic
piggybacking schedules to schedules optimizing the same
metric, both with and without batching.

There seeems to be very limited additional work in the
area of sharing for MapReduce jobs. Note, however, that
[10] examines a variety of sharing alternatives, including
shared scans, in a MapReduce framework.

The remainder of this paper is organized as follows. In
Section 2 we describe cyclic piggybacking as an alternative
employed by circumflex in favor of batching. The circum-
flex scheduling algorithm, including a discussion of chain
precedence, is given in Section 3. In Section 4 we illustrate
the excellent performance of circumflex relative to flex
and batch in simulation experiments. Conclusions are in
Section 5. We also include two appendices. Appendix A
gives some preliminaries involving MapReduce and theoret-
ical scheduling, essentially background information to un-
derstand Section 3. Appendix B gives circumflex pseudo-
code. Appendix C describes a MapReuce implementation of
shared scans.

2. CIRCUMFLEX CYCLIC PIGGYBACK-
ING

In this section we describe cyclic piggybacking and how it
compares to the batching approach given in [3]. The most
instructive way to describe both batching and cyclic piggy-
backing is via a common, simple example. We will do this
before giving a formal definition of each approach.

2.1 Batching
Consider Figure 1. In this example there are two datasets.

One is colored red and the other blue. Different Map jobs
scan one or the other of these datasets. The horizontal,
black line in the figure represents time. Optimized batching
windows for both datasets are computed via a scheme such
as [3]. The vertical red lines in the figure depict the (tem-
poral) boundaries of the red batching windows, while the
vertical blue lines depict the boundaries of the blue batch-
ing windows. The red batching windows are shorter than
the blue batching windows. The figure also depicts the ar-
rival of 10 Map jobs, 6 of which scan the red dataset and 4 of
which scan the blue dataset. The jobs are numbered, with
a plus sign indicating their arrivals. Red jobs 1, 2, 4 and 6
arrive before the end of the first batching window, and they
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Figure 1: Batching

are scanned together, as a batch with concurrency level 4,
at the beginning of the second window. This is illustrated
above the central horizontal time line. The green lines repre-
sent the latency each red job incurs, and the batching itself
is indicated via 4 red lines. Note that job 1 incurs a latency
of nearly the entire red batching window. Red job 8 arrives
during the second batching window and is scanned alone at
the beginning of the third window. Again, the green line
illustrates the latency and the red line illustrates this triv-
ial (concurrency level 1) batch. Red job 10 arrives during
the third batching window, and its scan is not shown in the
figure. The blue jobs 3, 5 and 7 are illustrated below the
central time line and are scanned with concurrency level 3.
The green lines indicates latency, as before, and the blue
lines indicate scanning. Blue job 9, which arrives in a sub-
sequent batching window, is not scanned in the figure.

The tradeoff between latency and efficiency is clearly il-
lustrated in Figure 1. Longer batch windows allow for more
jobs to be batched together, but the average latency of the
jobs increases accordingly. The expected average latency is
half the time in a batching window. This is the fundamental
weakness of the batching approach.

Formally, the batching schemes described in [3] compute,
for each dataset d, an optimized window batching window
time Td. The optimization algorithm assumes Poisson ar-
rivals of jobs, as well as estimates of the rates associated with
each dataset. It uses a Lagrange multiplier-based heuristic
to find batching windows which minimize either the average
or maximum PWT. Assuming a start time of 0, time is then
partitioned for any dataset d into multiple windows of the
form [kTd, (k + 1)Td) for each non-negative integer k. Any
Map job arriving in window [kTd, (k + 1)Td) and involving
dataset d is then performed using a batched scan starting at
time (k + 1)Td.

2.2 Cyclic Piggybacking
Our new notion of cyclic piggybacking is best understood

by considering Figure 2. The example illustrated here is
identical to that of Figure 1. So there are again 10 total
jobs, and each job must scan one of two datasets. As before,
6 jobs scan the first dataset and 4 jobs scan the second.

If one thinks of the dataset as an ordered list of blocks
the dataset can be viewed linearly. Though it is something
of a simplification, one can think of blocks as being scanned
in this line segment from left to right, from first block to
last block. However, recognizing that there is no special
meaning to the first or last blocks, one can also “glue” these
two blocks together and view the dataset cyclically. A good
analogy here would be a clock, with blocks corresponding
to hours. So blocks can be scanned in a clockwise manner,
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Figure 2: Cyclic Piggybacking

starting with the first block – and as the scan reaches the
last block it can simply begin again at the first block. In
the figure the top-most point of a circle will indicate the
boundary between the first and last block. In the clock
analogy this point is simply “midnight”.

At time 1 the first red job arrives. This is illustrated
both via the linear time line and in a cyclic view of the red
dataset shown at the top. (A plus sign in the linear view
will indicate a job arrival, as before, while a minus sign will
refer to a job departure. In the cyclic view these occur at
identical points on the circle.) The red Map job 1 starts to
scan data in clockwise fashion from the midnight starting
point denoted by 1. The (aligned) linear view of job 1 is
shown above the black central timeline.

Subsequently a second red job arrives at time 2. Again,
this arrival is shown in both the linear and cyclic views.
Considering the cyclic view, the clockwise arc from point
1 to point 2 involves previously scanned blocks, but job 2
can now piggyback its data scan of subsequent common data
onto the remaining scan of job 1, amortizing costs. In the
linear view one notices that the concurrency level increases
to 2 once job 2 starts. When job 1 completes its scan, the
remaining blocks of job 2 can be scanned. The concurrency
level would be 1 during this portion of the scan, but notice
that all of the concurrency levels depend dynamically on
potential future arrivals.

The subsequent arrival of a third, blue job causes the
cyclic view of the blue dataset at the bottom, and the aligned
linear view of job 3 below the black timeline.

This process continues. The arrival of red job 4 causes a
concurency level of 3 for the red dataset. The arrival of blue
job 5 causes a concurrency level of 2 for the blue dataset.
The arrival of red job 6 causes a concurrency level of 4 for the
red dataset. Then the departure of job 3 occurs, reducing
the concurrency level back to 1 for the blue dataset. Note
that the eventual departure of blue job 5 and the subsequent
arrival of blue job 7 causes a new single scan of the first
blocks of the blue dataset again, and so forth.

