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Abstract. This paper addresses the making of access control decisions
under uncertainty, when the benefit of doing so outweighs the need to
absolutely guarantee these decisions are correct. For instance, when there
are limited, costly, or failed communication channels to a policy-decision-
point. Previously, local caching of decisions has been proposed, but when
a correct decision is not available, either a policy-decision-point must be
contacted, or a default decision used. We improve upon this model by us-
ing learned classifiers of access control decisions. These classifiers, trained
on known decisions, infer decisions when an exact match has not been
cached, and uses intuitive notions of utility, damage and uncertainty to
determine when an inferred decision is preferred over contacting a remote
PDP. Clearly there is uncertainty in the predicted decisions, introduc-
ing a degree of risk. Our solution proposes a mechanism to quantify the
uncertainty of these decisions and allows administrators to bound the
overall risk posture of the system. The learning component continuously
refines its models based on inputs from a central policy server in cases
where the risk is too high or there is too much uncertainty. We have
validated our models by building a prototype system and evaluating it
with requests from real access control policies. Our experiments show
that over a range of system parameters, it is feasible to use machine
learning methods to infer access control policies decisions. Thus our sys-
tem yields several benefits, including reduced calls to the PDP, reducing
latency and communication costs; increased net utility; and increased
system survivability.
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1 Introduction

Modern access control systems rely on the PEP/PDP architecture: a Policy En-
forcement Point (PEP), defined at the user-application level, forwards each ac-
cess request made within an application to a Policy Decision Point (PDP), which
analyses this request and returns an authorization decision—allow or deny. In
some solutions, such as [8, 11, 14], a PDP is commonly implemented as a dedi-
cated authorization server, where a PDP is located on a different node than the
PEPs. While facilitating the enforcement of a consistent policy throughout the
system, this architecture relies on the PEP being able to contact the PDP to
query decisions, and therefore suffers from a single point of failure. In particular,
key factors that affect the performance of the PEP are latency of the commu-
nication with the PDP, reliability and survivability of this connection (and the
PDP itself), as well as the aggregated impact of communication costs (which
can include contacting a human to perform the authorization). For example, in
several contexts, such as mobile applications, these costs may be prohibitive.

A number of approaches have been proposed to address these issues, one
common theme is to cache access control decisions at the PEP, such that the
PEP does not have to forward the same access request more than once to the
PDP. This is known as authorization recycling [6, 21] and is exact: either the
PEP finds the request-decision pair in the history, or it forwards the request to
the PDP. Recently, others have been exploring the tradeoff between efficiency
and accuracy in an access control context. For example, Ni et al. [15] use a
machine-learning algorithm to build a classifier of policy decisions from past
request-decision pairs. Once the classifier is accurate enough, it is used it as a
local decision point. As with any machine learning approach, the classifier has
a degree of uncertainty with every decision, and can be incorrect even if it has
a high accuracy. Thus, every decision made with such a classifier is inherently
associated with a risk of the decision being wrong, either incorrectly allowing or
denying some requests.

This paper presents a generalisation of the machine-learning approach
from [15], which quantifies and measures the uncertainty in any locally inferred
decision. We propose a model where this uncertainty is translated into a measure
of the risk of making this decision. This gives us a very general policy with which
to make decisions: when the utility of the local decision is high with respect to
its risk, enact the local decision, otherwise defer to the central PDP.

We describe a model for quantifying uncertainty and risk, and show how
these inform utility and risk based access control decisions. We have built a
distributed access control system to test this principle: local decision points
determine whether the tradeoff of the uncertainty and utility associated with a
local decision is favorable and defer to the central PDP for a binding decision if
not. This is a general framework that allows us to explore the balance between
avoiding potential errors in local decisions, and the desire to limit reliance on
the central PDP. We present three methodologies for making decisions:



– Expected Utility A risk neutral approach where weight expected gains and
damage equally.

– Risk Adjusted Utility A pessimistic version of expected utility, where we
penalise the uncertainty about damage more heavily.

– Independent Risk Constraints Augments expected utility with independent
risk thresholds, where we reject high utility decisions if it is outweighed by
the risk.

To validate this system, we have used data from a large corporation used to grant
entitlements and permissions to system administrators. Our classifiers are ini-
tially untrained and in the beginning always consult the central PDP. Over time,
the classifiers are trained using the central PDP’s decisions thus improving ac-
curacy and reducing the uncertainty, yielding fewer queries. In our experiments,
we focus on the risk adjusted utility measure due to space constraints and be-
cause it provides a more conservative view of risk. Compared with the caching
algorithm, our results show that our learning based approach reduces the queries
to PDP by as much as 75% and increases the system utility by eight fold when
the cache hit ratio is low, and has almost identical performance to the caching
algorithm when the hit ratio is high.

Our results from this dataset show that machine-learning can be viably used
for informing distributed access control decisions. The accuracy and robustness
of our approaches are high, and more conservative measure of risk may be applied
when appropriate. We believe these techniques can generalize to other use cases
and domains, including information sharing in military and coalition environ-
ments; financial applications like credit card processing; and load balancing ser-
vices like Netflix or document repositories. Compared to pure machine-learning
solutions, our methods estimate the uncertainty of each classification, allowing
one to minimize the pitfalls of using approximate decisions. Further, our solu-
tion avoids the higher communication costs of naive caching solutions, when the
access control policy is too large to fit into the cache or locality of reference is
poor.

