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ABSTRACT
As one of the most fundamental security mechanisms of re-
sources, Access Control Policies (ACP) specify which prin-
cipals such as users or processes have access to which re-
sources. Ensuring the correct specification and enforcement
of ACPs is crucial to prevent security vulnerabilities. How-
ever, in practice, ACPs are commonly written in Natural
Language (NL) and buried in large documents such as re-
quirements documents, not directly checkable for correct-
ness. It is very tedious and error-prone to manually identify
and extract ACPs from these NL documents, and validate
NL functional requirements such as use cases against ACPs
for detecting inconsistencies. To address these issues, we
propose a novel approach, called Text2Policy, that automat-
ically extracts ACPs from NL documents and extracts action
steps from NL scenario-based functional requirements (such
as use cases). From the extracted ACPs, Text2Policy au-
tomatically generates checkable ACPs in specification lan-
guages such as XACML. From the extracted action steps,
Text2Policy automatically derives access control requests
that can be validated against specified or extracted ACPs to
detect inconsistencies. To assess the effectiveness of Text2Policy,
we conduct three evaluations on the collected ACP sentences
from 18 sources and 37 use cases from an open source project
called iTrust (including 448 use-case sentences). The results
show that Text2Policy effectively extracts ACPs from NL
documents and action steps from use cases for detecting is-
sues in the use cases.

1. INTRODUCTION
Access control is one of the most fundamental and widely

used privacy and security mechanisms. Access control is
governed by an access control policy (ACP) [26], which in-
cludes a set of rules to specify which principals such as
users or processes have access to which resources. Since
access decisions on requests are based on ACPs, ACPs that
are not correctly specified can result in consequences such
as allowing an unauthorized user to access protected re-
sources. Moreover, given specified ACPs, the system imple-
mentation needs to correctly enforce these ACPs, otherwise
could cause similar consequences as incorrect specification of
ACPs. Thus, ensuring the correct specification and enforce-
ment of ACPs is crucial to prevent security vulnerabilities.

Problems. Correctly specifying ACPs is an important

and yet challenging task, since ACPs may contain a large
number of rules and be very complex in order to meet vari-
ous security and privacy requirements. To ensure the correct
specification of ACPs, policy authors can apply approaches
of systematic testing and verification [17,23] on ACPs, which
require ACPs being formally specified. However, in practice,
ACPs are commonly written in Natural Language (NL) and
buried in NL documents such as requirements documents,
e.g., “The Health Care Personnel (HCP) does not have the
ability to edit the patient’s security question and password” in
iTrust requirements [5, 30]. These ACP sentences (i.e., sen-
tences describing ACP rules) are not directly enforceable or
checkable for correctness, requiring manual inspection of the
NL documents for identifying ACP sentences and extracting
ACPs from these sentences into enforceable formats, such as
XACML (eXtensible Access Control Markup Language) [4].
In general, these NL documents could be large in size, of-
ten consisting of hundreds or even thousands of sentences
(iTrust consists of 37 use cases with 448 use-case sentences),
where only a small portion describes ACPs (10 sentences in
iTrust). Thus, it is very tedious and error-prone to manu-
ally inspect these NL for identifying and extracting ACPs
for policy modelling and specification.

Similarly, correctly enforcing ACPs is also an important
and yet challenging task due to the gap between ACPs spec-
ified using domain concepts and system implementation de-
veloped using programming concepts. Functional require-
ments, such as scenario-based functional requirements (use
cases [18]) that specify sequences of action steps1, bridges
the gap since it describes functionalities to be implemented
by developers using domain concepts. For example, an ac-
tion step “The patient chooses to view his or her access log.”
in Use Case 8 of iTrust implies that the system shall have
the functionality for patient (domain concepts) to view his or
her access log. These action steps typically describe that ac-
tors (principals) access different resources for achieving some
functionalities and help developers determine what system
functionalities to implement. As a result, we can validate
such action steps against provided ACPs to detect inconsis-
tencies of resource access specified in action steps and ACPs.
Such inconsistency detection can help the policy authors or
developer to address the problems of correct enforcement
of ACPs. In large-size function requirements, there may
be only a few action steps that could cause inconsistencies.
Manually inspecting functional requirements to identify in-
consistencies is also labor-intensive and tedious.

1To differentiate action in the access control model de-
scribed later, we here use action step rather than action.
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ACP 1: A HCP should not change patient’s account.

ACP 2: A HCP is disallowed to change patient’s account.

Figure 1: Example ACP sentences written in NL.

Proposed Approach. To reduce manual efforts in ad-
dressing the problems of correct ACP specification and en-
forcement, we propose a novel approach, called Text2Policy,
which includes novel Natural Language Processing (NLP)
techniques designed around model (such as the ACP model
and action-step model) to automatically extract model in-
stances from NL documents and produces formal specifica-
tions. Our general approach consists three main steps: (1)
apply linguistic analysis to parse NL documents and anno-
tate words and phrases in sentences from NL documents
with semantic meaning; (2) construct model instances us-
ing the annotated words and phrases in the sentences; (3)
transform these model instances into formal specifications.
In this paper, we provide techniques to concretize our gen-
eral approach to extract ACPs from NL documents and
extract action steps from functional requirements. From
the extracted ACPs, our approach automatically generates
machine-enforceable ACPs in specification languages such as
XACML, which can be used by automatic verification and
testing approaches [17, 23] for checking policy correctness
or serve as an initial version of ACPs for policy authors to
improve. From each extracted action step, our approach au-
tomatically derives an access control request that a principal
requests to access a resource with the expected permit deci-
sions. Such derived requests with the expected permit deci-
sions can be used for automatic validation against specified
or extracted ACPs for detecting inconsistencies. We next
describe the technical challenges faced by ACP extraction
and action-step extraction by using example ACP sentences
in Figure 1 and a sequence of example action steps in Figure
2 and our proposed techniques to address these challenges.

Technical Challenges. As a common technical chal-
lenge for both ACP extraction and action-step extraction,
TC1-Anaphora refers to identifying and replacing pronouns
with noun phrases based on the context. For example, the
pronoun he in Action Step 2 shown in Figure 2 needs to be
replaced with HCP from Action Step 1. For ACP extrac-
tion, there are two unique technique challenges: (1) TC2-
Semantic Structure Variance. ACP1 and ACP2 in Figure 1
use different ways (semantic structures) to describe the same
ACP rule; (2) TC3-Negative-Meaning Implicitness. An ACP
sentence may contain negative expressions, such as ACP1.
Additionally, the verb in the sentence may have negative
meaning, such as disallow in ACP2. For action-step extrac-
tion, there are two unique challenges: (1) TC4-Transitive
Actor. Action Step 3 implies that HCP (actor from Ac-
tion Step 2) is the initiating actor of Action Step 3; (2)
TC5-Perspective Variance. Action Step 4 implies that HCP
views the updated account, requiring a conversion to replace
the actor and action of Action Step 4.

