
RC25126 (W1103-087) March 14, 2011
Computer Science

IBM Research Report

Load/Store Characteristics for a Set of POWER 
Systems Benchmarks

José E. Moreira
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



Load/Store Characteristics for a

Set of POWER Systems Benchmarks

José E. Moreira
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
jmoreira@us.ibm.com

Abstract

We analyze the fraction of loads and stores in a set of POWER Systems benchmarks. The
benchmarks include all of the SPECint2006 codes plus a set of commercial codes and a set of
Python codes. The analysis is based on instruction traces collected from the execution of each
of those benchmarks. We observe that on average the load/store instructions represent 40% of
the total number of instructions. We also observe that loads and stores appear at a ratio of
approximately 2-to-1.

1 Introduction

We analyze the fraction of loads and stores in a set of POWER Systems benchmarks. The bench-
marks include all of the SPECint2006 codes [4] plus a set of commercial codes and a set of Python
codes. The commercial codes include SPECjAppServer [5], SPECjbb [6] and TPC-C [7]. For
Python, we chose codes from the Unladen Swallow benchmark suite [2].

The analysis is based on instruction traces collected from the execution of each of those bench-
marks. We first discuss how those traces were collected and processed to extract the load and store
instructions. We then proceed to present and discuss the data from our measurements.

2 Trace collection and processing

The instruction traces for the SPECint2006 and commercial codes were collected by executing the
benchmarks on a POWER Systems machine with the POWER5 processor [3]. The traces cover
only a subset of the execution of each benchmark, but were selected as to be representative of the
entire execution.

1



The instruction traces for the Python codes were collected by executing the benchmarks on the
Mambo simulator [1]. Again, the traces cover only part of the execution of each benchmark.

The traces are stored in an IBM proprietary format, organized in trace records for each instruction.
Each instruction trace record contains various information for the execution of that instruction.
In particular, it contains the instruction encoding (a 32-bit value) and, for those instructions that
access memory, the effective address of the memory location accessed (a 64-bit value).

We processed those traces, examining each trace record. We used the instruction encoding to decide
if the instruction was a load or a store. If it was either a load or a store we then retrieved the
corresponding effective address. In the process, we generated a condensed trace that contains only
three pieces of information for each load or store instruction: a flag indicating if it is a load or a
store; an instruction index (counting from the beginning of the original trace); and the effective
address. Other (non-load/store) instructions were simply skipped and were not included in the
condensed trace.

3 Benchmark characteristics

Table 1 summarizes our findings. For each benchmark, it shows the total number of instructions
in the original trace as well as the number of loads and stores in that trace. It also shows the
percentage of loads and stores with respect to the total number of instructions.

The benchmarks are grouped by category. The first category are the SPECint2006 benchmarks.
The second category are the commercial benchmarks (SPECjAppServer, SPECjbb, and TPC-C).
There are four different instances of TPC-C traces, collected from different threads of the same
run. Finally, the third category are the Python benchmarks.

4 Discussion

The results show that, on average, 40% of the executed instructions in the benchmarks analyzed
are loads and stores. Furthermore, the ratio of loads to stores is close to 2-to-1. Although the
fraction of loads among all instructions varies from 20 to 40%, most benchmarks are close to the
average value of 26%. Similarly, the fraction of stores varies from 7 to 21%, but most benchmarks
are close to the average value of 13%.

Noteworthy SPECint2006 benchmarks include gcc, for which there are more stores than loads, and
h264ref, for which more than half the instructions executed are loads or stores. Not surprisingly,
all four threads of TPC-C display similar behavior. The three Python benchmarks also display
similar behavior. Again, this is not surprising since the execution traces are essentially capturing
the behavior of the Python interpreter.

2



benchmark number of number of percentage of number of percentage of
instructions loads loads stores stores

astar 99,999,985 31,039,761 31.04% 9,960,309 9.96%
bzip2 99,999,987 27,828,966 27.83% 7,565,973 7.57%
gcc 99,999,988 19,428,625 19.43% 21,485,844 21.49%
gobmk 99,999,988 22,450,732 22.45% 13,404,056 13.40%
h264ref 99,999,985 38,625,929 38.63% 13,787,847 13.79%
hmmer 99,999,987 30,115,001 30.12% 11,001,985 11.00%
libquantum 99,999,982 20,684,842 20.68% 8,500,671 8.50%
mcf 99,999,981 29,591,518 29.59% 9,051,620 9.05%
omnetpp 99,999,987 27,557,778 27.56% 18,172,050 18.17%
perlbench 99,999,986 26,820,270 26.82% 15,819,003 15.82%
sjeng 99,999,989 21,916,143 21.92% 7,531,278 7.53%
xalancbmk 99,999,982 23,717,289 23.72% 10,057,303 10.06%
SPECjAppServer 105,000,001 28,916,151 27.54% 15,317,284 14.59%
SPECjbb2005 105,000,000 21,261,112 20.25% 14,011,727 13.34%
tpcc.16 370,117,613 99,137,413 26.79% 59,874,416 16.18%
tpcc.18 218,775,866 58,942,110 26.94% 35,813,285 16.37%
tpcc.20 289,381,491 76,832,097 26.55% 45,402,659 15.69%
tpcc.22 219,070,689 58,650,561 26.77% 35,592,861 16.25%
python26-linux-gcc 72,822,693 18,319,381 25.16% 10,460,060 14.36%
python-django-linux-64 181,574,950 46,068,183 25.37% 25,238,109 13.90%
2to3-p7-python26-fast 149,327,514 37,605,533 25.18% 20,555,872 13.77%
min 19.43% 7.53%
max 38.63% 21.49%
average ± stddev 26.21 ± 4.17% 13.37 ± 3.57%

Table 1: Summary of results for the benchmarks analyzed.

5 Conclusions

Our analysis of several benchmarks running on POWER Systems show that loads and stores rep-
resent between 1/3 to 1/2 of all instructions executed in each of those benchmarks. Loads are
more numerous than stores by a 2-to-1 ratio on average, although the SPECint2006 benchmark gcc
shows more stores than loads.

References

[1] Patrick Bohrer, James Peterson, Mootaz Elnozahy, Ram Rajamony, Ahmed Gheith, Ron
Rockhold, Charles Lefurgy, Hazim Shafi, Tarun Nakra, Rick Simpson, Evan Speight, Kartik
Sudeep, Eric Van Hensbergen, and Lixin Zhang. Mambo: a full system simulator for the
PowerPC architecture. SIGMETRICS Perform. Eval. Rev., 31:8–12, March 2004.

[2] Google Inc. Unladen Swallow Benchmarks.
http://code.google.com/p/unladen-swallow/wiki/Benchmarks.

3



[3] R. Kalla, Balaram Sinharoy, and J.M. Tendler. Ibm power5 chip: a dual-core multithreaded
processor. Micro, IEEE, 24(2):40 – 47, 2004.

[4] Standard Performance Evaluation Corporation. CINT2006 (Integer Component of SPEC
CPU2006). http://www.spec.org/cpu2006/CINT2006.

[5] Standard Performance Evaluation Corporation. SPECjAppServer2004.
http://www.spec.org/jAppServer2004.

[6] Standard Performance Evaluation Corporation. SPECjbb2005.
http://www.spec.org/jbb2005.

[7] Transaction Processing Performance Council. TPC-C. http://www.tpc.org/tpcc.

4


