
RC25138 (W1104-038) April 11, 2011
Computer Science

IBM Research Report

Migration to Multi-Image Cloud Templates

Birgit Pfitzmann, Nikolai Joukov
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Migration to Multi-Image Cloud Templates
Birgit Pfitzmann, Nikolai Joukov

IBM T. J. Watson Research Center, Hawthorne, NY USA
{bpfitzm,njoukov}@us.ibm.com

Abstract—IT management costs increasingly dominate the
overall IT costs. The main hope for reducing them is to standard-
ize software and processes, as this leads to economies of scale
in the management services. A key vehicle by which enterprises
hope to achieve this is cloud computing, and they start to show
interest in clouds outside the initial sweet spot of development
and test. As business applications (e.g., a travel application or a
web catalog) typically contain multiple images with dependencies,
e.g., in a 3-tier architecture, one is starting to standardize on
multi-image structures. Benefits are ease of deployment of the
entire structure and consistent later management servicesfor
the business applications.

Enterprises have huge investments in their existing busi-
ness applications, e.g., their web design, special code, database
schemas, and data. The promises of clouds can only be realized
if a significant fraction of these existing applications canbe
migrated into the clouds. We therefore present analysis tech-
niques for mapping existing IT environments to multi-image
cloud templates. We propose multiple matching criteria, leading
to tradeoffs between the number of matches and the migration
overhead, and present efficient algorithms for these special graph
matching problems. We also present results from analyzing an
existing enterprise environment with about 1600 servers.

Index Terms—IT services, management costs, migration,
clouds, multi-image templates;

I. I NTRODUCTION

IT management costs are the dominant cost of IT and still on
the rise. Hence a key issue for IT services organizations, both
in-house and as special IT services providers, is to reduce these
costs. The main approaches are standardization and subsequent
automation. For both, cloud computing is the current main
hope. Key differentiators are standardization of images includ-
ing their software stacks, and rapid deployment. The former
promises to significantly decrease IT management costs, the
latter reduced power, server costs, and data center footprints
beyond the gains due to static virtualization. While the perfor-
mance questions have already gained significant interest inthe
literature, the difficulties and benefits of standardization have
been investigated much less thoroughly, although ultimately,
given the dominance of services costs, one is hoping for
greater savings from them. We will therefore focus on the
standardization aspect.

Typical current business applications are not monolithic,but
built in distributed ways, in particular often as 3-tier structures
consisting of web servers, application servers, and databases.
By a business application we mean a set of interacting software
components that perform some task together, and are typically
managed and in particular tested together. An example of
a business application is a travel reimbursement application
consisting of a web interface for entering travel expenses,an

application server that validates limits and handles approval
workflows, and a database that contains the persistent copies
of the expense reports in all states. Dependencies between
software components in a business application, as well as
with other components that may reside on the same servers or
even in the same application servers or web servers, are a key
complexity factor of current IT management, in particular as
they are not always well documented. Hence one of the ideas
to minimize service costs via clouds is to provide standardized
multi-image templates for typical business application struc-
tures, in particular 3-tier structures, and to manage thesein
a consistent way with metadata, image libraries, and deploy
scripts. Clouds with multi-image templates can be seen as a
specific form of PaaS (platform as a service).

To gain wide adoption for such clouds, we must devise
methods to migrate a significant subset of existing business
applications to these multi-image templates. Enterpriseshave
huge amounts of existing software in these business applica-
tions, e.g., scripts on the web servers, Java code in the appli-
cation servers, and transactions and reporting queries on the
databases, as well as actual data. Only a very small percentage
of business applications is written new per year, compared
with what is retained unchanged or carefully upgraded. For
instance, many applications get regular hardware refreshes and
software upgrades. Virtualization has only gained its current
real traction in the business world because physical-to-virtual
(P2V) transformation has become a relatively cheap and low-
risk operation. In comparison, e.g., SOA (service-oriented
architecture) has only reached rather small coverage because
it usually requires a significant amount of reprogramming of
the business-application-specific code.

