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Abstract—Optimizing for performance is often associated
with higher costs in terms of capacity, faster infrastructure,
and power costs. In this paper, we quantify the power-
performance trade-offs by developing a scalable analytic model
for joint analysis of performance and power consumption for
a class of Infrastructure-as-a-Service (IaaS) clouds with tiered
service offerings. The tiered service offerings are provided by
configuring physical machines into three pools with different
response time and power consumption characteristics. Using
interacting stochastic sub-models approach, we quantify power-
performance trade-offs. We summarize our modeling approach
and highlight key results on the effects of physical machine pool
configurations on consumed power and achievable performance
in terms of response time and ability to service requests. The
approach developed here can be used to manage power con-
sumption and performance by judiciously configuring physical
machine pools.

I. INTRODUCTION

Background and system description. Recently, research
efforts have been made to quantify the environmental impact
of large IT infrastructure [1]. In [2], authors show how
clouds can be used to reduce power consumptions even in
office and home computing environments. In this paper, we
describe a scalable analytic approach for joint analysis of
performance and power consumption for a specific type of
Infrastructure-as-a-Service (IaaS) cloud. In IaaS cloud (e.g.,
Amazon EC2 [3], IBM Smart Cloud Enterprise [4]), when a
request is processed, a pre-built image is used to create one
or more Virtual Machine (VM) instances [5]–[7]. When the
VM instances are deployed on Physical Machines (PMs),
they are provisioned with request specific CPU, RAM, and
disk capacity. When provisioning a VM, the two primary
sources of delay are: (i) PM and hypervisor readiness delays
and (ii) network delays associated with image transfer.
To minimize the effects of these delays on IaaS service
performance, we consider a class of IaaS cloud system,
where the physical machines are configured into different
readiness state and VM instances are provisioned using
multiple image pre-provisioning and caching strategies. For
our analysis, we assume that PMs are partitioned into three
PM pools: hot (i.e., running), warm (turned on, but not
ready) and cold (turned off). A pre-instantiated VM can be
provisioned and brought to ready state on hot PMs with
minimum provisioning delay. Instantiating a VM from an
image and provisioning it on a warm PM needs additional
provisioning time. PMs in the cold pool need additional
startup time to be turned on before a VM deployment. In the
subsequent discussions we use the term “job” to mean a user
request for provisioning a VM and making it available for

use by a cloud user. The response time performance metric
corresponds to the time elapsed from the time a user submits
a request until the VM is available for the user to use. The
service time corresponds to the time the VM is active on the
PM. We assume that all requests are homogeneous and each
request is for one VM with fixed size CPU cores and RAM.
User requests (i.e., jobs) are submitted to a global resource
provisioning decision engine (RPDE) that processes requests
on a first-come, first-served (FCFS) basis as follows. The
request at the head of the queue is provisioned on a hot
PM if there is capacity to run a VM on one of the hot
PMs. If no hot PM is available, a PM from the warm pool
is used for provisioning the requested VM. If warm PMs
are all busy, a PM from the cold pool is used. If none of
these PMs are available, the request is rejected. When a
running job exits, the capacity used by that VM is released
and becomes available for provisioning the next job. Note
that in this type of cloud, the partitioning of PMs into tiered
readiness states gives operators a handle on the energy usage
when the system is not saturated, but it can also result in
response time delays when there is a mismatch between the
size of the partitions and the demand, especially when there
is large variation in the arrival rates.

Problem Statement. By varying sizes of hot, warm, and
cold pools, we analyze the trade-offs in maintaining a PM
in a hot pool vs in a warm or a cold pool. Partitioning the
PMs in three pools allows for an optimization by reducing
provider’s costs without large provisioning delays for all
VMs. Intuitively, having more PMs in warm or cold pools
can reduce power consumption and operational costs, at the
cost of potentially increasing response time delays. In this
paper, we quantify the power-performance relations using
stochastic analytic models and observe that intuition-based
classification of PMs does not always lead to desired results.

Key contributions. Based on the scalable interacting
stochastic models approach, as described in our previous
work [6], [7], we make the following contributions in this
paper: (1) using Markov reward approach [8], we show
how power consumption can be computed from the models
described in [6], [7] and (2) through careful exploration
of different cloud parameters and configurations, we show
that optimal grouping of PMs requires sound understanding
of power-performance trade-offs that exist in specific IaaS
cloud environments.