Proposed Techniques. To address TC1-Anaphora, we
propose a new technique, called Anaphora Resolution, which
adapts the anaphora algorithm introduced by Kennedy et.
al [22] to identify and replace pronouns with noun phrases
based on the context. To address TC2-Semantic Structure
Variance, we propose a new technique, called Semantic Pat-
tern Matching, which provides different semantic patterns
based on the grammatical functions (subject, main verb, and
object) to match different semantic structures of ACP sen-
tences. To address TC3-Negative-Meaning Implicitness, we

Action Step 1: A HCP creates an account.

Action Step 2: He edits the account.

Action Step 3: The system updates the account.

Action Step 4: The system displays the updated account.

Figure 2: An example use case.

propose a new technique, called Negative-Meaning Inference,
which infers negative meaning by using patterns to iden-
tify negative expressions and a domain dictionary to identify
negative meaning of verbs. To address TC4-Transitive Ac-
tor, we propose a new technique, called Actor Flow Tracking,
which tracks non-system actors of action steps and replace
system actors with tracked actors for action steps that have
only system actors. To address TC5-Perspective Variance,
we propose a new technique, called Perspective Conversion,
which tracks non-system actors of action steps similar to
Actor Flow Tracking and converts action steps that have
only system actors and output information from system by
replacing actors and actions of the action steps.

This paper makes the following major contributions:

• A novel approach, called Text2Policy, which provides a
general framework that incorporates syntactic and se-
mantic NL analysis to extract model instances and pro-
duces formal specifications. Our approach is the first
attempt to automatically extract ACP rules from NL
documents and extract action-steps from functional re-
quirements to assist correct specification and enforce-
ment of ACPs.

• New techniques that concretize our general approach
to extract ACP rules from NL documents.

• New techniques that concretize our general approach
to extract action steps from functional requirements
such as use cases.

• Three evaluations of Text2Policy on the iTrust [5, 30]
use cases and the collected 115 ACP sentences from 18
sources. The results show that (1) Text2Policy effec-
tively identifies 8 ACP sentences with no false positives
and 2 false negatives from 37 use cases (448 sentences)
of iTrust requirements; (2) Text2Policy effectively ex-
tracts ACP rules from 115 ACP sentences with the ac-
curacy of 92.17%; (3) Text2Policy effectively extracts
action steps from 438 action-step sentences in iTrust
use cases with the accuracy of 84.47%. The evaluation
artifacts and detailed results are publicly available on
our project web site [6].

2. BACKGROUND
In this section, we first introduce the background of ACP

model used for representing ACPs in our approach, and then
describe the background of the action-step model (adapted
from the use case meta-model [27,28]) used for representing
action steps in our approach.

2.1 ACP Model
An access control policy consists of a set of access control

rules. A rule can have one of various effects (i.e., permit,
deny, oblige, or refrain). In this paper, we focus on the per-
mit and deny rules (i.e., rules with permit or deny effects).
Permit rules allows a principal, such as a user or a process,
to access a particular resource, while deny rules prevent a
principal from accessing a particular resource.

A typical access control rule consists of four elements:
subject, action, resource, and effect, as shown in Figure 3.



Figure 3: ACP model.

The subject element describes the principals such as users
or processes that may access resources. The action element
describes a simple action (e.g., view or udpate) or an ab-
stract action (e.g., assign or approve) that the principals
can perform. The resource element describes the resource
(e.g., patient’s password ) to which access is restricted.

The eXtensible Access Control Markup Language (XACML)
[4] is an XML-based general-purpose language used to de-
scribe policies, requests, and responses for access control
policies, recognized as a standard by Organization for the
Advancement of Structured Information Standards (OASIS).

To enforce ACP rules, before a principal can perform an
action on a particular resource, a Policy Enforcement Point
(PEP) sends a requests to the Policy Decision Point (PDP).
The PDP makes the decision on whether the access can be
granted by evaluating the ACP rules whose subject, action,
and resource elements match the request. Based on the de-
cision sent back by the PDP, the PEP allows or denies the
access. Thus, to correctly enforce ACP rules in a system,
PEPs need to be correctly deployed for sending access re-
quests before accesses to protected resources.

2.2 Action-Step Model
Use cases [19] are scenario-based requirements specifica-

tions that consist of sequences of action steps for illustrating
behaviors of software systems. These action steps describe
how actors interact with software systems for exchanging
information. Actors are entities outside software systems
(such as users) that interact with the systems by providing
input to the systems (Action Step 2 in Figure 2) or receiv-
ing output from the systems (Action Step 4 in Figure 2).
Since action steps describe how actors access or update in-
formation (resources) of the systems, each action step can be
considered to encode an access control request that an actor
requests to access the resources and expect the request to be
permitted. Using the access control requests with expected
permit decisions derived from action steps, we can automat-
ically validate such requests with expected decisions against
specified or extracted ACPs to detect inconsistencies.

Functionally, use cases serve as requirements documents
that helps developers determine which features of software
systems to implement. A use case action step is usually im-
plemented as a method or multiple methods among differ-
ent modules in the code portions. For example, action 3 in
Figure 2 may be mapped to a method named updateAccount

that updates the account information. When we validate ac-
cess control requests with expected permit decisions derived
from action steps against specified or extracted ACPs, this
mapping from action steps to system implementation can be
used to locate PEPs in the system implementation, assisting
the correct enforcement of ACPs. For example, if we find
that a request (derived from an action step) has subject,
action, and resource matched with an specified or extracted
ACP rule, we then report that a PEP should be deployed for

Figure 4: Action-Step model.

the action step. Using the reported action steps, developers
can use the mapping to locate the portion of code in the
system implementation to deploy PEPs.

We represent the contents of use cases (sequences of action
steps) in a formal representation, i.e., a structured model
shown in Figure 4. The content of a NL use case contains a
list of sentences, each of which in turn contains one or more
action steps initiated by some actor (e.g., HCP in action
step 1 shown in Figure 2). Each action step has an action
associated with a classification, such as INPUT classification
for the act of providing information (e.g., edits in action step
2 shown in Figure 2) and OUTPUT classification for the act
of receiving information (e.g., display in action 4 shown in
Figure 2). An action step is also associated to one or more
actors and has a set of parameters. An parameter represents
the resources created, modified, or used by the actions, such
as account in action step 2 shown in Figure 2.