This paper is organized as follows. Section 2 briefly discusses traditional
access control systems. Section 3 discusses the architecture of access control
systems based on our approach. We present in Section 4 different techniques to
assess the risk and uncertainty of local access control decisions. An experiment
and evaluation of our approach, applied on different scenarios, is presented in
Section 5. Section 6 concludes this paper.

1.1 Related Work

Caching access control decisions is not a new concept, and has been already
implemented [8, 11, 14]. The framework for policy evaluation presented in [3]
uses a caching mechanism and is shown to drastically decrease the evaluation
time of access control requests. Clearly, caching approaches are only valid when
the cache is consistent, that is, returns the same decision as the central PDP;
techniques to ensure strong cache consistency are proposed in [23]. In the context



of distributed systems, each node can build its own cache in collaboration with
the other nodes, thus improving the accuracy of each cache [22].

The previous methods only return exact decisions, that is, a decision for a
request can be made locally only if this exact request has been previously sub-
mitted and answered. In the context of the Bell-LaPadula model [12], Crampton
et al. [6] present a method to calculate a previously unseen decision based on the
history of submitted requests, their responses, and the formal rules governing
Bell-LaPadula. A similar approach for the RBAC model [9] is presented in [21]
and an extension to Bloom filters is used in [19]. These inference techniques re-
quire knowledge of the underlying access control model, and are most efficient
for hierarchical and structured access control models. Similarly, inference algo-
rithms have been proposed based on the relationship of the subjects and objects
in a database [18, 17]. However, the structure of the subject/object space still
needs to be known. The approach we present in this paper is valid for any space
of subjects and objects, as long as they are associated with attributes, which
may be unstructured.

A first experiment of using machine-learning for making access control deci-
sions is proposed in [15], where the authors note that there is a probability of
error from the classifier, that is, the classifier can return a decision different than
the one that would be returned from the central PDP. The approach presented
in this document quantifies such a probability of error, in order to be able to
make decisions, even with a degree of uncertainty.

Finally, a notion of risk in access control is introduced in [24, 5, 13], where
the notion of an access to be either allowed or denied is blurred, and where
each access is instead associated with a potential utility and damage. We reuse
these notions here, in order to calculate the potential utility and damage of each
access.

2 Traditional Access Control

A traditional access control system is a mechanism that grants or denies requests
made by active entities, the subjects, to access some passive entities, the objects.
Such a mechanism usually consists of two parts, as shown in Figure 1: the Policy
Decision Point (PDP), which analyzes a request and decides whether it should
be granted or not; and the Policy Enforcement Point (PEP), to which the access
request is submitted and which enforces the request based on the decision of the
PDP. The PDP’s decisions are assumed to be always correct. More formally, let
S be a set of subjects, O a set of objects and A a set of access modes. An access
is a triple (s, o, a), meaning that the subject s accesses the object o according to
the access mode a. The PDP takes an access as input, and returns a decision to
the PEP indicating whether this access violates the policy or not. Such a decision
is usually allow or deny; or, as it is the case for XACML [10], can also denote
that the policy is not applicable to the request or that there is not enough infor-
mation available to correctly evaluate the request. The policy decision need not
be restricted to allow or deny and can include mitigations and/or obligations.
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Fig. 1. Access Control System

For instance, when a user requests read access to a picture, the policy might re-
quire that the picture’s resolution be downgraded before granting access. While
our approach can handle any set of possible decisions, in this paper we restrict
the atomic decisions, denoted Datm to be the set {allow,deny}.

In today’s networked world, access control systems are commonly distributed,
meaning the PDP is not local to where decisions must be enforced: thus each
node of the system requires its own PEP. As described in Section 1, it is not
always possible or desirable for a PEP to contact the PDP, and to fully replicate
the PDP on each node could be too difficult and costly for deployment and
management. This paper describes an architecture, which can make decisions
locally even when the correct decision is not known with certainty, and controls
the level of uncertainty of local decisions—described in terms of utility and risk.
There are several commonly used access control models, such as the the Bell-
LaPadula model [12], the RBAC model [9], and the Chinese Wall model [4]. This
approach is not tied to a particular model, but it fits well with attribute-based
access control [2, 20], where each subject and object is associated with some
attributes and the policy is defined using these attributes.

3 Uncertainty in Access Control

Figure 2 depicts the architecture of our system for access control under un-
certainty. We assume that there is at least one oracle node containing the full
policy, called the central PDP; and a correct local decision is one that agrees
with the central policy. Each node has a local PDP consisting of three entities:
a decision-proposer (or proposer), which returns a guess of the correct decision
and a measure of the uncertainty; a risk-assessor (or assessor), which deter-
mines whether the decision is taken locally or deferred to the central PDP; and
a decision-resolver (or resolver), which returns an enforceable decision. A PEP
passes requests to the proposer, and enforces the decision from the resolver.

3.1 Decision-Proposer

A decision-proposer takes an access request as an input, and returns a proposal
(dec, υ), where dec ∈ Datm is a guess of the correct decision for this request, and
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Fig. 2. Architecture of a local node

υ is a measure of uncertainty about dec being correct; υ can take a number of
forms, depending on how the decision-proposer predicts decisions. In its simplest
form υ is a probability, and the set of all possible outputs for the proposer is
Dprp = Datm × [0, 1]. In this setting a proposal (allow, p) means that allow
is the correct decision with probability p; (allow, p) is logically equivalent to
(deny, 1− p) if Datm = {allow,deny}.