Rest of the paper is organized as follows. Section II
presents interacting stochastic models approach and describe
computations of power consumption and performance met-
rics. Trade-offs in power-consumption and performance are



shown through numerical results in Section III. We conclude
this work and outline future research in Section IV.

II. INTERACTING STOCHASTIC MODELS APPROACH

Our main motivation behind using an interacting sub-
models approach is the following. A global monolithic
model that captures all the details of a cloud service, tends
to be complex and error-prone. Even by using methods of
automated generation of models such as stochastic Petri-
nets, such models become intractable and may not scale to
large size clouds. We use interacting sub-models approach
which reduces complexity of analysis without significantly
affecting the accuracy. Final solution of the overall model is
obtained by fixed-point iteration over individual sub-models.
In this paper, we make the simplifying assumption that all
inter-event times are exponentially distributed and thus all
our sub-models are homogeneous continuous time Markov
chains (CTMC).

Resource provisioning decision model. Details of this
model can be found in [6], [7]. Input parameters for this sub-
model are: (i) job arrival rate (λ), (ii) mean search delays
to find a PM from hot/warm/cold pool that can be used for
resource provisioning (1/δh, 1/δw and 1/δc respectively),
(iii) probabilities that a hot/warm/cold PM can accept a
job for resource provisioning (Ph, Pw and Pc respectively)
and (iv) maximum number of jobs in RPDE (N ). Among
all the input parameters Ph, Pw and Pc are computed as
outputs from the VM provisioning models described later.
From this model, we can compute job rejection probability
due to buffer full (P

block
), rejection probability due to insuf-

ficient capacity (P
drop

) and hence, job rejection probability
Preject = P

block
+P

drop
. We can also compute mean queuing

delay (E[T
q dec

]) and mean decision delay (E[T
decision

])
conditional upon the job being accepted.

VM provisioning models. VM provisioning models cap-
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Figure 1: VM provisioning model for a hot PM.

ture the actual provisioning and deployment of requested
VMs to accepted jobs. For each hot, warm and cold PM,
we have one CTMC which keeps track of the number of
assigned and running VMs. VM provisioning model of a
pool is the union of individual provisioning models of each
PM in that pool.

Figure 1 shows VM provisioning model for a hot PM.
Conceptually, the overall hot pool is modeled by a set of
independent hot PM models. Note that only one PM model
needs to be solved. States of the model in Figure 1 are
indexed by (i, j, k), where, i denotes the number of jobs in
the queue, j denotes the number of VMs currently being
provisioned, k denotes the number of VMs on a PM which
have already been deployed. Input parameters for a hot
PM CTMC are: (i) effective job arrival rate to each hot
PM (λh), (ii) rate at which VM instantiation, provisioning
and configuration occurs (βh), (iii) job service rate (µ), (iv)
buffer size of hot PM (Lh) and (v) maximum number of
VMs that can be deployed on a PM (m). Assuming a total
of n

h
PMs in the hot pool, λh is given by λ(1−Pblock)/n

h
.

Observe that Pblock is computed from resource provisioning
decision model. Although, we show FCFS provisioning of
VMs, parallel provisioning of VMs can be captured by using
a state dependent multiplier to βh. From hot PM model, we
compute the steady state probability that a hot PM can accept
a job for VM provisioning. Output of the hot pool model
is the probability Ph that at least one PM in hot pool can
accept a job for provisioning.

Total power consumption in hot pool. Using Markov
reward approach [8], we can compute the power consump-
tion per hot PM. We assume when no VM is running, hot
PM consumes an idle power of h

l
. Power consumption

of a VM with average resource utilization is assumed to
be v

a
. For each state (i, j, k) of the CTMC in Figure 1,

we assign a reward rate: r(i,j,k) = h
l
+ kva . Steady state

power consumption in each hot PM (s
h

) can be computed as
expected steady state reward rate. Total power consumption
in hot pool (H

p
) is given by: H

p
= n

h
s

h
. Observe, although

we use a very simple power consumption model for VM
execution, such Markov reward approach can be extended
to more accurate power models as well.
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Figure 2: VM provisioning model for a warm PM.
CTMC for a warm PM (Figure 2) is similar to the hot



PM model, with few differences: (i) Effective arrival rate to
each warm PM is λw. (ii) When no VM is running or being
provisioned, a warm PM is turned on but maintains a low
power state. Upon a job arrival in this state, the warm PM
requires some additional startup time to make it ready to use.
Rate at which warm PM is made ready for use is γ

w
. (iii)

Rate of VM instantiation, provisioning and configuration for
first VM is βw and for subsequent VMs, rate is βh. Buffer
size of each warm PM is Lw.