3. EXAMPLES
In this section, we present how Text2Policy extracts ACPs

from NL documents and how Text2Policy extracts action
steps from NL use cases.

3.1 Example of ACP Extraction
Text2Policy includes novel NLP techniques that incorpo-

rate syntatic analysis by using shallow parsing [24] and se-
mantic analysis by using semantic pattern matching and do-
main dictionary to extract elements of subject, action, and
resource, and infer policy effect.

The shallow parsing component in Text2Policy first uses
a lexical processor to associate words with contextually ap-
propriate part-of-speech (POS) information [7]. The shal-
low parsing component then uses a cascade of several finite-
state transducers (FSTs) to identifies phrases, clauses, and
grammatical functions of phrases by recognizing patterns of
POS of tokens and already identified phrases and clauses
in the text. Consider example ACPs shown in Figure 1.
Through multiple levels of FSTs, the shallow parsing compo-
nent parses ACP2 as [object: A HCP ] [main verb group: is
disallowed ] [infinitive phrase: to change patient’s account.].
The verb group phrase is disallowed is also identified by the
shallow parsing component as passive voice.

To determine whether a sentence is describing an ACP
rule (i.e., is an ACP sentence) and extract elements of sub-
ject, action, and resource, Text2Policy composes seman-
tic patterns using the identified grammatical functions of
phrases and clauses extracted by the shallow parsing com-
ponent. For example, ACP2 can be matched by the semantic
pattern passive voice followed by to-infinitive phrase. Based
on this semantic pattern, Text2Policy extracts HCP as the
subject element, change as the action element, patient’s ac-
count as the resource element for an ACP rule. The domain
dictionary used in our approach further associates the verb
change in the action element with the UPDATE semantic



Figure 5: Example instance of ACP Model for ACP2
in Figure 1.

class.
To infer the effect for an ACP rule, Text2Policy first uses

a domain dictionary to associate verbs with pre-defined se-
mantic classes from an ACP sentence. For example, Text2Policy
associates is disallowed in ACP2 with NEGATIVE semantic
class and considers the effect of ACP2 as deny. Text2Policy
then checks whether the ACP sentence contains any negative
expression. For example, Text2Policy identifies the negative
expression of should not change in ACP1 and considers the
effect of ACP1 as deny.

Using the subject, action, and resource elements extracted
by using the semantic patterns and the effect element in-
ferred by checking semantic classes and negative expres-
sion, Text2Policy constructs an ACPmodel instance for each
ACP sentence. Figure 5 shows the example model instance
for ACP2.

3.2 Example of Action-Step Extraction
Text2Policy includes novel NLP techniques to extract ac-

tion steps in the format of the model shown in Figure 4. Con-
sider the example use case shown in Figure 2. Text2Policy
first uses NLP techniques to parse and represent a use case
as a sequence of action steps associated with actors (sys-
tem, HCP), action types representing the classification of
the actions (e.g., the classification of display in action step
4 as OUTPUT), and parameters (account). As a complete
example, action step 1 is shown in Figure 6.

During the parsing, our new NLP techniques apply the
anaphora resolution algorithm [22] to identify and replace
pronouns with the noun phrases they refer to. For example,
the anaphora resolution algorithm replaces he in Action Step
2 is replaced by HCP by the anaphora resolution technique.

As we discussed in the introduction, the actors of both
Action Steps 3 and 4 are system. However, by inspecting the
use case, we know that HCP would be the initiating actor of
Action Step 3 and the receiving actor of Action Step 4, since
HCP updates account and the system displays account for
HCP to view. To address the challenges of transitive subject
(e.g., in Action Step 3) and perspective variance (e.g., in
Action Step 4), Text2Policy applies data flow analysis on
actors in use case actions. Since action step 3 has system as
its only initiating actor and action 1 has non-system (i.e.,
HCP) as its initiating actor, Text2Policy considers HCP as

Figure 6: An example action step.

Figure 7: Overview of our approach.

the actor for action step 3. Since Action Step 4 has system
as its only initiating actor and the classification of its action
type is OUTPUT, Text2Policy converts Action Step 4 as
HCP views the updated account.

4. APPROACH
In this section, we describe how our general approach au-

tomatically extracts model instances from NL documents
and produces formal specification. In this paper, we con-
cretize our approach by providing techniques to extract model
instances of ACP rules from NL documents and extract
model instances of action steps from use cases. Our ap-
proach consists of three main steps: Linguistic Analysis,
Model Instance Construction, and Transformation.

4.1 Overview of Our Approach
Figure 7 shows the overview of our approach. Our ap-

proach accepts NL documents as input and applies linguistic
analysis to parse the NL documents and annotate the sen-
tences from the NL documents with semantic meaning for
words and phrases. Using the annotated sentences, our ap-
proach construct model instances. Based on transformation
rules, our approach transforms the model instances into for-
mal specifications, which can be automatically checked for
correctness and enforced in the deployed system.

4.2 Linguistic Analysis
The linguistic analysis component includes novel NLP tech-

niques that incorporate syntactic and semantic NL analyses
to parse the NL documents and annotate the words and
phrases in the document sentences with semantic meaning.
We next describe the common linguistic analysis techniques
used for both ACP extraction and action-step extraction,
and describe the unique techniques proposed for ACP ex-
traction and action-step extraction, respectively.

4.2.1 Common Linguistic Analysis Techniques
In this section, we describe the common linguistic analysis

techniques used in our general approach: shallow parsing,
domain dictionary.

Shallow Parsing. Shallow parsing determines the syn-
tactic structures of sentences in NL documents. Research [15,
29] has shown the efficiency of shallow parsing based on
finite-state techniques and the effectiveness of using finite-
state methods for lexical lookup, morphological analysis,
part-of-speech (POS) determination, and phrase identifica-
tion. Our previous approach [28] also shows that the shallow-
parsing analysis is effective and efficient for semantic and dis-
course processing. Therefore, our approach chooses a shal-
low parser that is fully implemented as a cascade of several
finite-state transducers (FSTs), described in detail by Bogu-
raev [9].



Semantic Pattern Examples

Modal Verb in Main Verb Group
A HCP can view the patient’s account.
An admin should not update patient’s password.

Passive Voice followed by To-infinitive Phrase
A HCP is disallowed to update patient’s password.
A HCP is allowed to view patient’s account.