The measure υ can also be a pair (α, β); where α, β ∈ [1,∞] are parameters
of a beta distribution [1], Beta(µ|α, β); this captures our uncertainty about the
value of the probability p that dec is correct, and µ is a variable approximating
p. The beta distribution fits well with our learning based approach and gives
finer control over risk estimation—see Section 4.

A proposer may be a simple caching algorithm which stores a given number
of requests together with the corresponding correct decisions from the central
PDP. In this setting, a proposal is a pair (dec, p) ∈ Datm × [0, 1]. If the policy
never changes then cached decisions are always correct. So, if the decision for a
request has been cached then dec is that decision and p = 1 indicating complete
certainty; otherwise dec is randomly chosen and p = 0.5 indicating complete
uncertainty. If the policy is periodically updated, then there is a probability
that a cached decision no longer agrees with the central policy. For instance, if
10% of central decisions change every hour, then a decision cached an hour ago
could be assigned a 0.9 probability of being correct.

In our learning based approach, the proposer is mainly a classifier produced
by a machine-learning algorithm, which treats a decision as a class and assigns
a request to a class based on the request’s attributes. The learning process uses
an input set of requests whose corresponding correct decisions are known, and
relies on the assumption that two requests close to each other are likely to have
the same decision. Elements of the input set are samples of past decisions made
by the central PDP. The proposals are of the form (dec, α, β), where α and β
are computed from the numbers of correct and incorrect assignments made by
the classifier. Section 5 describes and evaluates this approach in detail.



3.2 Risk Assessor

A risk-assessor (or assessor) takes a request and a proposal and returns a de-
ferrable decision. The assessor must determine whether a decision can be made
locally, based on the proposal, or should be deferred to the central PDP. Hence,
the risk assessor can return any decision in the set of deferrable decisions,
Ddef = Datm ∪ {defer}, where defer is the decision to contact the central
PDP. Note that, deferrable decisions are no longer associated with uncertainty.
In other words, the role of the risk-assessor is to transform the uncertainty in a
proposal into a firm decision.

A trivial definition for a risk-assessor is to fix an uncertainty threshold below
which all decisions are deferred to the central policy, and above which all the
decisions are taken locally. However, in general, different requests have different
potential impacts on the system. Some requests have high potential utility for
the system, and wrongly denying them might cause big loss of utility, and some
requests have high potential damage, and wrongly allowing them is a threat
to the integrity and survival of the system. Another parameter to consider is
the cost of contacting the central PDP, which is important in some situations.
The risk-assessor can also take a risk appetite, which controls the degree that
the decisions are risk-averse; a risk-averse decision maker is willing to accept
a lower expected utility if there is more certainty about the consequences of a
decision. More details on the risk assessor are given in Section 4.

3.3 Decision Resolver

A decision resolver takes a request and a deferrable decision, decd ∈ Ddef and
returns an atomic decision, deca ∈ Datm. Typically, deca = decd if decd ∈
Datm; otherwise, the resolver defers the request to the central PDP.

4 Assessing Local Decisions

In this section, we consider how the risk-assessor takes a proposal from the
decision-proposer, and returns a firm decision. In our system by design the pro-
poser’s suggested decision may conflict with the decision that would have been
made if passed to the central policy. If a request that is allowed is denoted as a
valid request and a request that is denied is an invalid request, then there can be
two kinds of errors that the local PDP can make: false-allows (allowing an invalid
request) and false-denies (denying a valid request). Note that there can be nega-
tive consequences resulting from either of these errors: a false-allow can result in
the leakage of information, corruption of information, or privilege escalation; a
false-deny can result in disruption of service, breach of service level agreements
(SLA), and other consequences such as damaged reputation. Further, making a
correct decision leads to gains and benefits.

In our paper the approaches that we propose will be based on the tradeoff
between the gains in allowing the decision against the potential damages that



may result from an incorrect decision. In order to formally describe our approach,
in this section we will introduce notation to capture the gains and damages due
to the correctness of the decisions to allow or deny a request. Consider an assessor
which must decide whether to locally allow or deny a request, (s, o, a), or to pass
this decision on to a central PDP. The assessor has a ternary choice to make:
whether to allow the request locally, decision allow; to deny locally, decision
deny; or to defer the decision and contact the central PDP, decision defer. We
assume that the central PDP is an oracle, and always gives the correct decision.
If the assessor decides allow, then either the request is valid (a true-allow) and
the system makes a gain, g, because an appropriate access has been made4; or the
request is invalid and the decision has caused some amount of damage, dA, due
to an inappropriate access being made. Likewise, if the assessor decides, deny,
then either the request was invalid, deny is the correct decision and nothing
additional happens (i.e. a gain of 0), or the request was valid the deny decision
is incorrect, and a damage, dD, is incurred for a false-deny.

Finally, the assessor may decide to defer to the central PDP for a decision.
If the request is valid, then the central PDP will grant the request and the sys-
tem will make the gain, g, but incur a cost, c (the contact cost). If the decision
is defer and request is not valid then the central PDP will deny the request
and there will be no gain and again a contact cost, c. As the central PDP is
an oracle, it never makes an incorrect decision so there is no damage associated
with this. These gains, costs and damages are shown in Table 1. Standard gains
and costs (negative gains) are kept separate from damage, which is assumed to
be associated with rare and costly negative impacts. This distinction becomes
important, when we consider risk measures in Sections 4.2 and 4.3. The impacts
presented in Table 1 are not the most general that could be conceived, but are
sufficiently rich to be of interest. For example, there may be a small gain associ-
ated with denying an invalid request, such as an increase in system reputation,
or a damage in allowing a valid request, such increasing the number of copies of
a document, and thus it’s exposure and risk to later compromise.

