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Iterative Bayesian Demand Response Estimation and
Sample-Based Optimization for Real-Time Pricing

Pu Huang, Member, IEEE

Abstract—Dynamic pricing will introduce significant load fluc-
tuation in the wholesale markets than we see nowadays as
customers respond to price signals in real-time. In this paper,
we propose an iterative estimation-optimization approach for
real-time wholesale market pricing in response to stochastic load
fluctuations. For additive and multiplicative demand response
models, we apply a Bayesian approach to continuously update
the models. The estimated demand response models are then fed
into an expectation-base or a risk-averse optimal flow problem
to find bus phase angles, real power injections, and bus prices
simultaneously. We also present preliminary numerical results
using simulated data.

I. INTRODUCTION

Electricity markets in U.S. have a two-layered structure.
Prices in many wholesale markets are set in a competitive way
(e.g., PJM, ISO New England, and Midwest ISO adopted the
Locational Marginal Pricing (LMP) approach), but for retail
markets, the rates in general are still fixed. Rapid deployment
of smart meters in recent years paved the way for dynamic
pricing in retail markets. Dynamic pricing has been proposed
as an effective mechanism to align customer energy usage
decisions with cost responsibility. Dozen of pilot programs
have been carried out across the global to experiment dynamic
pricing, and significant benefits have been recorded [1], [2].
One side effect of dynamic pricing is that it will introduce
significant load fluctuation in the wholesale markets than we
see nowadays as customers respond to dynamic price signals
in real-time.

In this paper, we propose an iterative estimation-
optimization approach to adjust wholesale market prices in
real-time in response to stochastic load fluctuations. To link
demand and price, we assume a stochastic demand response
model. In each time period, Bayesian updating is applied to
update the parameters of the demand response model based
on the realized price and demand data collected so far. Then
the updated model is plugged into an extended Optimal Power
Flow (OPF) formulation to find the optimize price for the next
period, and the process continues.

Load forecasting has always been important issue in the
power industry. A fairly substantial literature exists on this
subject [3], [4], [5], [6], [7]. However, estimating the impact
of price on load has not been of much interest until recently.
This is, of course, understandable as price was fixed and
not allowed to change before market deregulation. A few
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dynamic pricing pilots carried out across the nation provided
quality data to estimate price impacts (refer to [8], [1] and the
references therein). However, most of these studies were poster
experiment analysis and thus have been focused on descriptive
statistics like demand elasticity, curtailed peak demand, etc.,
not on real-time demand response models. For our purpose,
we investigate two commonly use demand response mod-
els: additive and multiplicative models. Both are simple and
well known models that prescript linear (log-linear) relations
between demand and price. We adopt a Bayesian approach
to update model parameters continuously as new price and
demand data become available. To find the optimal price, we
extend the DC-OPF formulation to maximize the overall social
benefit, while at the same time keep all the security constraints
in the original formulation. Thus we simultaneously determine
typical phase angles, real power injections, as well as prices
at individual buses.

Since we can never forecast loads exactly, our optimization
model needs to handle load uncertainty. We investigate two
approaches: the traditional expectation-based approach, and
a risk-averse approach. We propose to sample the posterior
distributions after Bayesian updating to estimate the values
of input quantities to the optimization model, and then feed
the estimates into the subsequent optimization problem. Our
treatment of load uncertainty differentiates itself from the
Probabilistic OPF (POPF) approach [9], [10], [11], [12]. POPF
seeks to find (or for that matter, estimate) the probability
distribution functions (pdf) of the quantities of interest (phase
angles, bus voltages, LMPs, etc.) for a given set of load
distributions. We don’t estimate the pdf of the outputs from our
optimization models. Instead, we estimate the pdf of the inputs
using the Bayesian approach, set up a risk measure to gauge
the risk of load uncertainty, and then balance the risk with
the cost via optimization. The specific risk measure we use
in this paper is Conditional Value-at-Risk (CVaR). We adopt
it because of the intuitive meaning and nice computational
proprieties [15] of this risk measure, though other measures
can be applied as well.