Access Expression
A HCP has read access to patient’s account.
An patient’s account is accessible to A HCP.

Ability Expression
A HCP is able to read patient’s account.
A HCP has the ability to read patient’s account.

Table 1: Semantic patterns for ACP sentences

In the shallow parser, an FST identifies phrases, clauses,
and grammatical functions of phrases by recognizing pat-
terns of POS of tokens and already identified phrases and
clauses in the text. The lowest level of the cascade recognizes
simple noun group (NP) and verb group (VG) grammars.
For example, ACP1 is parsed as [NP: A HCP ] [VG: should
not change] [NP: patient’s account.]. Later stages of the cas-
cade try to build complex phrases, identify clause boundaries
based on patterns of already identified tokens and phrases.
For example, to change patient’s account in ACP2 is recog-
nized as a to-infinitive clause. The final set of FSTs marks
grammatical functions such as subjects, main verb group,
and objects. As an example, the shallow parser finally parses
and annotates ACP1 as [subject: A HCP ] [main verb group:
should not change] [object: patient’s account.].

Domain Dictionary. The domain dictionary associates
verbs with pre-defined semantic classes. There are two bene-
fits of associating verbs with semantic classes. The first ben-
efit is to help address TC3-Negative-Meaning Implicitness.
Consider ACP2 shown in Figure 1. Without the seman-
tic class of the main verb group, is disallowed, our analysis
would incorrectly infer the effect as permit instead of deny.
The second benefit is to identify verb synonyms, such as
change and update. our approach uses verb synonym during
validation of action-step information against ACPs, since
our approach needs to match an ACP rule with the access
requests transformed from action steps and the verbs used
in the ACP rule and the action steps may be synonyms.

The domain dictionary associates each verb entry with a
semantic class. Besides the NEGATIVE class that we men-
tioned earlier, a verb entry can be associated with a seman-
tic class that is a kind of operation [27, 28], e.g., OUTPUT
(view, displays) and UPDATE (change, edit). We popu-
lated the domain dictionary with an initial set of commonly
used verb entries and their respective semantic classes. We
then use WordNet [14], a large lexical database of English,
to further expand the entries with their synonyms.

Currently, we implement the domain dictionary as an ex-
tensible and externalizable XML-Blob base domain dictio-
nary and the content is populated manually. One major
limitation of static XML-Blob is that the domain dictio-
nary can only assign the UNCLASSIFIED semantic class
to unknown verbs. In future work, we plan to extend the
domain dictionary to query WordNet dynamically when un-
known verbs or adjectives are encountered. By querying
WordNet for synonyms or antonyms of the currently known
verbs, the domain dictionary can assign semantic classes to
the unknown verbs using their most similar verbs’ semantic
classes. Alternatively, the domain dictionary can assign se-
mantic classes of those already known verbs that belong to
the k-Nearest neighbors of unknown verbs.

Anaphora Resolution. To address TC1-Anaphora, we

provide the technique of anaphora resolution to identify and
replace pronouns with the noun phrases that they refer to.
Our approach uses this technique as part of the approach to
identify actors for an action step. To resolve anaphora en-
countered during use-case parsing, we adapt the anaphora
algorithm introduced by Kennedy et. al [22] with an addi-
tional rule: a pronoun in the position of an actor is replace-
able only by noun phrases that also appear as actors of the
previous action step. As an example, he in Action Step 2
shown in Figure 2 is replaced by HCP, the actor of Action
Step 1.

4.2.2 ACP Linguistic Analysis
In this section, we describe unique linguistic analysis tech-

niques proposed for ACP extraction.
Semantic Pattern Matching. To address TC2-Semantic

Structure Variance, we provide the technique of semantic
pattern matching to identify whether a sentence is an ACP
sentence. Our approach uses this technique as part of the
approach to identify subject, action, and resource elements
for an ACP rule. To identify different semantic structures
that describe ACP rules, semantic pattern matching uses
their corresponding semantic patterns. These patterns are
composed based on grammatical functions identified by shal-
low parsing. Thus, it is more general than patterns based
on POS tags [13].

Table 1 shows the semantic patterns used in our approach.
The text in bold shows the part of a sentence that matches
a given semantic pattern. These semantic patterns iden-
tify ACP sentences. The first pattern, Modal Verb in Main
Verb Group, identifies sentences whose main verb contains
a modal verb. This pattern can identify ACP1 shown in
Figure 1. The second pattern, Passive Voice followed by To-
infinitive Phrase, identifies sentences whose main verb group
is passive voice and is followed by a to-infinitive phrase.
This pattern can identify ACP2 shown in Figure 1. The
third pattern, Access Expression, captures different ways of
expressing that a principal can have access to a particular
resource. The fourth pattern, Ability Expression, captures
different ways of expressing that a principal has the ability
to access a particular resource. Using the semantic patterns,
our approach filters out NL-document sentences that do not
match with these provided patterns.

Negative-Expression Identification. Negative expres-
sions in sentences can be used to determine whether the sen-
tences have negative meaning. To identify negative expres-
sions in a sentence, our approach composes patterns to iden-
tify negative expressions in a subject and main verb group.
For example, No HCP can edit patient’s account. has no in
the subject. As another example, HCP can never edit pa-
tient’s account. has never in the main verb group. ACP1
in Figure 1 contains a negative expression in the main verb



Semantic Pattern Examples

Modal Verb in Main Verb Group
An [subject : HCP] can [action: view] the [resource: patient’s
account.]
An [subject : admin] should not [action: update] [resource:
patient’s password].

Passive Voice followed by To-infinitive Phrase
An [subject : HCP] is disallowed to [action:update] [resource:
patient’s password].
An [subject : HCP] is allowed to [action:view] [resource: pa-
tient’s account].

Access Expression
An [subject : HCP] has [action:read] access to [resource: pa-
tient’s account].
An [resource: patient’s account] is [action: accessible] to an
[subject : HCP].

Ability Expression
An [subject : HCP] is able to [action:read] [resource: patient’s
account].
An [subject :HCP] has the ability to [action:read] [resource:
patient’s account].

Table 2: Identified subject, action, resource elements in sentences matched with semantic patterns for ACP
sentences

group. Our approach uses the negative-expression identifi-
cation as part of the approach to infer policy effect for an
ACP rule.