Consider Figure 3, which illustrates the state of affairs
for the red dataset at precisely the time when the 4th red
job j arrives. At this moment in time 3 red jobs are in the
process of being scanned. Denote the red dataset by d. The
figure shows a decomposition of the current remaining work
for the red dataset into 4 subjobs, labeled (d, 1), ...(d, 4).
Subjob (d, 1) starts at the current time, and completes at
the end of the scan of the 1st red job. The concurrency

Current moment in time 

(j,1) (j,2) (j,3) (j,4) Chain of subjobs 

Figure 3: Creation of Chain Precedence Subjobs

level is 4. Subjob (d, 2) starts when subjob (d, 1) ends, and
completes at the end of the scan of the 2nd red job. The
concurrency level is 3. Formally, subjob (d, k) starts when
subjob (d, k− 1) ends, and completes at the end of the scan
of the kth red job. It has concurrency level Kd−k+1, where
Kd is the total number of currently active red jobs. (In this
case, Kd = 4.)

A few rather delicate points should be made here. First,
note that each subjob belongs to both a Map job and a
dataset. The notation clearly references the latter rather
than the former. Because calling (d, k) a subjob of job d
overuses the term “job”, we will avoid this. In other words,
we will reserve the word job for the Map jobs themselves.
Note also that the notation is quite dynamic – it changes
with job arrivals. Finally, there could also many synonyms
for subjobs, depending on the job under consideration: If
jobs j1 and j2 represent two succesive scans for the same
dataset d, then subjob (d, k) viewed via the first job will
be the same as subjob (d, k − 1) viewed via the second. To
avoid this unsatisfactory notation we will insist on using the
subjob terminology associated with the last job to arrive for
a particular dataset. (See Figure 3.) We will discover in
Section 3, via a simple interchange argument, that the opti-
mal way to complete these subjobs is in sequential order. In
the figure this means that subjob (d, 1) should be completed
before subjob (d, 2), and so on.

Defined in this manner, cyclic piggybacking suffers from
none of the first four disadvantages noted for ako in Sec-
tion 1. There is no built-in latency, since jobs are ready to
start their Map phase scans instantly. The arrival distri-
bution and rates are irrelevant. The design is completely
dynamic, reacting on the fly to any new job arrivals: No
optimization algorithm needs to be executed.

Of course, nothing is ever quite as simple as it might ap-
pear at first. The description of cyclic piggybacking above is
a bit too simple in several ways. We introduce these issues
now, resolving each of them in subsequent sections.

First, by describing the scanning of datasets in either lin-
ear or cyclic terms we have essentially implied a discrete
block ordering that does not really exist. This simplifica-
tion was strictly for purposes of exposition. In fact, no real
order for the blocks exists, except that inherently implied by
the optimality of the subjob sequencing. There is great flexi-
bility built into the MapReduce paradigm: The actual block
scan execution order within a subjob will depend on an en-
tirely different layer of the MapReduce scheduler. (This so-
called assignment layer, which we will describe in Appendix
A, considers issues such as data locality when assigning a



Figure 4: Semi-Shared Scans

Map scan to an available slot on a particular node.) In
any reasonable implementation of the cyclic piggybacking
scheme there will simply be a bit for each active job and
relevant block, which notes whether or not that block has
already been scanned for that job. Within a subjob, the
scanning order of the blocks is essentially immaterial.

Although we say that the blocks are ready immediately
for scheduling, we do not necessarily have the resources to
schedule that work. We have not yet introduced our MapRe-
duce scheduler, which will attempt to optimally allocate the
slot resources to the various jobs and subjobs. The bot-
tom line is that our description of cyclic piggybacking thus
far blurs this detail. We will describe MapReduce schedul-
ing preliminaries in Appendix A and give the details of our
circumflex scheduler in Section 3.

There are inherent differences in the relative efficiencies
of batching and cyclic piggybacking. In both cases these
can be measured in terms of the average concurrency levels.
(Higher is more efficient.) We will have more to say about
the efficiency of cyclic piggybacking in Section 4.

In the case of semi-shared scans the subjobs are modestly
more complex. Consider the left-hand side of Figure 4, rep-
resenting the remaining scans required for three separate but
overlapping arrivals at the time of the third arrival. The 6
subjobs created in this example correspond to the subsets in
the figure. It will turn out that the optimal way to complete
these subjobs is from most overlapped to least overlapped
subset, yielding the precedence diagram show in the right-
hand side of the figure.

3. CIRCUMFLEX SCHEDULING
Assuming the MapReduce and theoretical scheduling pre-

liminaries outlined in Appendix A, we are in a position to
describe the circumflex allocation scheduler. circumflex
is an epoch-based malleable allocation layer scheduler for
subjobs related by chain precedence. It eliminates the last
two disadvantages noted for ako. Specifically, it optimizes
both average and maximum stretch, plus a number of other
metrics more natural than those of ako. (Of the 16 natural
combinatorial choices described in Appendix A and handled
by flex, the current version of circumflex can handle 11.)
Additionally, circumflex handles the minimum constraints
that are inherent in both fair and flex.

In this section we will first justify the chain precedence as-
sumption among the subjobs. Then we will describe the two
steps of the circumflex scheduler. The first step is to solve
one of two optimization problems, depending on the precise
metric chosen. In one case the optimization problem can be
solved by a Generalized Smith’s Rule scheme. In the other
case it can be solved by a Backwards Dynamic Program-
ming scheme. Either of these schemes provides as output

a so-called priority order of the various subjobs, which is
then used as input by the second step. We have designed a
Ready List Malleable Packing scheme to solve this problem.
The output of this second step is an optimized malleable
schedule of the subjobs for the chosen metric in the cyclic
piggybacking environment.