Assuming a total of n
w

PMs in the warm pool, λw is
given by λ(1−Pblock)(1−Ph)/nw . From warm PM model,
we compute the steady state probability that a warm PM
can accept a job VM provisioning. Output of the warm pool
model is the probability Pw that at least one PM in warm
pool can accept a job for provisioning.

Total power consumption in warm pool. Reward rates
attached to different states of warm PM model are summa-
rized in Table I. We assume that idle power consumptions

Table I: Warm PM reward rates for power consumption.

CTMC states in Figure 2 Reward rates
(0, 0, 0) wl1
(i, 1∗, 0), 0 ≤ i ≤ Lw wl2
(i, 1, 0), 0 ≤ i ≤ Lw wl3
(i, 1∗∗, 0), 0 ≤ i ≤ Lw hl

(0, 0, k), 1 ≤ k ≤ m hl + kva

(i, 1, k), 0 ≤ i ≤ Lw , 1 ≤ k ≤ (m− 1) hl + kva

(i, 0, m), 1 ≤ i ≤ Lw hl + mva

during different startup phases of warm PM are less com-
pared to the idle power consumption in hot PM. Specifically,
we assume: w

l1
≤ w

l2
≤ w

l3
≤ h

l
. Once the warm PM

is ready to use, power consumption is similar to that of a
hot PM. Steady state power consumption in each warm PM
(sw ) can be computed as expected steady state reward rate.
Total power consumption in warm pool (Wp ) is given by:
W

p
= n

w
s

w
.

Cold PM model (Figure 3) [6], [7] is similar to warm
PM model and cold pool model is the set of n

c
independent

cold PM models. Main differences between a warm and a
cold PM model are - (i) effective arrival rates (λw vs. λc),
(ii) rate at which startup is executed (γw vs. γc), (iii) initial
VM provisioning rates (βw vs. βc) and buffer sizes (Lw vs.
Lc). Cold PM is turned off when all VMs finish execution.
Assuming a total of n

c
PMs in the cold pool, λc is given by

λ(1− Pblock)(1− Ph)(1− Pw)/n
c
. From cold PM model,

we compute the steady state probability that a cold PM can
accept a job for VM provisioning. Output of the cold pool
model is the probability Pc that at least one PM in cold pool
can accept a job for provisioning.

Total power consumption in cold pool. Reward rates
attached to different states of cold PM model are summa-
rized in Table II. Similar to the reward rate assignment in
warm PM case, we assume that for a cold PM: c

l1
≤ c

l2
≤

c
l3
≤ h

l
. Steady state power consumption in each cold PM
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Figure 3: VM provisioning model for a cold PM.

Table II: Cold PM reward rates for power consumption.

CTMC states in Figure 3 Reward rates
(0, 0, 0) cl1
(i, 1∗, 0), 0 ≤ i ≤ Lc cl2
(i, 1, 0), 0 ≤ i ≤ Lc cl3
(i, 1∗∗, 0), 0 ≤ i ≤ Lc hl

(0, 0, k), 1 ≤ k ≤ m hl + kva

(i, 1, k), 0 ≤ i ≤ Lc , 1 ≤ k ≤ (m− 1) hl + kva

(i, 0, m), 1 ≤ i ≤ Lc hl + mva

(sc ) can be computed as expected steady state reward rate.
Total power consumption in cold pool (C

p
) is given by:

C
p

= n
c
s

c
. Thus, total power consumption (T

p
) across all

pools is given by: T
p

= H
p

+W
p

+ C
p
.

Probabilities Ph, Pw and Pc as obtained respectively
from hot, warm and cold pool models are used in resource
provisioning decision model as input parameters. Using
import graphs, it can be shown [6], [7] that there are input-
output dependencies among VM provisioning models and
resource provisioning decision model. Such dependencies
can be resolved via fixed-point iteration for which existence
of a solution can be proved. VM provisioning models
also provide the mean queuing delay (E[T

q vm
]), and the

conditional mean VM provisioning delay (E[T
prov

]). Thus,
mean response delay can be computed as: E[Tresp ] =
E[T

q dec
] + E[T

decision
] + E[Tq vm ] + E[Tprov ].