4.2.3 Use-Case Linguistic Analysis
In this section, we describe a unique linguistic analysis

technique proposed for action-step extraction.
Syntactic Pattern Matching. To identify whether a

sentence is an action-step sentence (i.e., describing an ac-
tion step), we provide the technique of syntactic pattern
matching that identifies sentences that have the syntactic
elements (subject, main verb group, and object) required
for constructing an action step. The sentences with missing
subject or object are not considered as action-step sentences.
Our approach also uses the technique of negative meaning
inference (described later in Section 4.3.1) to filer out sen-
tences that contain negative meaning, since these negative-
meaning sentences tend not to describe action steps.

4.3 Model Instance Construction
After our approach applies linguistic analysis techniques

to parse the input NL documents, our approach annotates
words and phrases in the sentences of the NL documents are
with semantic meaning. For example, shallow parsing an-
notates phrases as subjects, main verb groups, and objects.
To construct model instances from these sentences, our ap-
proach uses the annotated information of words and phrases
to identify necessary elements for a given model.

4.3.1 ACP Model Instance Construction
To construct model instances for ACP rules described in

sentences, our approach identifies subject, action, resource
elements based on the matched semantic patterns and infers
the policy effect based on the presence or absence of the
negative meaning of the sentences.

Subject, Action, and Resource Identification. Based
on the matched semantic patterns, our approach identifies
subject, action, resource elements from different syntactic
structures in the sentences.

Table 2 shows the identified subject, action, resource el-
ements in the sentences matched with semantic patterns.
For a sentence that matches the first pattern, Modal Verb in
Main Verb Group, our approach identifies the subject of the
sentence as a subject element, the verb (not the modal verb)
in the main verb group as an action element, and the object

of the sentence as a resource element. For a sentence that
matches the second pattern, Passive Voice followed by To-
infinitive Phrase, our approach identifies the subject of the
sentence as a subject element and identifies action and re-
source elements from the verb and object in the to-infinitive
phrase, respectively. For the first example of the third pat-
tern, Access Expression, our approach identifies the subject
of the sentence as a subject element, the noun read in the
main verb group as an action element, and the noun phrase
patient’s account in the prepositional phrase to patient’s ac-
count as a resource element. For the second example of the
third pattern, our approach identifies the subject patient’s
account as the resource element, the adjective accessible as
an action, and the object HCP as the subject element. For
the sentences that match the fourth pattern, our approach
identifies the subject of the sentence as a subject element
and identifies action and resource elements from the verb
and object in the to-infinitive phrase, respectively.

Policy Effect Inference. Our approach provides the
technique of negative meaning inference to address TC3-
Negative-Meaning Implicitness and infers policy effect for
an ACP rule: if an ACP sentence contains negative mean-
ing, we infer the policy effect to be deny (permit otherwise).
To infer whether a sentence contains negative meaning, the
technique of negative meaning inference considers two fac-
tors: negative expression and negative-meaning words in the
main verb group. Our approach uses the technique of nega-
tive expression identification in the linguistic analysis com-
ponent to identify negative expressions in a sentence. ACP1
in Figure 1 contains a negative expression in the main verb
group. To determine whether there are negative meaning
words in main verb group, our approach checks the seman-
tic class associated with the verb in the main verb group.
If the semantic class of the verb in the main verb group is
NEGATIVE, we consider the sentence has negative mean-
ing. ACP2 has a negative meaning word, disallow, in the
main verb group, and therefore its inferred policy effect is
deny.

ACP Model Instance Construction. Using the iden-
tified elements (subject, action, and resource) and inferred
policy effect, our approach constructs an ACP model in-
stance an ACP sentence. Figure 5 shows an example in-
stance of the ACP model for ACP2. When our approach
extracts ACP rules from functional requirements, our ap-
proach keeps only the constructed ACP model instances



whose effect is deny, since negative-meaning sentences tend
to reflect real ACPs.

4.3.2 Action-Step Model Instance Construction
To construct model instances for action steps described

in sentences, our approach identifies actor, action, and pa-
rameter elements based on the use case patterns. We fur-
ther develop two additional new techniques to address TC4-
Transitive Actor and TC5-Perspective Variance.

Actor, Action, and Parameter Identification. Our
approach uses known patterns of use case action steps com-
piled in our previous approach [28] to identify action, actor,
and parameter elements for action steps. We devise these
patterns based on the subject use cases used in our previ-
ous approach and iTrust use cases. One of the most used
patterns is to identify the subject of a sentence as an ac-
tor element, the verb in the main verb group as an action
element, and the object of the sentence as a parameter ele-
ment. For an example sentence An patient views access log,
our approach identifies patient as an actor element, view as
an action element, and access log as a parameter element.
These patterns could be easily updated or extended based
on the domain characteristics of the use cases for improv-
ing the precision of extracting actor, action, and parameter
elements.

Action-Step Model Instance Construction. Using
the identified actor, action, and parameter elements in a sen-
tence, our approach constructs action-step model instances
for action steps described in the sentence. Figure 6 shows
an action-step model instance for the example sentence An
patient views access log.

Actor Flow Tracking. To address TC4-Transitive Ac-
tor, we apply data flow tracking on non-system actors of an
action step. Algorithm 4.1 shows the actor flow tracking
(AFT) algorithm.

We next illustrate the algorithm using the example shown
in Figure 1. AFT first checks Action Step 1 and tracks
the actor of Action Step 1 since its actor is a non-system
actor (HCP) (satisfying the condition at Line 11). AFT then
checks Action Step 2 and tracks the actor of Action Step
2 (HCP, replaced by anaphora resolution) since its actor
is also HCP. When AFT checks Action Step 3, AFT finds
that Action Step 3 has only system as its actor (satisfying
the condition at Line 15) and replaces System with HCP as
the actor of Action Step 3.

Perspective Conversion. To address TC5-Perspective
Variance, we use a similar algorithm as AFT. The only dif-
ference is to replace the condition at Line 15 as trackActor

! = NULL AND getActionType(AS) == OUTPUT and
to use convertPerspective(AS, trackActor) as the replace-
ment statement at Line 16. Using the same example shown
in Figure 1. When the algorithm reaches Action Step 4, the
tracked actor is HCP. Since Action Step 4 has system as its
only subject and its action type is OUTPUT (displays), our
approach converts action step 4 into HCP views the updated
account by replacing its actor elements with the tracked ac-
tors and its action element with a verb entry whose classifi-
cation is READ in the domain dictionary, such as view.

4.4 Transformation
With the formal model of ACPs, our approach can use

different transformation rules to transform model instances
into formal specifications, such as XACML [4].