3.1 Chain Precedence
Suppose, as before, that there are Kd jobs scanning a

given dataset d at a particular instant in time. We have
seen that this dataset gives rise to Kd subjobs, namely
{(d, 1), ..., (d, Kd)}. Cyclic piggybacking has the effect of
partitioning the dataset d into Kd +1 disjoint sets of blocks.
The first set will be relevant to all Kd jobs. The second set
will still be relevant to Kd−1 jobs, all but the first to arrive.
(The first job will have already scanned these blocks.) The
third set will still be relevant to Kd−2 jobs, all but the first
two to arrive. Continuing in this nested manner, the Kdth
subset will still be relevant to 1 job, the last to arrive. The
(Kd +1)st subset, which will be empty if and only if the last
job has just arrived, will no longer be relevant. In general,
subjob (d, k) is relevant to Kd − k + 1 jobs.

We claim that the subjobs associated with each dataset j
can be assumed to be related by chain precedence. In other
words, (j, 1) ≺ (j, 2) ≺ ... ≺ (j, Kj − 1) ≺ (j, Kj). A simple
interchange argument suffices to see this: No actual job can
complete until all the blocks associated with its dataset have
been scanned. And all of the possible scheduling metrics
are functions of this completion time. If 1 ≤ k1 < k2 ≤ Kj

it can help but cannot hurt the scheduling objective func-
tion to perform the scan of a block in subjob (d, k1) before
performing the scan of a block in subjob (d, k2). This is
because all of the original jobs which are relevant to sub-
job (d, k2) are also relevant to subjob (d, k1). After inter-
changing the block scans into the proper order, the result
follows. Again, see Figure 3, where we can assume that
(d, 1) ≺ (d, 2) ≺ (d, 3) ≺ (d, 4).

3.2 Finding a Priority Ordering
In this first step we wish to find a high-quality priority

order for the subjobs. Actually, this priority ordering will
also be a topological order of the subjobs. (This notion
applies to arbitrary precedence constraints rather than just
chain precedence, so we recall the definition in the tradi-
tional “job” context: A topological order is an ordering of the
jobs which respects the precedence among the jobs. Thus
j1 < j2 whenever j1 ≺ j2.)

One of two schemes will be employed, depending on the
problem variant. The first case handles minisum average
response time variants, specifically average response time,
weighted average response time and average stretch. The
second case handles all minimax metrics. Either will pro-
duce an optimal interim (hypothetical) schedule, and the
completion times of the jobs in this interim schedule will
determine the input ordering to the Ready List Malleable
Packing scheme.
Weighted Average Response Time: This case is solved
by a generalized version of Smith’s Rule [12]. (Smith’s Rule
optimally solves the generic problem of minimizing weighted
average response time for independent jobs j with weight wj

and processing time pj by sequencing the jobs in order of the
ratios pj/wj .) The pseudo-code for the Generalized Smith’s
Rule is given in Appendix B.1. It will be clear that this does,



indeed, represent a generalization of Smith’s rule to the case
of chain precedence subjobs. See line 7, in particular, where
the partial ratios of sums replace the traditional Smith Rule
ratios. The proper ordering is achieved via line 8.

Since chain precedence is maintained in the resulting se-
quence of subjobs, the ordering of the completion times of
the subjobs is a topological ordering as well, and this prior-
ity ordering is input to the second step.
Minimax Problems: This case is solved by a Backwards
Dynamic Program. The pseudo-code for this case is given
in Appendix B.2. This scheme actually works for arbitrary
jobs, any non-decreasing penalty function Fj and any prece-
dence relation ≺. Chain precedence is not required. So we
have described the pseudocode more generically.

Since precedence is maintained in the resulting sequence
of subjobs, the ordering of the completion times is again a
topological ordering, and this priority ordering is input to
the second step.

3.3 Ready List Malleable Packing Scheme
The second step again works for arbitrary precedence con-

straints, so we will describe it in generic job terminology.
The translation to subjobs and chain precedence is easy.

The scheme inputs one of the output priority orderings
from the previous subsection, as appropriate. It then em-
ploys Ready List Malleable Packing scheme. (A ready list is
a dynamically maintained list of jobs which are ready to run
at any given time. In other words, all precedence constraints
must have been satisfied at the time.)

The pseudo-code for the Ready List Malleable Packing
scheme appears in Appendix B.3. Given a priority ordering,
the scheme proceeds iteratively. At any iteration a current
list L of jobs is maintained, ordered by priority. Time is
initialized to T0 = 0. The current list L is initialized to be all
of the jobs, and one job is removed from L at the completion
time Ti of each iteration i. Call the time interval during
iteration i (from time Ti−1 to Ti) an interval. The number
of slots allocated to a given job may vary from interval to
interval, thus producing a malleable schedule.

The ith iteration of the algorithm involves the following
steps: First, the scheme allocates the minimum number mj

of slots to each job j ∈ L. This is feasible, since the minima
have been normalized, if necessary, during a precomputation
step. After allocating these minima, some slack may remain.
This slack can be computed as s = S −

P
j∈L mj . The

idea is to allocate the remaining allowable slots Mj − mj

to the jobs j in priority order. The first several may get
their full allocations, and those jobs will be allocated their
maximum number of slots, namely Mj = mj + (Mj −mj).
But ultimately all S slots may get allocated in this manner,
leaving at most one job with a “partial” remaining allocation
of slots, and all jobs having lower priority with only their
original, minimum number of slots. (The formal details of
these steps are given in the pseudo-code.) Given this set
of job allocations, one of the jobs j will complete first, at
time Ti. (Ties among jobs may be adjudicated in priority
order.) Now job j is removed from L, and the necessary
bookkeeping is performed to compute the remaining work
past time Ti for those jobs remaining in L. After J iterations
(and J intervals) the list L will be depleted and the output
malleable schedule created.

In the semi-shared case the interchange argument yields
a more general precedence relationship between the subjobs

created. As before, no job can complete until all the blocks
associated with it have been scanned. Considering Figure 4,
it can help but cannot hurt to scan the three-way intersec-
tion before two-way intersections, and the two-way before
the one-way. The resulting precedence graph is shown. (The
arrows indicate precedence.) Of the three crucial algorithms
of circumflex only the Generalized Smith’s Rule breaks
down. It requires chain precedence. But the Backwards
Dynamic Programming and Ready List Malleable Packing
schemes carry over unchanged. So in the semi-shared scan
case we can handle minimax metrics, but not weighted av-
erage response time metrics.