To summarize, the proposed estimation-optimization proce-
dure consists of the following steps:

• Estimate parameters of the demand response model based
on the latest price and load data available.

• Generate random samples to estimate the values of inputs
to the optimization model.

• Feed the estimates to the optimization problem and solve
it to find phase angles, real power injections, and prices
at individual buses.

• Send the price signals out, collect the realized load from
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each bus, and then loop back the first step.
The rest of the paper is organized as follows. Section

II describes the Bayesian updating procedures for additive
and multiplicative demand response models. In Section III,
we elaborate two optimization models: expectation-based and
risk-averse models, and their respective solution algorithms.
Section IV reports a set of preliminary numerical experiments
we carried to test our approach. Section V concludes the paper.

II. BAYESIAN DEMAND RESPONSE MODEL UPDATING

We consider two widely used demand response models:
multiplicative and additive models: They can be written,
respectively, as the follows

d = exp(−αp+ a+ δ)

d = −βp+ b+ η

In an on-line setting, they take the following form:

log(dt) = −αtpt + at + δ, (1)
dt = −βtpt + bt + η, (2)

where t indexes time, αt and βt are estimated demand
response parameters in their respective model, δ and η are
error terms that don’t vary with time t, and at and bt are
known quantities that influence demand (e.g. demand in period
t − 2, weather information, demand in the same time period
day/week/month ahead, etc.). at and bt are function of t, but
for our modeling purpose, we do not treat them as random
variables as we want to single out the impacts of unknown
parameters αt, βt, δ, and η.

Prices in real-time wholesale markets typically are updated
in a fixed frequency. For example, prices in the PJM market
are posted in every 5 minutes [13]. In every periods t, the
following events occur in sequence:

• Actual load dt−1 in the previous period t−1 is recorded,
• The demand response model is updated based on actual

load and price information,
• Price pt for this period is posted,
• Continue to the next period.
Both demand response models (1) and (2) are special cases

of the following general linear model

y = kx+ c+ ϵ, (3)

where x and y are the input and output of the model, k and c
are parameters, and ϵ ∼ Normal(0, σ2) = Normal(0, h−1)
is an error term. For multiplicative model (1),

y := log(dt), x := pt, k := −αt, c := at, ϵ := δ;

and for additive model (2),

y := dt, x := pt, k := −βt, c := bt, ϵ := η.

Let D = (yn− cn, xn), n = 1, ..., N denote N observations
of (y, x), assign the conjugate prior to k and h, then the
following Bayesian updating rules are standard [14]:

• Prior of h and k is specified as

h ∼ Gamma(ν/2,
2

s2ν
) (4)

k|h ∼ Normal(k, h−1V) (5)

• and after Bayesian updating, the posterior is

h|D ∼ Gamma(ν̄/2,
2

s̄2ν̄
) (6)

k|h,D ∼ Normal(k̄, h−1V̄ ) (7)

See Appendix A for more details on how parameters ν̄, s̄, k̄
and V̄ of the posterior can be computed.

We carry out the above Bayesian update in every period t.
Since we get only one sample point (dt, pt) in every period,
to apply the Bayesian approach, we backtrack another N − 1
periods to get N points in total.

III. OPTIMIZATION FORMULATIONS AND SOLUTION
ALGORITHMS

Our optimization formulation is based on the DC-OPF
model. Define the following notation:

• I: set of buses/generators, assume one generator per bus,
• g: real power injection vector,
• d: bus real power load vector,
• B: bus admittance matrix (imaginary part),
• θ: bus voltage angle vector,
• L: set of transmission lines, indexed by ij,
• lij : power flow limit of transmission line between buses

i and j,
• xij : reactance of line ij.
• θmin

i and θmax
i : lower and upper bounds of bus i voltage

angle,
• gmin

i and gmax
i : minimum and maximum power output

of generator i,
• ci(·) cost function of generator i.