All of the approaches described in this paper will be based on the various
tradeoffs between the certainty of classification and an estimation of these gains
and damages. To apply our methodology to a real example, we must be able to
(approximately) compute these gains and damages. We note here that there are
many applications and domains where these gains and damages can be estimated.
For example, in financial service transactions like credit cards, these costs may
be estimated easily or provided a priori by some agreement. Other examples
include cases where fined grained service level agreements are defined a priori.
We will discuss further details in Section 4.4.

4 Ideally, an access control system should enable as many appropriate accesses as
possible and so our primary concern is to maximize the number and value of these
accesses - subject to limiting costs and damages.



Request Valid Request Invalid
gain damage gain damage

allow g 0 0 dA
deny 0 dD 0 0
defer g − c 0 −c 0

Table 1. Outcome Gains and Damage

U(·|allow, p) U(·|deny, p′)

allow pg − (1− p)dA (1− p′)g − p′dA
deny −pdD −(1− p′)dD
defer pg − c (1− p′)g − c

Table 2. Expected utilities for various decisions given certain proposer outputs.

4.1 Expected Utility

To aid this decision, the proposer attempts to classify request, (s, o, a), to deter-
mine whether it should be allowed or denied, and include some measure of its
uncertainty in this classification. In the simplest case, the proposer can return
one of two kinds of answers, e.g. (allow, p) or (deny, p′). The first response,
(allow, p) means that the proposer has classified the request as an allow, and
predicts that there is a probability p that this is correct, i.e. there is a probability
of p that the request is valid. Likewise, (deny, p′) means that the proposer has
classified the request as a deny, and predicts a probability p′ that the request is
invalid.

The expected utility for a decision, dec ∈ Ddef , is the expected gain of
each outcome (request valid or invalid) minus the expected damage, and these
utilities are shown in Table 2. In this approach, we assume a risk neutral posture,
meaning deferrable decisions are made based purely on the expected utility, U(·),
for each decision. The assessor simply returns the decision corresponding to the
highest utility. However, with such an approach, the assessor can potentially take
a decision that is contrary to the one returned by the proposer, e.g. the assessor
returns allow when the proposal states deny, or vice versa. For instance, when
the proposer returns (allow, p) given a request where dA � dD and g ≈ c, then
it may occur that U(defer) < U(deny), but in the examples explored so far
this is not the case and may even indicate a badly described system. In the rest
of the paper, we assume that the gains, damages and costs are defined in such a
way, as to preclude contrary decisions.



Hence, given a request req and a decision proposer δ returning a decision and
a probability, the expected utility assessor, ρeu, is defined as:

ρeu(req) =





allow if

(
δ(req) = (allow, p)

∧ U(allow) ≥ U(defer)

)

deny if

(
δ(req) = (deny, p)

∧ U(deny) ≥ U(defer)

)

defer otherwise

Thus in this first approach, we directly use the certainty of the decision to
compute the expected utility and choose the decision with the highest utility.
However this approach can lead to significant damages due to incorrect decisions
because while the expected damage may be low, in some cases, there is a small
probability of significant damage. In the following approaches we will try to
explicitly take into account the risk of such significant damage.

4.2 Risk Adjusted Utility

Now let’s assume that we are making the same decision, but that we want to
use a risk based measure. In other words, we want to explicitly account for any
uncertainty in the proposal. For this, the proposer returns a beta distribution,
describing uncertain knowledge about the probability of a correct classification.
If the proposer classifies the request as valid then it returns (allow, α, β), where
α, β ∈ [0,∞] are the parameters of the beta distribution [1]. Likewise, if it
classifies the request as invalid then it returns (deny, α′, β′).

Again we focus just on the allow case, and assume that the assessor can
return either allow and defer. If the proposer returns (allow, α, β), we denote
by p = α

α+β (the expectation of the beta distribution), as the unbiased probability
that this decision is correct. For our risk methods, we also want to account for
the uncertainty in this prediction to take a pessimistic view of the expectation
of loss. Here, we achieve this with a pessimistic probability, p̃↓n, calculated using
risk significance level 0 < n < 1 and the beta distribution parameters, α and
β. For example, a 5% pessimistic expectation (n = 0.05) considers the average
damage in the worst 5% of universes—see Appendix A for details. So in effect,
what this approach accomplishes is to mitigate the damage that will occur in
the worst 5% of outcomes, i.e., there is less than a 5% probability there will be
a worse outcome.

Our first method, called risk adjusted utility, adjusts the unmodified utility,
U , to account for uncertainty at our significance level n. For this technique,
we consider the unbiased probability, p, for standard gains and costs, and the
pessimistic probability, p̃↓n, when considering the exceptional cases causing dam-
age. We will assume that we are always risk averse (pessimistic) and as we do
not consider contrary decisions. So, given proposal (allow, α, β), the probability
p̃↓n < p = α

α+β , takes a pessimistic view of how certain the proposer is to have
classified correctly when considering the impact of damage. The risk adjusted



Ũ(·|allow, α, β) Ũ(·|deny, α′, β′)

allowpg − (1− p̃↓n)dA –
deny – −(1− p̃′↓n)dD
defer pg − c (1− p′)g − c

Table 3. Expected utilities for various decisions given certain proposer outputs.