4. SIMULATION EXPERIMENTS
In this section we describe a variety of simulation exper-

iments designed to show the performance of circumflex.
We will concentrate on three metrics, namely average re-
sponse time, average stretch and maximum stretch. The
circumflex scheme can, as noted, handle all other mini-
max metrics as well. In the interests of space we have cho-
sen maximum stretch as representative and most important
of the minimax metrics, but maximum tardiness or lateness
runs yield comparable results.

We will compare flex and circumflex with a batch
variant of our own design. (Recall that the ako batching
scheme described in [3] employed the maximum PWT met-
ric, and was basically an off-line algorithm.) To compare
batching fairly with flex and circumflex, we have devised
a scheme which batches every dataset scan at the end of a
fixed time window W , and then combined this with a flex
scheduling algorithm applied to the resulting batches. The
start times of the windows were offset evenly, depending on
the dataset involved, to space the batch arrivals as equally
as possible. This batch scheme seems to be in the spirit of
ako. On the negative side, its batching decisions are not as
intelligent. On the positive side, it also optimizes the chosen
metrics quite well.

The experimental design was as follows. Each experi-
ment simulated 1000 arrivals for a total of D = 20 distinct
datasets. The popularity of each dataset was chosen by sam-
pling from the CDF of a Zipf-like distribution with param-
eter θ1 equal to either 0, .25, .5, .75 or 1.0. (Zipf-like distri-
butions [15] on a set of size D employ an integer parameter
θ between 0 and 1. When θ = 1 the distribution is purely
Zipf, and when θ = 0 the distribution is uniform. Zipf-like
distributions thus span a wide variety of common skew pat-
terns.) The arrival times themselves were chosen according
to a Poisson distribution. The size of each dataset was cho-
sen from a second Zipf-like distribution with parameter θ2

equal to either 0, .25, .5, .75 or 1.0. The dataset popular-
ity and size Zipf-like distributions were then positively or
negatively correlated using a simple scheme, as follows. For
positive correlations, we employ a parameter κ between 1
and the number of datasets D. Assuming the datasets are
indexed in order of decreasing popularity, we choose a ran-
dom number κ1 between 1 and κ, and assign the most pop-
ular dataset to be the κ1th largest dataset. We then choose
another random number κ2 between 1 and κ + 1, with κ1

excluded, and assign the 2nd most popular dataset to be the
κ2th largest dataset. Continuing in this manner for a total
of D steps we determine the complete relationship between
dataset popularity and size. If κ is 1, the correlation is per-
fectly positive. If κ is D, the correlation is fully random. If
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Work Ratios, θ1 = θ2 = 1

we start instead with the datsets indexed in order of increas-
ing popularity we range from perfectly negatively correlated
to fully random. In our experiments we increment κ in steps
of 5 for both positive and negative correlations yielding a to-
tal of 9 parametric choices from perfectly negatively corre-
lated (labeled 0) through randomly correlated (labeled 4) to
perfectly positively correlated (labeled 8). Combined with
the 5 choices for each of θ1 and θ2 this gives us excellent
coverage, with 225 parametric alternatives. We assumed a
total of S = 100 Map slots, corresponding to a cluster of
25 nodes if there were 4 Map slots per node. We ran each
experiment for a nominal total of T = 100 minutes, though
we allowed the Map work to quiesce past this time. The
scheme in [3] made the reasonable simplifying assumption
that nearly all the work of the Map phase is in the scanning,
so that the subsequent computational work can be ignored.
We assumed, more generally, a parameter f between 0 and
1 which determines the fraction of Map phase work which
is due to the scans. If f = 1 we have the pure scan scenario
assumed by [3]. Finally, we scaled the dataset sizes so that
the total Map times in a non-shared scenario corresponded
to a fixed utilization ρ. (This utilization is the total time
spent by the Map work divided by the product TS.)

In the experiments we computed new schedules for each
of the alternative schemes upon each new arrival. These
schedules were then followed precisely until the next arrival.
Metrics for each arrival were computed, of course, based on
the difference between the arrival and completion times.

We ran 10 repetitions of each simulation experiment, tak-
ing averages and standard deviations. We recorded the ratio
of the objective function value obtained using circumflex
to that of flex, and similarly the objective function ratio
of batch to flex. We also computed the ratio of the total
work for circumflex and batch to that of flex. For cir-
cumflex we averaged the maximum number of concurrent
subjobs over all datasets, and for batch we averaged the
maximum number of jobs batched together over all datasets.
We used the parameters ρ = .9, f = 1 and a batch windows
per dataset of W = 2 minutes (yielding 50 or 51 such win-
dows in 100 minutes) as a base case. Note that this adds an
average latency of 1 minute to each arrival.

Figure 5(a) shows the average response time ratios of cir-
cumflex and batch to flex for the highly skewed case
θ1 = θ2 = 1. Note that the performance of circumflex
improves as the correlation ranges from perfectly negative
to perfectly correlated. Compared with flex, which is op-
timizing average response time as well, circumflex aver-
age response times decrease from 81% down to 47%. There
is reason to believe that dataset popularity and size might
sometimes be negatively correlated, because, for example,

many MapReduce jobs might involve the most recent day of
data. But even in this case, circumflex performs 19% bet-
ter than flex. (Compare also the performance of flex with
that of fair [7]: flex does very well on all metrics.) On
the other hand, batch always performs worse than flex,
because of the tradeoffs involved. In the case of perfectly
negative correlation, batch is 48% worse than flex. In the
perfectly positive correlation case, batch is still 11% worse.
Standard deviations of these ratios (not shown) very mod-
est for circumflex, relatively less so for batch. This is
an indication of the robustness of the circumflex scheme.
Figure 5(b) shows the comparable work ratios for this same
example. Both ratios generally decrease from left to right,
as one would expect. By definition, circumflex does more
work than batch but less work than flex. The maximum
number of concurrent circumflex subjobs averaged 2.8 in
the most negatively correlated case, and 4.3 in the most
positively correlated case. The maximum number of jobs
batched together ranged from 4.8 to 5.0, also indicative of
the greater efficiency of batch.