III. NUMERICAL RESULTS AND DISCUSSIONS

We exercise the models described earlier to compute two
power consumption metrics: (1) percentage of power con-
sumption per pool and (2) total power consumption; as well
as two performance metrics: (1) job rejection probability
and (2) mean response delay. Using SHARPE [9], we show
the trade-offs among the power consumption metrics and
performance metrics as we change the number of PMs per
pool and job arrival rate. Values of key parameters. We
assumed a wide range of values for our model parameters so
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Figure 4: (a), (b), (c): Percentage of total power consumption in each pool and (d) total power consumption.

that they can represent a large variety of IaaS cloud services.
(1) Reward rates for power consumptions. Considering
a blade server type PM, idle power consumption in a
hot PM (h

l
) was assumed to be 270 W [10]. Idle power

consumptions in warm PM (w
l1
, w

l2
, w

l3
) are assumed to

be within 20 − 50% of h
l
. For cold PMs, idle power

consumptions (c
l1
, c

l2
, c

l3
) are assumed to be within 0−40%

of h
l
. Two approaches for VM power metering are proposed

in [11] and [12]. With SPEC2006 benchmarks, authors of
[12] provide bounds on VM power consumptions for 100%

CPU utilization. Observing the CPU utilization pattern on
SPEC2006 benchmarks as reported in [11], we assume that
power consumption per VM under average CPU utilization
is around 16 − 40W. (2) Number of PMs in each pool.
We assumed small (2 − 10 PMs in each pool), medium
(10−100 PMs in each pool) and large (more than 100 PMs
in each pool) size clouds. (3) Maximum number of VMs
on each PM. We assumed that 1, 2, 4, 8, 16, 32 or 64 VMs
are deployed on each PM. (4) Job arrival rate (λ). We
categorized arrival rates in three regions: (i) low (10− 500
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Figure 5: (a) Job rejection probability and (b) mean response delay.

jobs/hour), (ii) medium (500−1500 jobs/hour) and (iii) high
(more than 1500 jobs/hr). (5) Mean job service time (1/µ).
In our analysis, we assumed three ranges for mean service
times: (i) low (less than an hour), (ii) medium (1 hr - 1 day)
and (iii) high (more than 1 day) [4]. (6) Mean delay to
search a PM from a pool (1/δh, 1/δw, 1/δc). We assumed
that the searching delay was independent of number of PMs
or type (hot, warm, cold) of pool and varied the values from
1− 5 seconds. (7) Mean time to provision a VM. Values
of 1/βh, 1/βw and 1/βc were assumed to be in the range
of 1 − 10 minutes, 2 − 20 minutes and 5 − 30 minutes
respectively. (8) Mean time to prepare a warm (1/γw)/
cold (1/γc) PM ready for use. Value of 1/γw was assumed
in the range of 20 seconds to 2 minutes. Value of 1/γc was
assumed in the range of 5-10 minutes.

Effects of PM configurations on power consumption
behavior. We consider an example scenario where total 75
PMs are distributed differently among three pools. These
configurations are: (1) each pool has 25 PMs; denoted by
(25, 25, 25), (ii) hot and warm pool have 35 PMs each; de-
noted by (35, 35, 5) and (iii) warm and cold pool have 5 PMs
each; denoted by (65, 5, 5). Increasing or decreasing trends
in percentage power consumptions in a specific configuration
can be easily visualized if we observe Figures 4(a), (b) and
(c) simultaneously. For example, as the arrival rate increases
from 100 jobs/hr to 300 jobs/hr, in (25, 25, 25), net increase
(around 33%) in power consumption in cold pool exactly
compensates the net decrease in power consumptions in hot
(around 20%) and warm (around 13%) pools. Similarly, as
the arrival rate increases from 100 jobs/hr to 300 jobs/hr, in
(35, 35, 5), net increase (around 30%) in warm pool power

consumption is same as net decrease in hot pool power
consumption and the cold pool power consumption is almost
zero. Figure 4(a) shows percentage of total power dissipated
in hot pool is maximum in (65, 5, 5) and minimum in
(25, 25, 25). This is because, for (65, 5, 5), most of the
jobs are provisioned in hot pool which contains more than
85% of total PMs as opposed to (25, 25, 25), which has
only one-third of the total PMs in hot pool. With increased
arrival rate more warm PMs and subsequently cold PMs
start accepting jobs and dissipate more power. Figure 4(b)
shows with increased arrival rate, percentage of total power
consumption in warm pool is more in (35, 35, 5) compared
to (25, 25, 25). This is because percentage of warm PMs
in (35, 35, 5) is higher and warm pool accepts more jobs.
Compared to (65, 5, 5) and (35, 35, 5), larger fraction of cold
PMs are present in (25, 25, 25). Figure 4(c) shows that in
(25, 25, 25), percentage of power consumption by the cold
pool is maximum among the three configurations.