utility, Ũ(.) for each deferrable decision, dec ∈ Ddef , is then the unbiased ex-
pected gain of each outcome (request valid or invalid) conditioned on dec, minus
the sum of the damages but weighted according to the risk adjusted probability,
p̃↓n. The risk adjusted utilities for proposal (allow, α, β) are shown in Table 3.
Alongside are the equivalent risk adjusted utilities for proposal (deny, α′, β′),

giving unbiased probability p′ = α′

α′+β′ and pessimistic probability p̃′↓n.
Hence, given a request req and a decision proposer δ returning a decision and

a probability, the risk adjusted utility assessor, ρau, is defined as:

ρau(req) =





allow if

(
δ(req) = (allow, p)

∧ Ũ(allow) ≥ Ũ(defer)

)

deny if

(
δ(req) = (deny, p)

∧ Ũ(deny) ≥ Ũ(defer)

)

defer otherwise

This approach has shown how to modify the risk-neutral approach from the
previous section to a risk averse approach where we try to mitigate the losses
from the worst fraction of outcomes.

4.3 Independent Risk Constraints

The second risk method, called independent risk constraints, uses the standard
expected utility to rank the decisions in order of risk neutral preference, but then
reject any which do not satisfy our risk constraint(s). The proposer classifies the
requests and returns either (allow, α, β) or (deny, α′, β′), and we calculate the
expected utilities as they appear in Table 2 using p = α

α+β for the probability

of allow, and p′ = α′

α′+β′ for the probability of deny. The risk, R(·), for each
deferrable decision is calculated independently. The risk for a decision, dec,
only takes the exceptional potential damages into account, ignoring standard
gains and cost. For the risk, we take a pessimistic view, here achieved by using
the risk adjusted probability, p̃↓n, and the fixed damage values, dA and dD.
These risks are shown in Table 4. Alongside are the equivalent risks for proposal
(deny, α′, β′), giving unbiased probability p′ and pessimistic probability p̃′↓n.

The decision making process involves either a fixed threshold t > 0, or more
generally for each deferrable decision, dec ∈ Ddef , with utility, udec, a threshold
that depends on the utility, i.e. t(udec). We then take the following steps



R(·|allow, α, β) R(·|deny, α′, β′)

allow (1− p̃↓n)dA 0
deny 0 (1− p̃′↓n)dD
defer 0 0

Table 4. Risks for various decisions given certain proposer outputs.

1. Evaluate the expected utilities and risks as shown respectively in Tables 2
and 4.

2. Rank the decisions according to their utilities.
3. Check each decision, dec ∈ Ddef in turn (highest utility first), and choose

the first decision whose risk is below t(udec).

For example, let’s assume that the probability p is sufficiently close to 1 that
allow is preferable to defer. Notice also that defer carries zero risk and will
always be risk acceptable. Hence, given a request req and a decision proposer
δ returning a decision and a probability, the independent risk assessor, ρic, is
defined as:

ρic(req) =





allow if




δ(req) = (allow, p)

∧ U(allow) ≥ U(defer)

∧ R(allow) ≤ t(U(allow))




deny if




δ(req) = (deny, p)

∧ U(deny) ≥ U(defer)

∧ R(deny) ≤ t(U(deny))




defer otherwise

More generally still we may not always have a decision of zero risk, and hence
we may need some way to resolve a decision when all decisions exceed the risk
threshold. There are a number of ways of doing this, and the most appropriate
technique is a subject of future research.

Both risk methods have their advantages and disadvantages. For instance,
risk adjusted utility behaves more like standard expected utilities, and there is
always a clearly defined decision for the assessor. Conversely, the independent
risk assessor keeps the two measures utility and risk separate, and hence is more
flexible and we could define multiple risk thresholds at different significance
levels. However, we do not necessarily know how to deal with situations where
all decisions violate a risk constraint.

4.4 Estimating Gain and Damage

In the previous discussion, we implicitly assumed all utility, damage, and costs
are given in comparable units such as currency. There are many such applications



where this is true. For example, in credit card processing the card issuer levies
an Authorization Fee to evaluate a request and may charge a Charge Back Fee,
in addition to the transaction amount, if the transaction was fraudulent. In all
instances, the gains, damages, losses, and communication costs are in a common
currency.

In many scenarios the damage, gains, losses, and costs may be given in dif-
ferent units, e.g., gain in currency, damage in reputation, and loss of physical
assets. Consider a military operation where a soldier requests access to sensitive
resources, e.g., SECRET and NOFORN classified documents. Failure to grant
access to the resources can jeopardize the mission, possibly resulting in a suc-
cessful attack that damages military assets, e.g., weapon depots. Granting the
request risks potential leakage of sensitive information, possibly harming the
reputation of the military and the country, and risking future cooperation of in-
formants. However, granting the request may also lead to successfully completed
missions, reducing the loss of life and ending conflicts early. The utility measures
discussed previously requires these measures to be converted into a common set
of units, and there is uncertainty in such a conversion rate.

We suggest the same techniques used to calculate the risk of making an in-
correct decision described in Section 4.2 can be applied to selecting conservative,
risk-adjusted conversion rates. For example, if one obtains a probability density
function (PDF) over conversion rates, say human life to dollars, the expected
value of this PDF can be used for gains, while a pessimistic value can be used
for potential losses. If we take household income as one potential conversion
rate, then the median US household income, around $34–55K, could be used for
expected value, while the top 5%, or $157K, might be used for the risk.

Probability distributions for conversion rates can be obtained for each po-
tential measure, and can be estimated from a variety of sources. For example,
reputational damage has been estimated by a company’s stock price after the
announcement of a security breach5, and the cost to recover from the incident6.
Estimates for human life can be found from actuarials, law suits and settlements,
liability limits, health coverage costs, and financial contributions, among other
sources. By taking a pessimistic view of these conversions, we aim to avoid the
sorts of mistakes made on the infamous Ford Pinto7 (which estimated a human
life to $US 200,725).