The basic DC-OPF model can be written as,

min
gi,θi

∑
i∈I

ci(gi) (8a)

Bθ ≤ g − d (8b)∣∣∣∣θi − θj
xij

∣∣∣∣ ≤ lij ∀ij ∈ L (8c)

θmin
i ≤ θi ≤ θmax

i ∀i ∈ I (8d)
gmin
i ≤ gi ≤ gmax

i ∀i ∈ I. (8e)

With demand response, we would like to utilize dynamic
prices as a “control signal” to modulate the demand. To this
end, we first write down the (estimated) response function that
links demand dt and price pt in each period t, and then plug
this function into an optimization problem (see problem (10a)
below) to find the optimal price. For the multiplicative model,
the demand response function takes the form (1), and for the
additive model, it takes the form (2). Let

d = fgen(p|ω) (9)

denote a general demand response model with a vector of
stochastic parameters ω (represent αt, βt, δ, and η), we would
like to solve the following extension of the basic DC-OPF
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model to determine the optimal price:

min
gi,θi,pi

∑
i∈I

ci(gi)−
∑
i∈M

pidi (10a)

B(i,•)θ ≤ gi i ∈ I −M (10b)
B(i,•)θ ≤ gi − di i ∈ M (10c)∣∣∣∣θi − θj

xij

∣∣∣∣ ≤ lij ∀ij ∈ L (10d)

θmin
i ≤ θi ≤ θmax

i ∀i ∈ I (10e)
gmin
i ≤ gi ≤ gmax

i ∀i ∈ I (10f)
di = fgen(pi|ωi) ∀i ∈ M (10g)

where M ⊂ I is a subset of buses that have loads, and B(i,•)
is the i-th row of B.

In the above optimization model, we optimize the social
welfare, and introduce new decision variables pi. Note that
load di now becomes a random function of pi. Because of the
random natural of di, problem (10a) is not well defined. For
a given control pi, we don’t know exactly what the outcome
di would be (though we do know the pdf of di).

A. Expectation Optimization

One traditional way to handle random variable di is to
replace it with its mean. Doing so leads to the following
problem

min
gi,θi,pi

∑
i∈I

ci(gi)−
∑
i∈M

pidi (11a)

(10b),(10c), (10d), (10e), (10f) (11b)
di = E[fgen(pi|ωi)] ∀i ∈ M, (11c)

More specifically, for multiplicative model (1)

di,t = E[exp(−αi,tpi,t + δi)] exp(ai,t) (12)

and for additive model (2),

di,t = E[−βi,t]pi,t + bi,t + E[ηi]

= E[−βi,t]pi,t + bi,t (13)

Here we use double index (i, t) to identify demand di,t at bus
i ∈ M in time period t. Since we solve an optimization like
(11a) in every period, index t is omitted to keep the notation
simple. Error term ηi has zero mean, and hence is igonored in
(13). However, we have to keep δi in (12) as it is an exponent.

B. Risk-Averse Optimization

One issue with formulation (11a) is that it assumes average
demand response (as evident by the use of expectation operator
E[·]). We may also want to stay “on the safe side” by, say, con-
sidering a “worse-than-average” demand response scenario.
This intuition of risk-averse can be modeled precisely in a
probabilistic framework using a risk measure call Conditional
Value-at-Risk (CVaR).

For a given random variable X , the conditional value-at-
risk of X , ρ1−γ [X], parameterized by 1 − γ, maps X to a
real number. Specifically, ρ1−γ [X] is the expected value of X
given that X is greater than its (1− γ)-quantile, i.e.,

ρ1−γ [X] = E[X|X ≥ q1−γ(X)],

where q1−γ [X] represents the (1− γ)-quantile of X . By defi-
nition, ρ1−γ [X] measures the “average” of the worst possible
realizations of X (X here represents losses, so the larger the
worse), where the γ controls what values are considered as
the “worst realizations”. For example, γ = 5% means that top
5% of all the values X may take are counted as the “worst
realizations”.

