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Dispatch-and-Search: Supporting Proofs
Ting He, Ananthram Swami, and Kang-Won Lee

I. INTRODUCTION

This report contains supporting proofs for [1]. See the

original paper for problem formulation and notations.

II. SELECTED THEOREMS

Lemma 2.1: For any policy π, its reward Rπ
∞ is monotone

increasing with the conditional contact probability pπ
t for any

t.
Lemma 2.2: For any t and any π,

pπ
t ≤

Bt,k

max(1 −
∑t−1

j=1 Bj,k, Bt,k)
=: pt. (1)

Corollary 2.3: For k ferries and a domain of size N (cells),

RMY

∞ ≥ βk/[N(1 − β) + βk]. (2)

Corollary 2.4: If the initial belief is the steady-state

distribution b∗ (b∗ = P
T
b∗), then

R∞ = βT0 [1 − B∗,k (T0 − 1)] +
B∗,k(β − βT0)

1 − β
, (3)

where B∗,k
∆
= max|a|=k

∑

s∈a b∗(s) and T0 = ⌈B−1
∗,k⌉.

Moreover, if P is doubly stochastic1, then the above reduces to

R∞ ≤ βk/[(1 − β)N ]. (4)

Lemma 2.5: For each domain with ag(d) > 0 and local

control reward Rπl

d ,

Rπl

d − β∆ ≤ E[βυ(d)] ≤ Rπl

d . (5)

Lemma 2.6: Under myopic search policies and the asymp-

totically approximate myopic dispatch policy in (17) of [1], let

dτ
∆
=arg maxd mτ (d)/Nd denote the domain served in round

τ . We have

qτ (dτ ) ≥ 1 −

(

1 −
K

Ndτ

)∆

=: q
τ
, (6)

E[βυτ (dτ)] ≥

βK

(

1 − β∆
(

1 − K
Ndτ

)∆
)

Ndτ − β(Ndτ − K)
. (7)
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1That is, each column of P also sums up to one.

Theorem 2.7: Under myopic search policies and the asymp-

totically approximate myopic dispatch policy in (17) of [1], the

discounted total throughput is lower bounded by

Rπg
∞ ≥ E[

∞
∑

τ=1

β(∆+1)(τ−1)r(mτ )|m1 = 0] =: Rπg
∞ , (8)

where the expectation is over the Markov chain {mτ}
∞
τ=1

specified in (20) of [1].

III. PROOFS OF SELECTED THEOREMS

A. Proof of Lemma 2.1

By equation (8) in [1], we have

∂Rπ
∞

∂pπ
t

= βt
t−1
∏

j=1

(1 − pπ
j ) −

∞
∑

s=t+1

βspπ
s

s−1
∏

j=1,j 6=t

(1 − pπ
j )

=





t−1
∏

j=1

(1 − pπ
j )





(

βt − E[βΥπ

|Υπ > t]
)

≥ 0.

Therefore, Rπ
∞ is monotone increasing with pπ

t .

B. Proof of Lemma 2.2

First, we prove by induction that (recall b
(t) = (PT )t

b0)

bπ
t (i) ≤

b(t)(i)

1 −
∑t−1

j=1

∑

s∈aπ
j

b(j)(s)
, ∀i ∈ S, t ≥ 1. (9)

For t = 1, b
π
1 = P

T
b0 = b

(1). For t > 1,

bπ
t (i)=

∑

j 6∈aπ
t−1

bπ
t−1(j)Pj,i

1 −
∑

s∈aπ
t−1

bπ
t−1(s)

≤
b(t)(i)

1 −
∑t−1

j=1

∑

s∈aπ
j

b(j)(s)
,

obtained by applying (9) for bπ
t−1(j). This proves (9).

Then, we apply the above to pπ
t =

∑

s∈aπ
t

bπ
t (s): pπ

t ≤

[
∑

s∈aπ
t

b(t)(s)]/[1 −
∑t−1

j=1

∑

s∈aπ
j

b(j)(s)] ≤ pt for pt de-

fined as in (1).

C. Proof of Corollary 2.3

The proof is based on the fact that pMY

t ≥ k/N, ∀t. By

Lemma 2.1,

RMY

∞ ≥

∞
∑

t=1

βt k

N
(1 −

k

N
)t−1 =

βk

N(1 − β) + βk
.



2

D. Proof of Corollary 2.4

If b0 = b∗, then b
(t) ≡ b∗, ∀t. Accordingly, Bt,k ≡ B∗,k,

and T0 = ⌈B−1
∗,k⌉. Plugging these into equation (9) of [1] gives

(3). If, in addition, P is doubly stochastic, then it is known

that b∗ is uniform, i.e., B∗,k = k/N , applying which to (3)

gives

R∞ = β⌈N/k⌉

[

1 −
k

N

(

⌈
N

k
⌉ − 1

)]

+
k(β − β⌈N/k⌉)

N(1 − β)
.

(10)

If we maximize the right-hand side of (10) with respect to

⌈N
k ⌉, calculation shows that the maximum is achieved at

⌈N
k ⌉ = N

k , N
k + 1, or N

k − 1
1−β − 1

log β + 1. At the first

two values, the right-hand side is
kβ(1−βN/k)

N(1−β) < βk
(1−β)N ;

at the third value, it is k
N

(

β
N
k +1− 1

1−β − 1
log β / logβ + β

1−β

)

< βk
(1−β)N . Thus, R∞ ≤ βk/[(1 − β)N ].

E. Proof of Lemma 2.5

The upper bound holds because Rπl

d = E[βΥ(d)] while

E[βυ(d)] is a truncated average. The lower bound is be-

cause Rπl

d − E[βυ(d)] =
∑∞

t=∆+1 βt Pr{Υ(d) = t} ≤
β∆ Pr{Υ(d) > ∆} ≤ β∆.

F. Proof of Lemma 2.6

Let pt be the conditional contact probability in domain

dτ . By definition, we have pt ≥ K/Ndτ for the myopic

search policy. From the analysis of local control (Section

4.3 in [1]), we have qτ (dτ ) = 1 −
∏∆

t=1(1 − pt) and

E[βυτ (dτ )] =
∑∆

t=1 βt Pr{υτ(dτ ) = t} =
∑∆

t=1 βtpt

∏t−1
j=1

(1−pj), both increasing with pt. Plugging in the lower bound

of pt yields the results.

G. Proof of Theorem 2.7

Due to discount, the total throughput is an increasing

function of the probability of delivery qτ (dτ ) and is thus

lower bounded if qτ (dτ ) is replaced by its lower bound via

the Markov chain defined in (20) of [1]. For given (bτ , mτ ),
the expected immediate reward under the asymptotically

approximate myopic dispatch policy given by (17) of [1] is

mτ (dτ )E[βυτ (dτ )], which is lower bounded by r(mτ ) for

any bτ due to (7). Combining these two proves the result.
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