5 Experiment

In this section, we describe our prototype system and experimental results. To
evaluate the usefulness of risk-based decision making, we devise a simple de-
centralized access control system consisting of a single local risk-based policy

5 http://www.informationweek.com/news/security/showArticle.jhtml?

articleID=171200494
6 PGP provides an annual estimate of the costs of a security breach: http://www.pgp.
com/insight/research_reports/

7 http://motherjones.com/politics/1977/09/pinto-madness



enforcement and decision point, and a central policy decision point that called
the oracle. In our experiments, users submit requests, which are locally evalu-
ated and an estimate of the uncertainty calculated as described in Section 4.2
and Appendix A. By evaluating potential risks and gains, the system determines
when decisions can be made locally, and when the oracle must be queried at a
cost. We run the system over a large number of requests, e.g., 100,000, logging
the request, decisions, and uncertainty. After which, we compare these decisions
with the oracle policy, and aggregate the net utility of the system, including
any gains, costs and damages incurred during operation. We first describe our
experimental system in more detail. For clarity, we distinguish between standard
damage (for a false-allow) with loss (damage of a false-deny).

5.1 Experiments

The oracle is considered infallible, and always returns correct results. The oracle
contains a real access control policy from a system that provisions administrative
access to a commercial system obtained from a corporation. The policy consists
of 881 permissions and 852 users with 25 attributes describing each user; there
are 6691 allowed requests. We do not have access to actual permission usage
logs, e.g., requests or frequency of permission use, and instead simulate incom-
ing requests by sampling from the full policy, obtaining both valid (allow) and
invalid (deny) requests. Users are selected uniformly randomly, and permissions
are selected from a multinomial distribution where all allowed permissions are
independently and identically distributed, as are all denied permissions, but the
probability of selecting an allowed permission is a system parameter of our choos-
ing. For example, while a uniform sampling of single permissions at random may
return a valid transaction 0.9% of the time (the density of the user-permission
relation), we can generate sample requests with an arbitrary frequency of valid
transactions, e.g. 30%, 50% or 80%. This allows us to model different scenarios,
such as a system under attack (mostly invalid requests), or normal usage (mostly
valid requests).

5.2 Classifiers

Our experimental prototype is implemented in Python, and uses PyML for sup-
port vector machines8, which we use for our classifier. A support vector machine
(SVM) is a supervised learning method for classification and regression. Given
labeled points in a k-dimensional space, an SVM finds a hyperplane (normal
vector w and offset b from the origin) that separates the two classes and maxi-
mizes the minimal distance between any point and the hyperplane. The class of
an unseen point x is determined by which side of the hyperplane it is on, i.e.,
sign(w · x− b). See Figure 3.

An SVM is a linear classifier, however a kernel can be applied first to allow
non-linear classification. Kernels may result in over fitting when the number of

8 PyML provides a wrapper for libSVM



input datapoints is too small, e.g., less than or equal to the degree of a polynomial
kernel. To prevent this, we do not train the SVM until a sufficient number of
data points are specified. We use both polynomial and Gaussian kernels.
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Fig. 3. A Support Vector Machine classifier and calculation of α, and β parameters for
uncertainty.

Intuitively there is less uncertainty in a prediction the farther away from
the hyperplane the point is projected, |w · x− b |, and the uncertainty is high
between the support vectors (the points closest to the hyperplane). We define an
(αi, βi value for each band corresponding to the point i in our cached training set.
Any point correctly classified closer to the hyperplane increments αi, while each
point farther away incorrectly classified increments βi. For example, in Figure 3,
the incorrectly predicted point k will increment βj , while correctly classifying a
new point x would increment αi (and points farther away). The α and β values
are only valid within their respective bands, inclusively. We use the points in
the training set as our initial sample, and further update these quantities when
we defer to the oracle if the uncertainty is too high. When we retrain, all α, β
values are reset. The hyperplane itself has α = 1, β = 1.

In our setting, the data points represent users. We map a user to a k-
dimensional space by converting their attributes into binary vectors. For ex-
ample, consider the Department attribute that has three values: R&D, Sales,
and Formula One. These are represented by the binary vectors 〈0, 0, 1〉, 〈0, 1, 0〉,
and 〈1, 0, 0〉, respectively. The final k-bit vector for a user is the concatenation
of all attributes. In the remainder of this paper when we refer to a subject s ∈ S,
we are referring to a point in some k-dimensional space.

Finally, there are | O × A | SVM classifiers, one per permission, trained on
subjects s ∈ S. An alternative implementation is to define a single classifier
whose input is S ×O×A, however, based on the results from [15], some object-
right requests have more uncertainty than others. To simplify calculating the



uncertainty of the classified requests, we choose to define a classifier per permis-
sion.

Each PDP based on an SVM will store a small number of data points (sub-
jects and decisions) in a buffer for later retraining. Before predicting the decision
using an SVM, we first check to see if the point is in the cached buffer. When it
is, we return the known decision with zero uncertainty (assuming a static policy).
When a new input and decision is specified by querying the oracle, it is provided
to the SVM so that it may be retrained. When the number of samples exceeds
the size of the buffer a new SVM is trained and the point correctly classified and
project farthest from the hyperplane is discarded. Thus the buffer contains the
points that most closely define the support vectors. We use polynomial (degree
four) and radial bias function (RBF) kernels in our experiments.