We therefore want to explore the migration of existing
business applications to clouds with multi-image templates.
We are not aware of any prior literature in this space, and
we expect that significant additional work will be needed over
the next years to fully optimize the tradeoff between migration
costs and the level of attained standardization. In other words,
the goal is to migrate as many existing business applications
as possible to more standardized structures, while keepingthe
costs for the necessary changes small enough so that they
amortize within reasonable time via cost savings in IT services.

We concentrate on three-tier systems as those promise the
largest coverage for initial multi-image templates.

In Section II, we introduce our problem setting in more
detail and give examples. We describe our general method in
Section III, a core algorithm in Section IV, and more variants
in Section V. We evaluate a real enterprise IT environment in

1

Section VI, and discuss related literature in Section VII. We
conclude in Section VIII.

II. SETTING

We speak of a source system, a cloud offering, and a
target system. The source system is the existing enterprise
IT environment. The cloud offering includes a catalog of
multi-image templates from which cloud users can choose. A
multi-image template is a structure of metadata about several
images and their relations. A cloud offering also includes
actual virtual-machine images according to the catalog tem-
plates. These images are stored as sets of files in an image
library and can quickly be copied to sets of real servers. I.e.,
when a user selects a multi-image template, several images
get deployed, and they are ready to communicate. Under
the covers, deployment scripts may be used to update the
images after copying, e.g., with concrete addresses for their
communication. The target system is the result of our intended
transformation, i.e., it consists of instantiations of themulti-
image templates, and after the migration (in contrast to a
green-field deployment), it will also contain the business-
application-specific code and data of the subset of the source
system that was chosen for migration. For instance, actual Java
modules will have been migrated into an application server that
was already on one of the images in the image library, and
that was already configured to communicate with a database
instance on another image from the same multi-image set, into
which actual data have now been migrated.

For the matching algorithms, it is useful to distinguish
software installs, services, and objects, with a natural inclusion
relationship. An install is a software installation as produced
by an installation process. A service is an instance set up
to serve requests, e.g., a web server, an application server,
or a database instance. Most software products, in particular
in 3-tier architectures, allow multiple services per install.
Running processes are typically associated with services,but
in particular with databases, a service need not have constantly
running processes. Objects mean everything that is handled
by the services, e.g., web pages and scripts in a web server,
applications and their modules in an application server, and
databases, tables etc. in a database instance.

Dependencies between the components of a multi-tier ap-
plication are usually set up at the service and object levels. In
particular, dependencies of application servers are typically
set at the service level, i.e., an application server contains
configuration files that establish a connection to a database
instance, message queuing service etc. It is also possible to
establish those dependencies in proper configuration files at the
object level, e.g., for Java EE applications and modules like
war and ear files, but in real enterprises we see that very rarely.
The fact that important dependencies are set at the service
level rather than the object level is key to the vision of multi-
image templates for clouds, because these templates and the
corresponding ready-to-deploy images typically do not contain
objects: Individual web pages, Java applications, and databases
are established by the cloud users on these images, in our

case via migration. This is because these are PaaS clouds,
in contrast to SaaS (software as a service). Nevertheless, the
base setup of the dependencies can be done at the service level
and thus in the preconfigured images. An enterprise that is
a cloud consumer may add specific images that also contain
objects (content) to the catalog, e.g., for rapid scaling ofa
specific heavily used web server cluster, but this situationdoes
not require matching. Hence we focus on matching existing
source systems with multi-image PaaS templates that contain
the install and service levels of software components.

It is preferable that each image in a multi-image template
contains only one major software install or even only one
major service (such as a web server, application server, or a
database instance), because this significantly decreases man-
agement. For instance, all security settings on an image can
then correspond to the one software without policy merging,
and there is no resource contention or other negative influence
among different software on an image. However, current phys-
ical servers commonly contain multiple software installations
(to best utilize the hardware), and taking existing images apart
is a significant migration effort and thus cost factor. Hencewe
also allow that images in the multi-image templates contain
several major software installs or services.

As to the source systems, we assume that their current
structure is known at the time of the matching algorithm. This
will often require discovery prior to migration, as CMDBs
(configuration management databases) are rarely deployed
consistently throughout an enterprise.