Next consider Figure 6(a), which shows the ranges of the
circumflex to flex ratio and the batch to flex ratio for
all 25 parametric choices of θ1 and θ2. Rather than display
this as a 3-dimensional graph, which is difficult to see, we
have chosen to arrange these in 5 “planes” of 5 values each.
So the left-most group of 5 all correspond to θ1 = 0, and in-
dividually to θ2 = .25∗τ , where τ ranges from 0 to 4. (Thus
the detailed data in Figure 5(a) is shown in summary form
in the right-most pair of bars in Figure 6(a): The minimum,
median and maximum value across all 9 correlation param-
eters is shown for each objective function ratio, for both
circumflex and batch. Note that this is possible to show
because the ratios never overlap. The worst circumflex
ratio is always better than the best batch ratio for any par-
ticular choice of θ1 and θ2. Indeed, the worst circumflex
to flex ratio (.98) in the entire graph is essentially identi-
cal to the best batch to flex ratio overall (.97). It is also
clear that the ratios for circumflex are much more consis-
tent and tightly clustered across the parametric choices than
the ratios for batch. circumflex always performs better
than flex, and batch nearly always performs worse than
batch: The extra average latency of 1 minute is too great
an impediment for batch to overcome.

Figures 6(b) and 6(c) illustrate the corresponding results
for average and maximum stretch, respectively. (For max-
imum stretch the metric is calculated as the largest value
over all 1000 arrivals.) In both of these metrics the relative
performance of circumflex is even stronger than it was for
average response time. A small dataset scan which arrives
early in a batching window will cause a high average stretch
value and a very high maximum stretch value. Both the av-
erage and maximum stretch ratios vary widely, depending
on the parametric choices. They are never nearly as good as
flex. On the other hand, the performance of circumflex
in both cases is extremely predictable, and always much bet-
ter than that of flex. In the case of maximum stretch the
performance differences are dramatic.

We have considered a base case of ρ = .9, but note that,
for batch and circumflex, the scan portion of the work in
the Map phase is largely unaffected by values of ρ even much
bigger than 1. If there are sufficient resources in the cluster
to batch every dataset during every window, or to scan each
dataset continually in the circumflex cyclic piggybacking
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case, there is actually no theoretical limit to the value of ρ if
f = 1. The scan work simply does not grow. (The non-scan
Map work and the Reduce work certainly do grow.) Exper-
iments back up this claim. The value ρ = .9 is the highest
value for which flex would run consistently, but both cir-
cumflex and batch experiments go on satisfactorily as far
as we have tested them, with essentially unchanging work
averages. (Ratios to flex obviously become irrelevant for
high ρ values.)

We have noted that choosing f = 1 as a base case re-
sults in the cleanest possible expression of the benefits of
circumflex, eliminating the effects of some Map and all
Reduce work. But this is also not realistic in practice. As
f decreases the benefits of either batching or circumflex
clearly become less important overall, and at f = 0 dis-
appear completely. But our simulation experiments with
varying values of f behave in the entirely expected manner,
so we do not show them.

5. CONCLUSIONS
In this paper we have introduced a new circumflex sched-

uler for Map phase jobs in MapReduce environments. This
scheme has major advantages over the previous ako scheme.

circumflex is a two stage approach. In the first stage,
cyclic piggybacking provides natural and effective technique
for amortizing the costs of shared scans. Jobs are decom-
posed into a number of subjobs, which are related by chain
precedence constraints. In the second stage, the resulting
chain precedence scheduling problem is solved in a two step
process for any of a variety of metrics, including average
response time, average stretch and maximum stretch.

Of course, circumflex works best in an environment in
which many closely arriving jobs scan the same dataset or
datasets. On the other hand, the scheme will work entirely
satisfactorily if all jobs scan separate
datasets. In particular, such a scenario will not cause any
significant additional overheads relative to the original Map
Reduce scheduling paradigm, and still provide some perfor-
mance gains. If employed in the environment for which it
was designed, the benefits can be large. Our experimental
comparisions between flex,circumflex and batch sup-
port this. Moreover, circumflex works well in a general
overlapping dataset environment, resulting in a number of
subjobs related by more arbitrary precedence constraints. In
this scenario circumflex can optimize any minimax metric,
including maximum stretch.
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APPENDIX
A. SCHEDULING PRELIMINARIES

In this section we will give brief overviews of a number of
MapReduce and scheduling theory concepts. Understand-
ing these will simplify our exposition of the circumflex
scheduler in Section 3. We will outline the two MapReduce
scheduling layers, the scheduling metrics we consider and
their usefulness, the theoretical notion of malleable schedul-
ing, and, finally, the concept of epoch-based scheduling.

A.1 MapReduce Scheduling Layers
MapReduce scheduling in Hadoop actually consists of two

decoupled layers. The lower layer attempts to implement the
decisions of the upper layer, while taking into consideration
a variety of real-world issues not known to the upper layer.
Allocation Layer. It is assumed that each host is capable
of simultaneously handling some maximum number of Map
phase tasks. These are called Map slots. (A similar state-
ment holds for Reduce phase tasks, but we are not concerned
with those in this paper.) Aggregating these Map slots over
all the hosts in the cluster, one computes the total number
S of Map slots. The role of the allocation layer scheme is
to apportion the Map slots among the active Map jobs in
some intelligent manner. The circumflex scheme is actu-
ally an allocation layer scheduler. circumflex is fair in the
same sense as fair and flex: Specifically, given a minimum
number mj of Map slots for job j, the scheme will allocate
a number of slots sj ≥ mj , thereby preventing job starva-
tion. (circumflex also respects maximum slot constraints:
Given a maximum number Mj of Map slots for job j, the
scheme will enforce sj ≤ Mj for each job j. flex respects
maxima as well.) The resource constraint [11] is also re-
spected:

P
j sj ≤ S. (Because circumflex schedules at

the subjob level with chain precedence constraints, we note
that all of the above carries over naturally. The minimum
for a subjob, for example, is the maximum, over all relevant
jobs, of the job minima. The maximum for a subjob is the
minimum, over all relevant jobs, of the job maxima. Because
of chain precedence the number of slots sj is unambiguously
defined.)
Assignment Layer. It is this layer that makes the actual
assignments of Map job tasks (blocks) to slots, attempting
to honor the decisions made at the allocation layer to the
extent that this is “reasonable”. Host slaves report any task
completions at heartbeat intervals, typically on the order of
a few seconds. Such completions free up slots, and also
incrementally affect the number of slots currently assigned
to the various jobs. Bookkeeping then yields an effective
ordering of the jobs, from most relatively underallocated to
most relatively overallocated. For each currently unassigned
slot, the assignment model then finds an “appropriate” task
from the most relatively underallocated job that has one.
The notion of what is appropriate varies with the version
of Hadoop. One example is the locality of the block to the
host. In some assignment layer implementations a non-local
block from the best job may be passed over for some period
of time in favor of a less appropriate job which has a local
block left to scan. This is known as delay scheduling [6].
Other affinity issues come into play in different assignment
layer implementations.

A.2 Metrics
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Figure 7: Per Job Metrics

A penalty function measures the “cost” of completing that
job at a particular time. The subfigures in Figure 7 de-
scribe the five most common categories of per job penalty
functions in the scheduling theory literature [12–14]. Sev-
eral combinatorial alternatives exist within most of the cat-
egories. For example, we will see below that each of the
first four categories can be weighted or not. (In some cases
specific weight choices will have special meanings. In other
cases they simply define the relative importance of each job.)
Also, one might choose to either minimize the sum of the
per job penalty functions (a minisum problem), or minimize
the maximum of the per job penalty functions (a minimax
problem). Optimizing each of these alternatives serves a
different but useful purpose.
Response Time. The metric illustrated in Figure 7(a)
is probably the most commonly employed in computer sci-
ence. (The weight is the slope of the linear function.) There
are several natural examples. Solving the minisum problem
effectively minimizes the average response time, weighted
or otherwise, because the sum differs from the average by
a multiplicative constant. In the unweighted case, solving
the minimax problem minimizes the makespan of the jobs.
This is the completion time of the last job to finish and is
appropriate for optimizing batch work. Suppose the work
(or, equivalently, the minimum response time required to
perform job j in isolation) is Wj . As have noted, the com-
pletion time of a job divided by Wj is known as the stretch
of the job. It a measure of how delayed the job will be by
having to share the system resources with other jobs. Thus,
solving a minisum problem while employing weights 1/Wj

will minimize the average stretch of the jobs. Similarly, solv-
ing a minimax problem while employing weights 1/Wj will
minimize the maximum stretch. Either of these are excel-
lent fairness measures, and are in fact more commonly used
than either average or maximum PWT, the fairness metrics
in ako.
Number of Tardy Jobs. In this case each job j has a
deadline, say Dj . In this case only the minisum problem
is appropriate. The weight is the height of the “step” in
Figure 7(b). The unweighted case counts the number of
jobs that miss their deadlines, clearly a useful metric. The
weighted case counts some jobs more than others.
Tardiness. Again, each job j has a deadline Dj . The
tardiness metric generalizes the response time metric, which
can be said to employ deadlines at time 0. Only tardy jobs
are “charged”, and the slope of the non-flat line segment
in Figure 7(c) is the weight. It makes sense to speak of
either minisum or minimax tardiness problems, both either
weighted or unweighted.
Lateness. Again, each job j has a deadline Dj . The late-
ness metric generalizes response time also. As before, the



Slots

T
im

e

Figure 8: Chain Precedence Malleable Schedule

weight is the slope of the line. Note that “early” jobs are
actually rewarded rather than penalized, making this the
only potentially negative metric. The minisum variant dif-
fers from the response time metric by an additive constant,
and thus can be solved in exactly the same manner as that
problem. But the minimax problem is legitimately interest-
ing in its own right. See Figure 7(d).
SLA Costs. In this metric each job j has potentially mul-
tiple pseudo-deadlines Dj,k which increase with k. And the
penalties pj,k increase with k also. This yields Figure 7(e),
a step function for each job, clearly a generalization of the
weighted number of tardy jobs metric. As in that case, only
the minisum problem is appropriate. One can think of this
metric as the total cost charged to the provider based on a
pre-negotiated SLA contract.

A.3 Malleable Scheduling
From a scheduling perspective a key feature of the Map

phase of a MapReduce job is that it is parallelizable. Roughly
speaking, it is composed of many atomic tasks which are
effectively independent of each other and therefore can be
performed on a relatively arbitrary number of (multiple slots
in) multiple hosts simultaneously. If a given job is allocated
more of these slots it will complete in less time. The cir-
cumflex scheme takes advantage of this.

One can build a schedule in which each Map job is as-
signed a fixed allocation of slots for the duration of the job.
This is known as moldable scheduling. Malleable scheduling
is more general: Instead of making a static decision about
the per job slot allocations, one can create multiple inter-
vals. Different intervals will involve different allocations of
slots. Each interval then contributes a portion of the total
work required to perform the job. And this can be done in
the context of subjobs with precedence constraints as well.
(See [14] for further details.) Figure 8 illustrates a potential
malleable schedule of 2 jobs with a total of 4 subjobs. The
yellow and red subjobs are part of one job, related by prece-
dence constraints. The blue and green subjobs are part of
another job, also related by precedence constraints.

A.4 Epoch-Based Scheduling
The circumflex scheme is an example of an epoch-based

allocation scheduler. This means that time is partitioned
into epochs of some fixed length T . So if time starts at
t = 0 the epochs will start at times 0, T , 2T , 3T and so

on. Label these accordingly. The scheduler will produce
allocations that will be in effect for one epoch, so that the
eth epoch allocations will be honored from time eT to time
(e + 1)T . Obviously the work for the eth epoch must be
completed by the start time eT of that epoch.