We implement several baseline PDPs and learning-based PDPs and strategies
to compare the risk-based against:

– Default PDP This local PDP will always defer to the central PDP.
– FIFO Cache A first-in-first-out cache. If the request is not in the cache,

the oracle is queried. We use two FIFO cache sizes: (E) the size of the FIFO
cache is equal to the total memory of the SVMs; (Inf) the FIFO cache is
unbounded.

And several learning-based PDPs:

– SACMAT’09 Consistent with the approach taken by Ni et al., we train
an SVM for each permission and accept any decision they return, i.e., we
assume there is zero uncertainty.

– Seeded SVM An SVM is constructed for each permission and seeded with
n random users granted the permission, and m random users not granted
the permission. We train and test on the n+m users. We use n = m = 10.

– Unseeded SVM An untrained SVM is created for each permission. Before
the SVMs can be trained a minimum number of allow and deny decisions
must be specified by querying the oracle. The buffer of an unseeded SVM is
the same as a seeded SVM.

5.3 Parameters

We experiment with a wide range of system parameters for the damage resulting
from a false-allow, the loss associated with a false-deny, the gains from a true-
allow, and the cost to contact the oracle. We assume there is no gain or loss from
a true-deny (besides the possible communication costs). In all experiments, the
absolute value of the system parameters is unimportant, but rather their relative
values.

– Military Scenario There is a small cost to contact the oracle. The gains are
twice the contact costs, and damage and loss are twice the gains.

– Financial Application The loss is zero. There is a small contact cost, and
gains are four times the contact costs. Damage is ten times the gains.



0 20000 40000 60000 80000 100000
0

20000

40000

60000

80000

100000

C
e
n
tr

a
l 
Q

u
e
ri

e
s

Default PDP
Seed (n,m) SVM
Simple FIFO (E)
Simple FIFO (Inf)

0 20000 40000 60000 80000 100000
Transaction Number

500000

0

500000

1000000

1500000

2000000

U
ti

lit
y

(a) Military Scenario

0 20000 40000 60000 80000 100000
0

20000

40000

60000

80000

100000

C
e
n
tr

a
l 
Q

u
e
ri

e
s

Default PDP
Seed (n,m) SVM
Simple FIFO (E)
Simple FIFO (Inf)

0 20000 40000 60000 80000 100000
Transaction Number

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

U
ti

lit
y

(b) Financial Application
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(c) Service Provider

Fig. 4. Evaluation under different system parameters.

– Service Provider There is a small contact cost and the damage is only twice
the contact costs while the gains are ten times the contact costs, and losses
are ten times the gains.

5.4 Evaluation Results

We now present our experimental results. First, we compare our general approach
with a default policy that always contacts the oracle, and two FIFO caches:
one with a bounded queue size (the same as all SVMs combined); and one
unbounded. For these experiments we restrict ourselves to a seeded SVM where
we provide it with random allow and deny decision a priori required to train, and
evaluate the results against our three parameter scenarios: military, financial, and
service provider. The results are shown in Figure 4. It is clear from the figures
that both the caching and risk-based classifier approaches reduce the number of
calls to the oracle, by as much as 75% in the case of the military scenario, while
maintaining equal or better utility than the default or caching-based mechanisms
(almost twice the utility in the military scenario). In only the service provider
example was the increase in utility not statistically significant.

Next, we consider the impact of the rate of invalid versus valid requests has
on the performance of the classifiers. We evaluate this for two reasons. First, it
is unknown that the ratio is in a typical deployment. Second, it has been found
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(b) 50% Valid Requests
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(c) 70% Valid Requests

Fig. 5. When the cache-miss rate is high, risk-based classifiers significantly outperform
traditional caching.

that SVMs result in more false-denies than false-allows [15], so varying the ratio
may reveal useful insights. We found that the sampling rate of valid versus
invalid requests impacts the rate of cache hits for the FIFO implementations
greatly impacted their performance. When the number of cache hits was low, for
example, by sampling more invalid requests, we explore a larger amount of the
possible request space, resulting in more cache misses before a hit is returned.
Conversely, when the rate of valid requests was high, a larger fraction of the valid
sampled requests reside in the cache (in part due to the smaller sampling size
because the fraction of allowed requests is so low). The higher number of false-
denies also results in increased uncertainty for many of these requests, causing
the SVMs to be retrained more frequently, and thus deferring more requests.
The results are shown in Figure 5.

Next, we consider the potential impact of trusting the SVM classifiers without
first evaluating their uncertainty, we is done in [15]. Here, the false-allows and
false-denies can result in devastating losses. To illustrate this, we implement
a naive decision resolver (SACMAT’09) that accepts any predicted decision,
regardless of the risk. Figure 6 illustrates the potential decrease in utility from
a small number of false-positives the classifier.

Finally, we evaluate how well the systems perform when the communica-
tion costs become prohibitive. Here, we set the cost to contact the oracle to be
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Fig. 6. The impact of not evaluating the classifier risk.

five-times the gains from allowing a valid request, and set the damage to be
four-times the communication costs. This type of scenario may correspond to a
military setting where communication is expensive, e.g., requiring a satellite link,
or where radio usage should be minimized to avoid triangulation by the enemy.
The results, shown in Figure 7, illustrate that while the risk-based outperforms
the FIFO caches and reduces queries by 65%, it cannot keep the utility positive.
However, it should be noted that the FIFO caches loose over three-times more
utility due to the communication costs.
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Fig. 7. Communication costs is five times the gains, and damages are ten times the
gains.