A. Example Multi-Image Templates

Figure 1 shows examples of multi-image templates. Multi-
image templateM contains two imagesI and J . Image I
includes a web server installation and an application server
(APS) installation, with one service (“App server”) set up.
Image J includes a database (DB) installation, with one
service set up. There are no applications or databases in
the imagesI and J ; these will be provided by the users
of deployed instances of the multi-image template. Note that
we speak of images in these examples although the matching
algorithm actually works with the metadata about these images
in the catalog. The graphical representation of the multi-image
templates is only an example; the matching algorithms will
typically work on database or XML formats. However, such
graphics might be a good augmentation to current catalog
formats.

Multi-image templateM ′ is parameterized, i.e., there are
parameters,i andj, that a user can select when choosing this
template from the catalog. At the front end, the multi-image
templateM ′ includes an imageH ′ with one web proxy. This
web proxy serves as a load balancer for a number of identical
web servers. Each of these web servers is an instance of image
I ′, e.g., if a user needs ten web servers and thus chooses
i = 10, then imageI ′ is deployed ten times. These instances
of web servers are the “same”, which means that they are
meant to get the same content. Similarly, at the backend there
may bej databases, all replicas of each other. So, e.g., if a

2

Image I Image J

APS install DB install

App server DB instance

Web
server

Multi-image template M

Image I’ Image J

DB install

DB instance

Web
server

Multi-image template M’

Image K’

APS install

App server

i times same 1 time j times same

Image H’

Web
proxy

1 time

replication

Image I” Image J”

APS install DB install

App server DB instance

Multi-image template M”

j times different

Image H”

Web
server

Fig. 1. Example multi-image templates.

user choosesj = 2, then imageJ ′ is replicated twice. The
dependencies are replicated as well, i.e., the web proxy will
be linked to each web server, and the application server to
each database. Additionally, the databases all replicate with
each other.

Multi-image templateM ′′ is also parameterized, but instead
of replication, we now allowj different databases. Thus, a
user choosing this multi-image template withj = 3 will get 3
instances of ImageJ ′′, and the application server will again
be linked to each of them, but the databases will not be replica
of each other, and this internally implies different settings in
the application server. The user can put different content in
each database instance.

B. Example of Source Applications

Figure 2 shows some source servers with software and
dependencies. The example would typically be part of a large
model resulting from the discovery phase of a migration
process. There may be hundreds or thousands of physical
or virtual servers. Again, the graphical representation isonly
used for illustration. Servers are indicated asS to X . E.g.,
Server S includes a web server and an application server
(APS) install, and the APS install contains two services, which
are application servers. As this illustrates a working source
system, there are URLs implemented on the web servers and
modules in the application servers. We have simplified the
figure a little compared with actual discovery results, e.g., one
would see applications between the application servers andthe
modules, and a URL on serverP .

C. Initial Matching Thoughts

ServerS is somewhat suitable for matching with imageI,
i.e., within a multi-image matching method as described below
one may consider whether one can migrate serverS to an

Ser-
ver V

Server S

Web
server

APS install

Server T

DB install

DB instanceApp server A

Module1

Module2

App server B

Module3

DB a

URLs

u

v

w

FS

Server R

Server U

DB b

DB install

DB instance

DB c
NFS

APS install

App server C

Module4

Server
P

Web
serv
er

x
Server X

Queue install

Queue server

Queue q

Fig. 2. Example source servers.

instantiation of imageI, assuming servers related to server
S can be migrated to the remaining images in multi-image
templateM . An exact match between a source application and
a multi-image template is preferable. However, many source
applications will not have an exact match. For example, server
S differs from imageI by having two app serversA andB
in its APS install. Furthermore, serverS is linked to database
instances on two serversT andU , while multi-image template
M only includes one such image. These situations will be
addressed below. Without app serverB and its dependencies,
the server pair(S, T) would perfectly match multi-image
templateM . Here, we assume that file systems (FS) are
not explicitly represented in multi-image templates, i.e., the
component FS on serverT does not matter. Such strategies of
what does and does not matter are also discussed below.