The circumflex scheme receives input describing the to-
tal number of Map slots in the system, the number of ac-
tive Map jobs, their subjobs, the minimum and maximum
number of slots per job, the chain precedence constraints
and estimates of the remaining processing times required
for each of the subjobs. Then the algorithm outputs a high
quality malleable schedule consisting of allocations of slots
to subjobs in some number of intervals. Allocations for the
eth epoch will likely extend beyond the start time of the
(e + 1)st epoch. But all allocation decisions will be super-
seded by the decisions of the newest epoch. In fact, it is
expected that the completion time of even the first of the
consecutive intervals in the eth epoch will typically exceed
the length of an epoch. This means that generally only the
first interval in the output will actually be enforced by the
assignment model during each epoch.

An advantage of an epoch-based scheme is its resilience
over time. Epoch by epoch, the circumflex scheme auto-
matically corrects its solution in light of more current work
estimates, newly arrived or departed jobs, and cluster state
changes.

B. PSEUDO-CODE

B.1 Generalized Smith’s Rule
1: for d = 1 to D do
2: Create ordered chain of subjobs Ld = {(d, 1), ..., (d, K1

d)}
for dataset d, where (d, K1

d) represents the last subjob for
dataset d, and where subjob (d, k) has processing time pd,k

and weight wd,k.

3: Set K0
d = 1

4: end for
5: Set L = ∪D

d=1Ld

6: while L 6= ∅ do
7: Compute for each subjob (d, κ) with κ between K0

d and

K1
d the partial ratio of sums

Pκ
k=K0

d
pd,k/

Pκ
k=K0

d
wd,k

8: Find subjob (d̄, κ̄) for which the partial ratio of sums is
minimized

9: Schedule subjobs (d̄, K0
d), ..., (d̄, κ̄)

10: Set L = L − {(d̄, K0
d), ..., (d̄, κ̄)}

11: end while

B.2 Backwards Dynamic Programming
1: Set J = {1, ..., J}
2: Compute the subset J ′ = {j ∈ J |@j′ ∈ J , j′ ≺ j}
3: while J ′ 6= ∅ do
4: Compute j∗ = arg minj∈J ′ Fj(

P
j∈J pj)

5: Remove j∗ from J
6: Recompute J ′

7: end while

B.3 Ready List Malleable Packing
1: Set time T0 = 0
2: Create list L = {1, . . . , J} of jobs, ordered by priority and

respecting precedence
3: Create sublist L1 of ready jobs
4: for i = 1 to J do
5: Allocate mj slots to each job j ∈ L1

6: Set L2 = L1, with implied ordering
7: Compute slack s = S −

P
j∈L mj
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8: while s > 0 do
9: Allocate min(s, Mj −mj) additional slots to highest pri-

ority job j ∈ L2

10: Set L2 = L2 \ {j}
11: Set s = s−min(s, Mj −mj)
12: end while
13: Find first job j ∈ L1 to complete under given allocations
14: Set Ti to be the completion time of job j
15: Set L1 = L1 \ {j}
16: Add all immediate successor jobs to j in ready list L1

17: Compute remaining work for jobs in L after time Ti

18: end for

C. SHARED SCANS IMPLEMENTATION
We support circular scans in MapReduce by translating

each subjob into a MapReduce job that uses modified map
and reduce tasks, called C-mapper and C-reducers respec-
tively. C-mappers identify all map functions that need to
be executed by the subjob and proceed to call every func-
tion on every input record. They prefix every output record
with the job ID of the map function that produced it. The
outputs are partitioned by this job ID first. Within each
partition a C-mapper uses the comparison and partitioning
functions of the original jobs. C-reducers are modified to
read not only the results of the C-mappers of this subjob,
but also of all the previous subjobs of the MapReduce job
in question.

For example, Subjob1 in Figure 9 runs map functions
of three jobs. It produces all output partitions of Job1

followed by partitions Job2 and then Job3. C-reducers of
Subjob1 read only the ouput partitions of Job1. C-reducers
of Subjob1 read partitions of Job2 from both Subjob1 and
Subjob2. Finally, C-reducers of Subjob3 read ouput parti-
tions of Job3 from all three subjobs.

In Hadoop, the dominant open-source MapReduce im-
plementation today, C-mappers can be implemented utiliz-
ing the existing APIs and, without modifying the Hadoop
framework itself. C-reducers, in contrast, require modifica-
tions to Hadoop reducer code. A special care must be taken
to preserve fault-toulerance of Hadoop, as C-reducers break
a key assumption of Hadoop by introducing dependencies
between Hadoop jobs.

In order to facilitate communication between job clients,
C-mappers, and C-reducers of multiple subjobs, we utilize
Apache ZooKeeper an open source distributed coordination

Figure 10: Data Flow in a MapReduce Computation

service. In the remainder of this section we, first, provide
some background about Hadoop and ZooKeeper, and then
describe the architecture of C-mappers and C-reducers.

C.1 MapReduce and Hadoop
MapReduce [1] is a popular paradigm for data-intensive

parallel computation in shared-nothing clusters. Example
applications for the MapReduce paradigm include process-
ing crawled documents, Web request logs, etc. In the open-
source community, Hadoop [2] is a popular implementation
of this paradigm. In MapReduce, data is initially parti-
tioned across the nodes of a cluster and stored in a dis-
tributed file system (DFS). Data is represented as (key,

value) pairs. The computation is expressed using two func-
tions:

map (k1,v1) → list(k2,v2);

reduce (k2,list(v2)) → list(k3,v3).

Figure 10 shows the data flow in a MapReduce computa-
tion. The computation starts with a map phase in which the
map functions are applied in parallel on different partitions
of the input data, called splits. A map task, or mapper,
is started for every split, and it iterates over all the input
(key, value) pairs applying the map function. The (key,

value) pairs output by each mapper are assigned a parti-
tion number based on the key, and sorted by their partition
number and the key using a fixed-size memory buffer. At
each receiving node, a reduce task, or reducer, fetches all
of its sorted partitions during the shuffle phase, and merges
them into a single sorted stream. All the pair values that
share a certain key are passed to a single reduce call. The
output of each reduce function is written to a distributed
file in the DFS.