Power-performance trade-offs among different config-
urations. Total power consumption for each of the three
configurations is shown in Figure 4(d). Figures 5(a) and
(b) show the changes in two performance metrics, respec-
tively: (i) job rejection probability and (ii) mean response
delay. Interestingly, when arrival rate is in the range of
300 − 500 jobs/hr, total power consumption in (65, 5, 5)
is minimum compared to other two configurations. As a
result, (65, 5, 5) exhibits smallest power consumption and
minimum rejection probability and mean response delay.
This is because, in the range of 300 − 500 jobs/hr, warm
and cold PMs in (25, 25, 25) and (35, 35, 5) start behaving
like hot PMs. So, advantage of having more PMs in warm



or cold pool almost vanishes. In case of (65, 5, 5), most
of the jobs get accepted in hot pool and arrival rates
to warm and cold pool are low. Thus, probabilities of
being in low power consumption states for warm and cold
PMs are higher. Figure 4(d) also shows that beyond 500
jobs/hr, all configurations are equivalent in terms of power
consumption. However, at such higher arrival rates, job
rejection probability (Figure 5(a)) and mean response delay
(Figure 5(b)) are significantly lower in (65, 5, 5) compared
to other two configurations. Observe, there is a reduction in
mean response delay for (25, 25, 25), when arrival rate is
increased from 200 jobs/hr to 300 jobs/hr. This is because,
mean response delay has four components as described in
Section II. Among these components, mean provisioning
delay reduces in (25, 25, 25), when more cold PMs start
accepting jobs, behave like hot PMs and achieve less mean
provisioning delay. At this arrival rate (near 300 jobs/hr),
such effect is not observed in other configurations as most of
the jobs are provisioned in hot and warm pools. With further

Table III: Solution times for large scale IaaS clouds.

Max. number of VMs per PM Solution time (sec)
2 0.698
4 0.705
8 0.711
16 0.721
32 0.739
64 0.783

increase in arrival rate, net increase in mean queuing delay
more than compensates the decrease in mean provisioning
delay. As a result, mean response delay increases with arrival
rate for all three configurations.

Scalability of proposed approach. So far, we pre-
sented results to demonstrate cases of interesting power-
performance trade-offs with relatively smaller number of
PMs. However, our models can be used to analyze clouds
with large number of PMs and VMs. Observe that, number
of states in any sub-model is independent of number of PMs
in the pools but VM provisioning models grow in size as
the maximum number of VMs per PM is increased. Using
5000 PMs in each pool (15, 000 in total), RPDE buffer size
of 1000, we vary the the number of the VMs per PM and
report the solution times in Table III. All models were solved
using a desktop PC with Intel Core 2 Duo processor (E8400,
3.0 GHz) and 4 GB memory. Clearly, interacting sub-models
approach facilitates power-performance trade-off analysis of
large IaaS clouds with a reasonably small solution time.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a scalable and fast analytic
approach for power consumption and performance analysis
of IaaS cloud. Using three classes of pools, we show the
effects of PM pool configurations on performance and power
consumption and discuss the trade-offs between the two.
Our analysis shows that single fixed partitioning among

different pools is not always the best strategy, especially
under varying arrival rate – a common characteristics of the
cloud. Using dynamic partitioning and adjusting the pool
sizes to match expected arrival rates can result in optimal
power-performance balance. Analysis presented here can
be used to achieve power and performance objectives by
managing the PM pool configurations. In future: (1) We
will mathematically formulate several optimization problems
such as: (i) for a given arrival rate, what is the optimal num-
ber of PMs in each pool that can minimize the total power
consumption and do not violate the performance SLAs, i.e.,
upper bound on job rejection probability and mean response
delay?, (ii) for a given arrival rate and given total power
consumption budget, what is the optimal number of PMs
in each pool that can minimize the job rejection probability
and mean response delay? (2) Using the data collected from
real cloud, we will design more detailed power consumption
models for VM execution. (3) Sensitivity analysis will be
carried out w.r.t. model parameters. (4) We will analyze
more realistic cases e.g., heterogenous requests and different
scheduling policies.
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