Replace expectation E[·] in formulation (11a) by ρ1−γ [·],
we get the following risk-aware optimization formulation

min
gi,θi,pi

∑
i∈I

ci(gi)−
∑
i∈M

pidi (14a)

(10b),(10c), (10d), (10e), (10f) (14b)
di = ρ1−γi [fgen(pi|ωi)] ∀i ∈ M. (14c)

Again, specific functional forms of the multiplicative and
additive models are, respectively

di,t = ρ1−γi [exp(−αi,tpi,t + δi)] exp(ai,t) (15)
di,t = ρ1−γi [−βi,tpi,t + ηi] + bi,t (16)

Note that since

ρ1−γ [λX] = λρ1−γ [X], ∀λ ≥ 0,

we can take exp(ai,t) out of the risk function in (15). In
general, we cannot distribute operator ρ1−γ [·] to individual
random variables βi,t and ηi in (16), as it is not linear as E[·].
Indeed, it is a convex operator, i.e., for two random variables
X and Y , we have

ρ1−γ [X + Y ] ≤ ρ1−γ [X] + ρ1−γ [Y ] (17)

Refer to [15] for details about the properties of the CVaR risk
measure.

C. Solution Algorithms

We elaborate our solution algorithms for the expectation-
based problem (11a) and for the risk-aware optimization (14a)

1) Algorithm for Expectation-Based Formulation: For the
additive model, plugging (13) into problem (11a) leads to a
quadratic optimization problem with linear constraints. It is
straightforward to solve it using any off-the-shelf quadratic
programming solvers. E[−βi,t] in equation (13) is available
in every period t after Bayesian updating. It equals to k̄ as in
the general linear representation (3). In this paper, we generate
a set samples for βi,t at each bus i ∈ M and then feed
the sample averages as the inputs into optimization problem
(11a). We could use k̄ directly, but a sample-based approach
is more generally applicable, as it is always possible to
generate samples for any quantities of interest in an Bayesian
framework. For all the algorithms we are going to discuss in
the following, we take empirical sample estimates as inputs to
the corresponding optimization models.

Problem (11a) with multiplicative demand response model
(12) contains a set of exponential functions. One way of
handling them is to use nonlinear solvers. Instead of doing that,
we adopt an approximation approach and use readily available
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quadratic solvers for solution. Ignore bus index i and rewrite
(12) as

dt = E[exp(−αtpt + δ)] exp(at)

≈ E[1− αtpt + δ] exp(at)

= (1 + E[−αt]pt) exp(at) (18)

Here we use the first-order Taylor expansion to approximate
the exponential function around zero. Notice that (18) is linear
and thus plugging it to problem (11a) again leads to a quadratic
program with all linear constraints. Again, E[−αt] is estimated
using samples generated from the posterior.

2) Algorithm for Risk-Averse Formulation: Ignore bus in-
dex i and re-write (16) as

dt = ρ1−γ [−βtpt + η] + bt

≤ ρ1−γ [−βt]pt + ρ1−γ [η] + bt (19)

The above inequality is a consequence of (17). In this paper,
we assume dt equals the r.h.s of (19) to price conservatively
(i.e. assume demand is less responsive than the average case as
in the expectation-based model). We generate random samples
from the posterior to estimate ρ1−γ [−βt] and ρ1−γ [η]. To
this end, let pair (βt,s, ηs), s = 1, ..., S, denote an i.i.d.
sample with size S drawn from the posterior of (βt, η).
Then ρ1−γ [−βt] and ρ1−γ [η] can estimate using the top γS
samples from their respective margins. More precisely, sort ηs
in ascending order, let η(s) denote the sorted ηs, then ρ1−γ [η]
can be estimated as

1

S − ⌈S(1− γ)⌉+ 1

S∑
s=⌈S(1−γ)⌉

η(s)

where ⌈S(1− γ)⌉ denotes the smallest integer that is greater
than S(1− γ). η⌈S(1−γ)⌉ is the estimated (1− γ)-quantile of
η, and the above estimate literally is the conditional average
of samples given that they are greater than the (estimated)
(1−γ)-quantile of η, which is precisely the definition of CVaR.
ρ1−γ [−βt] can be estimated in a similar way.