Algorithm 4.1 Actor Flow Tracking

Require: ASs for action steps in a use case
1: trackedActor = NULL

2: for AS in ASs do
3: Actors = getActors(AS)
4: onlySystemActor = TRUE

5: for actor in Actors do
6: if !isSystemActor(actor) then
7: onlySystemActor = FALSE

8: break
9: end if
10: end for
11: if !onlySystemActor then
12: trackedActor = getNonSystemActor(Actors)
13: continue
14: end if
15: if trackedActor ! = NULL then
16: replaceActors(AS, trackedActor)
17: end if
18: end for

ACP Model Instance Transformation. Currently,
our approach supports the transformation of each ACP rule
into an XACML policy rule [4]. Our approach transforms
subject, action, and resource elements as the correspond-
ing subject, action, and resource sub-elements of the target
element for an XACML policy rule. Our approach then
assigns the value of the effect element to the value of the
effect attribute of the XACML policy rule to complete the
construction of an XACML policy rule. With more trans-
formation rules, our approach can easily transform the ACP
model instances into other specification languages, such as
EPAL [8].

Action-Step Model Instance Transformation. Cur-
rently, our approach supports the transformation of each
action step into an XACML request [4] with the expected
permit decision. For each action step, our approach trans-
forms the actor elements as subject elements of the request,
the action elements as action elements of the request, and
the parameter elements as resource elements of the request.

5. EXAMPLE APPLICATIONS
In this section, we describe several applications of ex-

tracted ACPs and extracted action steps in our approach.
Assisting Construction of Complete ACPs. From

the extracted ACPs, our approach automatically generate
formal specifications of ACPs. These formal ACPs can be
used to validate manually specified ACPs for checking cor-
rectness and completeness. Additionally, these ACPs can
serve as an initial version of ACPs for policy authors to im-
prove, greatly reducing manual efforts in extracting ACPs
from NL documents.

Validating Action Steps against Specified or Ex-
tracted ACPs. From the action steps extracted from func-
tional requirements, our approach automatically derives ac-
cess control requests (describing actors request to access re-
sources) with the expected permit decisions. These access
control requests can be automatically validated with the
specified or extracted ACPs to detect inconsistencies. By
inspecting the inconsistencies, policy authors and require-
ment analysts can fix either functional requirements or se-



curity requirements to resolve the inconsistencies.
Locating Policy Enforcement Points (PEP). In gen-

eral, action steps can be mapped to one or more methods in
the code portions of the system implementation. This map-
ping from action steps to the system implementation can be
used to locate PEPs in the system implementation, assisting
the correct enforcement of ACPs. For example, during val-
idation of access control requests derived from action steps
against specified or extracted ACP rules, we can identify the
access control requests whose subject, action, and resource
matched with one or more specified or extracted ACP rules.
Developers can use these identified action steps to locate
the portions of code in the system implementation to de-
ploy PEPs.

Assisting ACP Modelling in the Absence of Secu-
rity Requirements. In the absence of security require-
ments, our approach can still provide a solution to assist
policy authors to model ACPs for a system. Our approach
first extracts deny ACPs and action steps from functional
requirements. Besides deriving access control requests from
action steps, we can also derive a permit ACP rule from
each action step. With the extracted ACPs and the permit
ACPs, policy authors have two ways to model ACPs: (1)
policy authors can apply the extracted deny ACPs and add
a policy rule to permit all other accesses; (2) policy authors
can combine the extracted deny ACPs and the derived per-
mit ACPs, and add a policy rule to deny all other accesses.

6. EVALUATIONS
In this section, we discuss the three evaluations conducted

to assess the effectiveness of Text2Policy. In our evaluations,
we use use cases from an open source project iTrust [5, 30]
and 115 ACP sentences from 18 sources (published papers,
public websites, and iTrust), and answer the following re-
search questions:

• RQ1: How effectively does Text2Policy identify ACP
sentences in NL documents?

• RQ2: How effectively does Text2Policy extract ACP
rules from ACP sentences?

• RQ3: How effectively does Text2Policy extract ac-
tion steps from action-step sentences (i.e., sentences
describing action steps)?

We next provide details of the metrics that we use in
our evaluations. To address RQ1, we applied Text2Policy
to identify ACP sentences (i.e., sentences describing ACP
rules) in the use cases of iTrust and used the standard met-
rics of precision (Prec) and recall (Rec) to measure the ac-
curacy of Text2Policy in identifying ACP sentences. The
metrics of precision and recall are computed as Prec =

TP

TP+FP
, Rec = TP

TP+FN
, where TP represents true posi-

tives, i.e., the number of correct ACP rules identified by
Text2Policy, FP represents False Positives (FP), i.e., the
number of incorrect ACP sentences identified by Text2Policy,
and FN represents False Negative (FN), i.e., the number of
real ACP sentences that are missed by Text2Policy. To ad-
dress RQ2, we applied Text2Policy to extract ACP rules
from ACP sentences. To measure the effectiveness, we mea-
sure the number of ACP rules correctly extracted by Text2Policy
and compute the accuracy as Accu = C

T
, where C represents

the number of ACP rules correctly extracted by Text2Policy

and T represents the total number of subject ACP rules. To
address RQ3, we applied Text2Policy to extract action steps
from action-step sentences (i.e., sentences describing action
steps) of the iTrust use cases. To measure the effectiveness,
we measure the number of sentences from which Text2Policy
correctly extracts action steps and compute the accuracy as:
Accu = C

T
, where C represents the number of sentences from

which Text2Policy correctly extracts action steps and T rep-
resents the total number of action-step sentences in the use
cases of iTrust.

6.1 Subjects and Evaluation Setup
We use the use cases in iTrust [5,30] as the subject for RQ1

and RQ3. iTrust is an open source medical application that
provides patients with a means to keep up with their med-
ical history and records as well as communicate with their
doctors, including selecting which doctors to be their pri-
mary caregiver, seeing and sharing satisfaction results, and
other tasks. The requirements documents and source codes
of iTrust are publicly available at its website. iTrust require-
ments specification has 37 use cases, 448 use-case sentences,
10 non-functional-requirement sentences, and 8 constraint
sentences. The iTrust requirements specification also has a
section called Glossary that describes the roles (users) that
interact with the system. The total lines of code (LOC) of
iTrust implementation is 28,514, including 13,528 LOC for
production code, 11,445 LOC for unit tests, and 3,541 LOC
for httptests.

We preprocessed the iTrust use cases so that the format
of the use cases can be processed by Text2Policy. In par-
ticular, we remove symbols (e.g., [E1] and [S1]) that cannot
be parsed by our approach. We replace some names with
comments quoted in parenthesis. For example, when we see
A user (an LHCP or patient), we replace A user with an
LHCP or patient. We break down sentences by replacing /
with or. We break down long sentences that span more than
2 or 3 lines, since such style affects the precision of shallow
parsing. The preprocessed documents of the iTrust use cases
are available on our project website [6].