Finally, the framework also allows the user to provide
initialization and tear-down function for each MapReduce
function and customize hashing and comparison functions
to be used when partitioning and sorting the keys.

C.2 ZooKeeper
circumflex needs to synchronize multiple Hadoop clients

that independently submit jobs for the same dataset, into
a single circular scan. To this end we need a distributed
metadata store that can perform efficient distributed reads
and writes of small amounts of data in a transactional man-
ner. The Hadoop project includes just such a tool a dis-
tributed coordination service called Apache ZooKeeper [16,
17]. ZooKeeper is highly available, if configured with three
or more servers, and fault tolerant. Data is organized in a
hierarchical structure similar to a file system, except that
each node can contain both data and sub-nodes. A node’s
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content is a sequence of bytes and has a version number at-
tached to it. A ZooKeeper server keeps the entire structure
and the associated data cached in memory. Reads are ex-
tremely fast, but writes are slightly slower because the data
needs to be serialized to disk and agreed upon by the major-
ity of the servers. Transactions are supported by versioning
the data. The service provides a basic set of primitives, like
create, delete, exists, get and set, which can be easily
used to build more complex services such as synchronization
and leader election. Clients can connect to any of the servers
and, in case the server fails, they can reconnect to any other
server while sequential consistency is preserved. Moreover,
clients can set watches on certain ZooKeeper nodes and they
get a notification if there are any changes to those nodes.

C.3 C-mappers and C-reducers
The C-map and C-reduce tasks get setup by job clients

that all connect to a single ZooKeeper service. ZooKeeper
data structure contains a node per dataset. When the client
sets up a job j that reads a dataset d, it locates this datasets’s
node Zd in ZooKeeper. First, it creates a ’lock’ subnode of
Zd, and does not proceed until this write succeeds. This
ensures that all job clients that want to read the dataset are
serialized during the following critical section.

For every data split di of the dataset d, the client reads
the corresponding split data structure from ZooKeeper node
Zdi , a child of Zd. If node Zdi exists in ZooKeeper, the client
appends j’s ID to the job list in the node – these splits will
be executed by the already existing subjobs. They take a
ride on the bus that is already scheduled to leave the station,
so we refer to them as rider splits. If Zdi does not exist, the
client creates a new node Zdi , with only j’s ID in the job list
– these splits form the new subjob for j, and we call them
drivers. This critical section is fast, usually subsecond, so
performance impact of serialization is negligible.

For example, Figure 11 shows a job client of Job2 that
needs to read Dataset1, which consists of two splits. The
client, reads the ZooKeeper structure for Split1 and ap-
pends Job2. For Split2 the structure does not exist, so
the client creates it. Thus, for Job2, Split1 is a rider and
Split2 is a driver.

For every rider split the job client computes its reduce
partition offset – the sum of the number of partitions for all
the jobs before j in that split’s job list. Recall that a C-

mapper produces output partitions of all the jobs in its job
list, in order. For example, Subjob1 in Figure 9 produces all
output partitions of Job1, followed by partitions Job2, and
then Job3. Thus, partition numbers of Job1 are unchanged.
Partition numbers of Job2 are shifted by a fixed offset – the
number of partitions of Job1. These output partitions will
be read by C-reducres of Subjob2, not Subjob1. For Job3

the offset is the sum of partition counts of Job1 and Job2.
The offset information is needed by both C-mappers, for

their partitioner functions, and C-reducers, to know which
partitions of previous subjobs to read. To store this infor-
mation, the job client creates a single node in ZooKeeper
that corresponds to job j. This node contains a table of
splits with their offset for partitions of job j, and the job
ID of the driver, i.e. the first job in the job list. This offset
table is stored in a compact form, since all splits in a subjob
share the job lists and the offsets.

The client submits a job to MapReduce that has a C-map
task for every driver split. If there are no driver splits, the
job contains a single NOOP map task needed to start the
reducers. When a C-mapper starts it reads the ZooKeeper
node that corresponds to its input split, and deletes this
node making sure that it deletes the same version that it
just read (otherwise it reads again). This atomic read-and-
delete marks the cutoff when the bus leaves the station, so
no more jobs can catch a ride. The C-mapper takes the job
list from its ZooKeeper node and proceeds to read the job
configurations of all these jobs, and combine all their map
tasks into one.

The high-level architecture of a C-mapper is shown in Fig-
ure 9. A C-mapper runs initialization functions of its map
tasks. Then it reads the input records, for each record se-
quentially invoking the map function of every map job. Each
map function is given a different output collector, which
acts as a wrapper over the real output collector and pre-
fixes every output key with the job ID of the map function
producing the output. Similarly, the C-mapper contains a
custom comparator which unwraps the output key and calls
the comparator of the corresponding job. The C-mapper
partitioner function unwraps the key, calls the correspond-
ing partitioner function, and also reads from ZooKeeper the
job’s partition offset within the split. The final partition
number is obtained by adding this offset and the partition
number returned by the job’s partitioner. Finally, the C-
mapper runs the tear-down functions of its map tasks. C-
reducers start by reading their job’s offset table from the
ZooKeeper. For every split the table contains the driver job
ID JD and a partition offset O. Normally, a reducer number
N of a job J , reads N ’s partition from the ouptut of every
map task of J . C-reducers also read partition O+N of JD’s
output, for every split in the offset table.

In case of a system failure, this output partition may not
exist, and since job J has already finished, Hadoop can-
not rexecute its map tasks as it normally does in case of
failures. To work around this problem C-reducer reports
to the framework that one C-mapper in its own job has
failed and needs to be re-executed, and puts the informa-
tion about which split needs to be rerun in ZooKeeper. Once
the C-mapper is restarted, it will find the split metadata in
ZooKeeper and read that split instead of its assigned one.

Once all C-reduce tasks are complete, our customized
clean-up task removes the job’s offset table and other job-
related structures from the ZooKeeper.