Algorithms exist to handle the original CVaR constraint
without approximating it using its upper bound, refer to [15],
[16] for details.

For multiplicative demand response model (15), apply the
same approximation method as described in (18), we have

dt = ρ1−γ [exp(−αtpt + δ)] exp(at)

≈ ρ1−γ [1− αtpt + δ] exp(at)

≤ (1 + ρ1−γ [−αt]pt + ρ1−γ [δ]) exp(at) (20)

Again, we generate random samples to estimate ρ1−γ [−αt]
and ρ1−γ [δ].

IV. NUMERICAL EXPERIMENTS

A. Bayesian Update

We first show a simple example of applying the Bayesian
rules to estimate a general linear as shown in (3). Set a non-
informative prior 1as

ν = 1, s2 = 1000, k = 0,V = 1000,

1Note that s2 = 1000 ≫ 42, small ν and large V values.
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Fig. 1. Histogam of marginal posterior distributions of h and k with 1000
sample points.

k = 1, ϵ ∼ Normal(0, σ2) = Normal(0, 42),

Generate N = 20 sample points, and the posterior values of
the parameters are

ν̄ = 21, s̄2 = 74.9928, k̄ = 0.9936, V̄ = 3.4843e− 004.

We further compute the following quantities that are typically
of interest,

E[k] = k̄ = 0.9936

Std[k] =
√
s̄2V̄ = 0.1616

E[σ] =
√
s̄2 = 8.6598

We use the posterior parameters to generate 1000 samples
of (k, σ2). Figure 1 shows the histograms of the margins of
(k, σ2). Use these samples, we estimate

E[k] = 0.9936, Std[k] = 0.1675, E[σ] = 8.6265

These sample-based estimates are very close to the exact
values. This assures us that the sample-based optimization
approach we adopt will generate reasonable accurate solutions.
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B. Additive Demand Response Model with Expectation Opti-
mization

We extended Matpower [17] to solve problems (11a) and
(14a). For the following numerical experiments, we take the
IEEE 9-bus system (called ”case9”) included in the Matpower
package as the basis for our tests.

There are 3 buses in case9 that have loads, and the loads
are 90, 100 and 125 respectively. Denote these buses as “load
bus i”, i = 1, 2, 3, respectively. Let pdi denote the original
deterministic load. We set βi equal to 0.01, 0.02 and 0.03,
ai = pdi, and ηi ∼ Normal(0, (0.05)2). The parameters of
the initial prior are

ν = 1, s2 = 1000, β = −10,V = 1000

for each i = 1, 2, 3. We run our estimation-optimization pro-
cedure 100 iterations (i.e, t=1,...,100). During each iteration,
the Bayesian procedure backtracks N = 30 periods to update
the posterior. We set N = 30 artificial data points to jump-
start the Bayesian procedure. The (y, x) values of these 30
points are set as 1 (so they carry no information). We generate
S = 1000 sample points for each bus i in each period to
estimate E[−βi,t]. It may happen that the empirical sample
estimate of E[−βi,t] is positive. This typically occurs during
early iterations when the Bayesian posteriors still carry a
large estimation error. If this happens, we reset the empirical
estimate to −10, its prior value.