To evaluate the effectiveness of ACP extraction, we fur-
ther collected 115 ACP sentences from 18 sources (published
papers and public websites). These ACP sentences, includ-
ing 10 NL ACP rules from the iTrust use cases, are the
subjects for our evaluation to address RQ 2. The document
that contains the collected ACP sentences and their original
sources can be downloaded from our project website [6].

We next discuss the results of our evaluations in terms
of the effectiveness of Text2Policy in identifying ACP sen-
tences and extracting ACP rules from NL documents and in
extracting action steps from use cases.

6.2 RQ1: ACP Sentence Identification
In this section, we address the research question RQ1 of

how effectively Text2Policy identifies ACP sentences in NL
documents. To address this question, we measure the num-
ber of identified ACP sentences by Text2Policy, the number
of false positives, and the number of false negatives gener-
ated by Text2Policy. We then compute the standard pre-
cision and recall using these values. To measure values for
these metrics, we manually inspected the use cases of iTrust
to identify ACP sentences, and applied Text2Policy to iden-
tify ACP sentences. We then manually classified these the
ACP sentences identified by Text2Policy as correct sentences



and false positives, and manually identified false negatives.
Among 448 use-case sentences in the iTrust use cases, we

manually identified 10 ACP sentences. We applied Text2Policy
on the iTrust use cases and Text2Policy identified 8 sen-
tences with no false positives and 2 false negatives. Based
on these numbers, the computed precision is 100% and the
recall is 80%.

We next provide some examples to describe how Text2Policy
produces false negatives. The sentence that cannot be iden-
tified by Text2Policy is “The administrator is not allowed
through the system interface to delete an existing entry or
modify the appointment type name in an existing entry.” [5,
30]. Since the prepositional phrase through the system inter-
face appears just after the main verb group is not allowed,
the underlying shallow parser that we use does not success-
fully identify the grammatical functions of the sentence, re-
sulting in a false negative. The other sentence causing a
false negative is “The administrator is not allowed through
the system interface to delete an existing entry or modify the
reason ID number in an existing entry.” [5, 30], sharing the
similar reason to the other false-negative sentence. In our
future work, we plan to improve the precision of the under-
lying shallow parser by incorporating more general patterns.

6.3 RQ2: Accuracy of ACP Extraction
In this section, we address the research question RQ2 of

how effectively Text2Policy extracts ACP rules from ACP
sentences. To address this question, we measure the number
of ACP sentences from which Text2Policy correctly extracts
ACP rules. We manually extracted ACP rules from these
ACP sentences and compared the manually extracted ACP
rules with the ACP rules extracted by Text2Policy to deter-
mine whether the ACP rules extracted by Text2Policy are
correct. Using the number of ACP sentences from which
Text2Policy correctly extract ACPs and the total number
of ACP sentences, we compute the accuracy of the ACP
extraction.

Among 115 ACP sentences (including 10 from iTrust use
cases), Text2Policy successfully extracted ACP rules from
106 ACP sentences. Based on these numbers, the accuracy
of ACP extraction is 92.17%.

We first provide an example to describe how Text2Policy
correctly extracts some ACP rules. One of the sentences
from which Text2Policy correctly extract ACP rules is “The
administrator is not allowed to delete an existing entry.” [5,
30]. Our semantic pattern Passive Voice followed by To-
infinitive Phrase helped correctly identify this ACP sen-
tence, and correctly extract subject (administrator), action
(delete), and resource (an existing entry) elements. Our
technique of negative-meaning inference also correctly in-
ferred the policy effect to be deny.

We next provide examples to describe how Text2Policy
fails to extract some ACP rules. One of the sentences from
which Text2Policy cannot correctly extract ACP rules is
“Any subject with an e-mail name in the med.example.com
domain can perform any action on any resource.” [3]. The
subject of this sentence Any subject is a noun phrase fol-
lowed by two prepositional phrases (with an e-mail name
and in the med.example.com domain). These two preposi-
tional phrases constrain the subject Any subject, which is
not correctly handled by our current implementation of our
approach. In our future work, we plan to provide techniques
to analyze the effects of prepositional phrases for improving

the accuracy of ACP extraction.
Another example sentence is“A reviewer of a paper can re-

sign the review of the paper, unless he has already appointed
a sub-reviewer for the paper.” [31]. This sentence includes a
conditional clause starting with unless, which is not handled
by the current implementation of our approach. In our fu-
ture work, we plan to introduce new techniques to deal with
such conditional expressions.

6.4 RQ3: Accuracy of Action-Step Extraction
In this section, we address the research question RQ3

of how effectively Text2Policy extracted action steps from
action-step sentences . To address this question, we measure
the number of action-step sentences from which Text2Policy
correctly extract action steps. We manually extracted action
steps from these action-step sentences and compare the man-
ually extracted action steps with the action steps extracted
by Text2Policy to determine whether the action steps ex-
tracted by Text2Policy are correct. Using the number of
action-step sentences from which Text2Policy correctly ex-
tract action steps and the total number of action-step sen-
tences, we compute the accuracy of the ACP extraction.

Among 412 action-step sentences, Text2Policy success-
fully extracted action steps from 348 action-step sentences.
Based on these numbers, the accuracy of ACP extraction is
84.47%.

We next provide examples to describe how Text2Policy
fails to extract action steps. One of the action-step sen-
tences from which our approach failed to extract action
steps is “The HCP must provide instructions, or else they
cannot add the prescription.” [5, 30], since the current im-
plementation of our approach does not handle the subordi-
nate conjunctions or else. Another example sentence is “The
public health agent can send a fake email message to the
adverse event reporter to gain more information about the
report.” [5, 30]. For such long sentences with prepositional
phrases to the adverse event reporter to gain more informa-
tion about the report after the object of the sentence a fake
email message, the underlying shallow parser cannot cor-
rectly identify the grammatical functions. We plan to study
more use cases on medical care applications, so that we can
improve the underlying shallow parser with more patterns
to identify grammatical functions of action-step sentences.

Using the specification of action steps, we applied union
on the specifications of action steps to collect the informa-
tion of what users perform what actions on what resources.
From this information, we found that editor, one of the sys-
tem users, were actually not described in the glossary of the
requirements. We further checked the use-case diagram and
confirmed that editor in Use Case 1 in fact refers to HCP, ed-
itor in Use Case 2 in fact refers to admin, and editor in Use
Case 4 in fact refers to all users. Such name inconsistencies
have been easily identified by using the union information
of extracted action steps.