6 Conclusion

This paper presents a new risk-based architecture for a local PDP, where a
decision is first proposed with a known level of uncertainty, for instance when
using a machine-learning algorithm; the tradeoff of the uncertainty and utility
associated with this decision is then assessed, determining whether the decision
can be taken locally or the central PDP should be contacted. We have defined



three different risk methodologies, namely Expected Utility, Risk Adjusted Utility,
and Independent Risk Constraints, each representing a different risk perspective.

Our approach has been validated using data from a large corporation, and
consistently performed better in experiments than a naive caching mechanism,
in a number of different scenarios. In the best case, we reduce the number of
queries to the central PDP by as much as 75% and saw an eight-fold increase
in the system utility. These profound improvements occured when the cache hit
rate is low.

A future direction for our work would be to compare it with approximate
authorization recycling [6, 21], however, these approaches are fitted for particular
access control models, e.g. the Bell-LaPadula and RBAC models, respectively,
and therefore we would need to adapt our system appropriately and find large
enough datasets.

We also need to consider dynamic access control policies, where a decision for
a given request might change over time. In this context, the uncertainty returned
by the decision-proposer must combine the uncertainty due to classifier error
with the uncertainty due to possible updates to the policy. Finally, additional
research is needed to better determine when a classifier should be retrained and
when a given sample should be discarded, particularly challenging when dealing
with dynamic policy changes.
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A Pessimistic Probabilities

Sections 4.2 and 4.3 make use of pessimistic probabilities, which are derived
from a risk significance level n and the parameters of a beta distribution α and



β. In this section, we demonstrate way in which we can define these pessimistic
probabilities.

To begin, we must know which side of the unbiased probability corresponds
to pessimism and which to optimism, which depends on the semantics of our
prediction. For instance, consider that the proposer returns (allow, α, β), giving
an unbiased probability of p = α

α+β that allow is correct. Under these cir-
cumstances, an optimistic view point is that the true probability of allow is
greater than p, and conversely a pessimistic viewpoint is that it is less than p.
So here, a pessimistic probability is represented by a probability adjusted down-
ward with some significance level of n, i.e. p̃↓n. Considering a contrary decision,
e.g. deny, will switch this viewpoint, giving, in our example, a pessimistic prob-
ability greater than p, and is represented by a probability adjusted upwards with
some significance level n, i.e. p̃↑n

9. The other cases are dealt with similarly. The
meaning of n depends on how we define the risk.

To construct the risk adjusted probability, we use a method derived from
a common risk metric called Expected Shortfall (ES) [7]. In essence, the ES
considers average negative impact in the worst 100n% of universes. Therefore,
if n = 1, the pessimistic probability p̃↓1 is simply the unbiased probability. To
find p̃↓n for other values of n, we first consider the probability density function
for the beta distribution with parameters α and β given by

Beta(µ|α, β) =
Γ (α+ β)

Γ (α)Γ (β)
µα−1(1− µ)β−1 (1)

where Γ (x) is the gamma function [1] and µ represents the possible values for
the probability that a local allow is correct. The unbiased probability given this
distribution is derived from the expected value of µ given α and β, i.e.

E(µ|α, β) =

∫ 1

0

µBeta(µ|α, β)dµ =
α

α+ β
= p (2)

For the downward adjusted probability at significance n, we must evaluated the
integral

p̃↓n = ESn(µ|α, β) =

∫ C

0

µBeta(µ|α, β)dµ (3)

where ESn(µ|α, β) is the Expected Shortfall value of µ given α, β and a signifi-
cance level n; and the upper bound of the interval, C, satisfies

n =

∫ C

0

Beta(µ|α, β)dµ = IC(α, β) (4)

where IC(α, β) is the regularised incomplete beta function [16] and can be solved
to give,

IC(α, β) =

α+β−1∑

j=α

(α+ β + 1)!

j!(α+ β − 1− j)!C
j(1− C)α+β−1−j (5)

9 This switch occurs, because given the proposer returns (allow, α, β) and considering
deny, means that we would prefer it if the proposer has misclassified the decision.



To find C given our value n, we must invert Equation (4). This does not have
a general analytic solution, but can be found numerically for appropriate values
of α, β and n.

Equation (3) is simplified using Equations (1) and (5) to

p̃↓n =

∫ C

0

Γ (α+ β)

Γ (α)Γ (β)
µα(1− µ)β−1dµ

=
Γ (α+ β)

Γ (α)Γ (β)

Γ (α+ 1)Γ (β)

Γ (α+ β + 1)

∫ C

0

Beta(µ|α+ 1, β)dµ

=
(α+ 1)

(α+ β + 1)
IC(α+ 1, β) (6)

To adjust the probability upwards, i.e. for p̃↑n, the approach is similar, but
instead of replacing the upper bound on the integral’s interval, we replace the
lower bound. So

p̃↑n =

∫ 1

D

µBeta(µ|α, β)dµ (7)

where D, satisfies

n = 1−
∫ D

0

Beta(µ|α, β)dµ = 1− ID(α+ 1, β) (8)

Notice that the closer the significance value n gets to 1, the closer the adjusted
probabilities are to p, and as n → 0, p̃↓n→ 0 and p̃↑n→ 1. So for us, a small
value for n represents a high degree of pessimism, while a high value for n gives
an unbiased view. There are a number of ways that pessimistic viewpoints can
be incorporated into risk based decision making [7], here we focus on two that
use these pessimistic probabilities.