Figure 2 shows the dynamics of price and demand as
functions of t for each load bus. In Figure 2(a), dashed
flat lines represent the true optimal prices if the demand
response function at each bus is known, and the solid lines
show the evolution of price during the estimation-optimization
process. It is evident that the less responsive is the demand
(corresponding to smaller βi values), the higher the price.
Figure 2(b) shows the realized random demands (dashed lines)
and the estimated mean demands based on samples generated
from the posteriors.

C. Multiplicative Demand Response Model with Expectation
Optimization

We set all αi = 0.005 ∗ pdi for all i, ai = log(pdi), and
δi ∼ Normal(0, (0.05 ∗ pdi)2). All the other settings are the
same as in the proceeding additive case. The evolution of price
and demand are shown in Figure 3

D. Additive Demand Response Model with Risk-Averse Opti-
mization

We set γi = 80% for all i (i.e., we average top 80% of the
samples, the result is a value greater than the mean). All the
other parameters are the same as in the case of additive model
with expectation optimization. It turns out that the estimation
errors of β and η slow down convergence of the risk-averse
optimization algorithm. To better estimate the CVaR values,
we increase sample size S to 5000. We found that during
early iterations, the CVaR estimates are pretty bad because of
the presence large posterior errors. We took two extra steps to
handle such errors: 1) Use the estimated expected values of −β
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Fig. 2. Price and demand dynamics: additive model with expectation
optimization.

and η in the first 50 iterations. 2) In the following iterations,
if the estimate of ρ1−γ [−β] is greater than 0, set it to −10;
if the estimate of ρ1−γ [η] is less than 0, set it to 0. To make
sure that prices converge, we increase the iteration number
to 300. Figure 4 shows the price and demand dynamics.
One observation is that compared with the expectation-based
approach, the prices obtained by the risk-averse optimization
are higher, which is consistent with our intuition that in our
framework, less responsive demand is charged at a higher
price. Figure 4(b) presents the mean demand estimation (i.e.,
E[di], not ρ1−γ [di], for easy comparison, as the latter is always
greater than the former) vs. realized demand.

E. Multiplicative Demand Response Model with Risk-Averse
Optimization

The settings are the same as in the expectation optimization
case. We employ the same extra steps as in the proceeding case
to handle large estimation errors of CVaR. For this experiment,
we increase the iteration number to 1000 till the prices set
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Fig. 3. Price and demand dynamics: multiplicative model with expectation
optimization.

down. The price and demand dynamics are shown in Figure
5.

V. CONCLUSION

We have presented an iterative approach to continuously
estimate demand responses and optimize overall social wel-
fare for wholesale market real-time pricing. One potential
extension to this approach is to identify more realistic, yet
computationally easy to handle demand response functions for
large problem instance tests. In this paper, we solve a static
optimization problem in each period, thus we ignore possible
inter-temporal effects of demand response (e.g., one may cur-
tail load in certain periods but still keep the total consumption
unchanged). Another extension thus is to investigate such a
dynamic model that explicitly counts for temporal demand
responses.
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Fig. 4. Price and demand dynamics: additive model with risk-averse
optimization.

APPENDIX A
COMPUTE PARAMETERS OF THE POSTERIOR

Given the prior distribution of (k, h) as specified in (4) and
(5), and a set of sample points D = (yn−cn, xn), n = 1, ..., N ,
denote

k̂ =

∑N
n=1 xn(yn − cn)∑N

n=1 x
2
n

s2 =

∑N
n=1(yn − cn − k̂xn)

2

N − 1
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Fig. 5. Price and demand dynamics: multiplicative model with risk-averse
optimization.

The parameters of the posterior can be computed as

ν̄ = ν +N

V̄ =
1

V−1 +
∑N

n=1 x
2
n

k̄ = V̄ (V−1k + k̂

N∑
n=1

x2
n)

ν̄s̄2 = νs2 + (N − 1)s2 +
(k̂ − k)2

V + 1/
∑N

n=1 x
2
n

See [14] for details.
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