7. THREATS TO VALIDITY
The threats to external validity include the representative-

ness of the subjects and the underlying shallow parser used
by the current implementation of our approach. To eval-
uate ACP extraction and action-step extraction from use
cases, we applied our approach on 37 use cases of iTrust.
The iTrust use cases were created based on the use cases in
U.S. Department of Health & Human Service (HHS) [2] and



Office of the National Coordinator for Health Information
Technology (ONC) [1], and evolved and revised by about 70
students and teaching assistants as well as instructors each
semester since the iTrust requirements were initially created.
Although the public availability and activeness of the iTrust
use cases make the iTrust use cases suitable for our sub-
jects, we evaluated our approach only on these limited use
cases. To reduce the threat, for the evaluation of ACP ex-
traction, we further collected 105 ACP sentences from other
17 sources. The threat of using only the iTrust use cases as
subjects could be further reduced by using more use cases
from other domains as evaluation subjects. The threats to
internal validity include human factors for determining cor-
rect identification of ACP sentences from NL documents,
correct extraction of ACP rules from these sentences, and
correct extraction of action steps from use cases. In our
evaluations, we inspected the whole subject documents and
manually identified ACP sentences, and extracted ACPs and
action-steps as the evaluation comparison basics. To reduce
the human factor threats, we did the extraction carefully
and referred to existing ACPs and other use cases for deter-
mining correct identification of ACP sentences, and correct
extraction of ACPs and action steps. These threats could be
further reduced by involving two or more people who have
experiences on ACPs to manually extract ACPs and action
steps and integrating their manual extraction results with
our manual extraction results for our evaluation comparison
base.

8. DISCUSSION AND FUTURE WORK
In this section, we discuss some of the limitations of our

current approach and propose directions for future work.
Conditions in ACP rules and Action Steps. In our

evaluations, we encountered some ACP sentences that de-
scribe conditions for ACP rules. For example, the ACP
sentence “During the meeting phase, reviewer can read the
scores for paper if reviewer has submitted a review for pa-
per.” [12] contains an if-condition to constrain the ACP rule.
Without correct extraction of the condition, the produced
specification of ACP rules is incomplete and requires pol-
icy authors to manually fix the incompleteness issue. We
already started the work on extracting such conditions us-
ing the infrastructure that we built for our current approach
and had some preliminary results. We plan to continue this
work and evaluate the effectiveness of this technique.

Ordering in ACP rules. Our current approach extracts
ACP rules from sentences without considering the ordering
of the rules, which may cause security holes in the extracted
ACP rules. We plan to study the extracted ACP rules and
propose new techniques to extract ordering for the ACP
rules.

Context-aware Analysis in Action-Step Extraction.
A sequence of action steps may have several state transi-
tions. The actor flow tracking and perspective conversion
techniques proposed in our approach partially address the
context-aware analysis in action-step extraction. For exam-
ple, customer may not pay the order if he has not selected
an order. We plan to propose more techniques to even deal
with state transitions during action-step extraction.

9. RELATED WORK
Manual Extraction of ACPs From Requirement

Documents. He and Anton [16] propose a manual ap-
proach, called Requirements-based Access Control Analysis
and Policy Specification (ReCAPS), to extract ACPs from
various NL documents, including requirements documents,
design documents and database design, and security and
privacy requirements. During the extraction, their approach
also clarifies the ambiguities of requirements documents and
identifies inconsistencies among requirement documents and
database design. Their objective is to derive a comprehen-
sive set of ACP rules, similar to our approach. However, our
approach includes novel NLP techniques to automatically
extract ACPs from NL documents, while their approach is
a manual process.

Template Matching. Etzioni et al. [13] propose an ap-
proach to extract lists of named entities found on the web
using a set of patterns. Their approach is related to the ACP
extraction of our approach since the two approaches both
use patterns to extract information. However, their pat-
terns are based on the low-level POS tags (such as NP and
NPList), while our semantic patterns are based on gram-
matical functions (such as subject, main verb group, and
object). Our semantic patterns are more general and pro-
vide high precision on identifying ACP sentences as shown
in our evaluations.

NLP to Assist Privacy Policy Authoring. The SPAR-
CLE Policy Workbench [10, 11, 20, 21] employs the shallow
parsing technique [24] to parse the privacy rules and ex-
tract the elements of privacy rules based on a pre-defined
syntax. These elements are then used to form policies in a
structured form, so that policy authors can review it and
then produce policies in a machine-readable form, such as
EPAL [8] and XACML [4, 25] with a privacy policy profile.
Although SPARCLE workbench is effective in helping au-
thoring privacy policies in natural language, their technique
provides simple templates to extract elements for construct-
ing privacy rules while our approach provides more general
semantic patterns. Additionally, their approach does not
have any technique to infer negative meaning of sentences.

Use Case Analysis. Our previous approach [27,28] pro-
vides NLP techniques to parse and represent the contents of
use cases in use case models. Our previous approach then
provides a suite of model analysis techniques that leverage
such models to validate whether the style and content of uses
cases conform to guidelines of use case style and content.
The extraction of contents of use cases into formal models is
similar to the action-step extraction in our approach. How-
ever, our approach provides additional techniques to address
the challenges of TC4-Transitive Actor and TC5-Perspective
Variance and produces extracted action steps as access con-
trol requests for validation against specified and extracted
ACPs.

10. CONCLUSION
In this paper, we propose a novel approach, called Text2Policy,

that incorporates syntactic and semantic NL analysis around
models such as the ACP model and action-step model to ex-
tract model instances from NL documents and produces for-
mal specifications. We provide new techniques to concretize
our general approach to extract ACP rules from NL docu-
ments and extract action steps from functional requirements.
From the extracted ACPs, our approach automatically gen-
erates machine-enforceable ACPs in specification languages
such as XACML, which can be automatically checked for



correctness. From the extracted action steps, our approach
automatically derives access control requests with expected
permit decisions. These access control requests can be used
for automatic validation against specified or extracted ACPs
for detecting inconsistencies, assisting correct enforcement of
ACPs. We have evaluated Text2Policy on 37 iTrust use cases
with 448 use-case sentences and the collected 115 ACP sen-
tences from 18 sources and the results show that Text2Policy
effectively identifies ACP sentences from the iTrust use cases,
extracts ACP rules from ACP sentences, and extracts action
steps from action-step sentences in iTrust use cases.
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