Alternatively, serversS, T , andU would match multi-image
templateM ′′ if either app serverB and the dependency on
serverV were not there, or one is allowed to add them toM ′′,
and if one is allowed to split the web server and the application
server install fromS onto two images (I ′′ andK ′′).

III. OVERALL METHOD

We now give an overview of our matching method.

A. Flow Diagram

Figure 3 shows a flow diagram for our migration planning
using multi-image templates.

In Phase 1, source software components, their dependen-
cies, and servers that these software components are on are
discovered. As we want to match with details of multi-image
templates, we need significantly deeper knowledge about the
source systems than in a pure physical-to-virtual transforma-
tion. Discovery typically includes both network traffic analysis
and studying the configurations of operating systems and
software. There are several commercial products in this space,
and also ongoing research, e.g., [4, 11, 12, 21]. A discovery

3

tool may already be in place in the source systems, or may
be deployed for the migration. While automatic discovery is
more precise, the following steps also work if discovery is
manual, e.g., by asking application owners.

1. Discover source
applications and their

dependencies

Catalog with
multi-image
templates

2. Find individual multi-image matches
(possibly with modification cost)

3. Select overall mapping
(potentially with ROI analysis)

4. Plan modification steps

Matching criteria
and modification

cost

5. Migrate

2a. Preparation

2b. Image matching

2c. Dependency matching

Fig. 3. Method overview.

In Phase 2, potential individual multi-image template
matches are found. Individual means that in this phase, we
look for all potential matches, not bothering whether some
of them overlap in the source system. A match means that a
sub-structure of the source system is found that is similar to
a multi-image template in the catalog. This phase is governed
by matching criteria that determine what “similar” means.
Clearly, an exact match is optimal and corresponds to a
substructure in the source system that gives topologicallythe
same picture as one of the multi-image templates. We precisely
define this below, and present a set of weaker matching
criteria. The matching criteria may come with costs, because
everything that is not an exact match requires modifications
later, or wastes a feature provided by the multi-image template.

In Phase 3, an overall mapping is selected from the po-
tential matches that resulted from Phase 2. This selection is
needed because the potential matches may be overlapping
or alternatives to each other. We aim at choosing an overall
mapping with broad coverage and few necessary modifications
to the source systems or templates. If we have quantitative
estimates of modification costs, we can treat this as an op-
timization problem. Source images that were in no matching
sub-structure, or that end up without matches in the overall
mapping, may be mapped to individual images that also exist
in the catalog, or have to be migrated purely as physical-to-
virtual. E.g., serverX in Figure 2 has no match in any multi-
image template from Figure 1.

Actual modification steps, corresponding to the differences
between source sub-structures and multi-image templates that
the matching criteria may have allowed, are planned in
Phase 4. In Phase 5, the actual source system is migrated into
a cloud using the selected multi-image templates: The multi-
image sets corresponding to the chosen templates are retrieved
from the image library, instantiated on real servers using their

standard deployment scripts, and potential modifications to
their configurations are made as planned in Phase 4. Then,
application-specific code and data are migrated from the
source systems onto these new target instances, with potential
source modifications planned in Phase 4.

Note that while we primarily target clouds with real multi-
image libraries, our matching algorithms can also be used in
scenarios without actual prebuilt images corresponding toall
the multi-image templates, and where the templates guide an
on-the-fly model-based deployment of the software on more
basic catalog images.

B. Example

We now show how this method applies to the source systems
from Figure 2 and the example multi-image templates in
Figure 1. The multi-image templatesM , M ′, M ′′ might in
reality be three of many in the catalog. The source applications
shown in Figure 2 would be part of the result of discovery.
In the matching step, we find individual sets of servers in
the source applications that match individual multi-image
templates such asM , M ′, or M ′′. In the selection step, we
may select from several possible matches. The matches may
be scored to determine a best match for the source system.

If we only match self-contained server groups that have
no dependencies other than those present in a multi-image
template, this selection of an overall mapping can be done
per connectivity component of the source environment. If we
allow additions of dependencies to target images, there maybe
overlapping potential matches after the matching step and we
may use global cost computations. E.g., out of the three servers
P , R andX in Figure 2, a multi-image templateMfront may
matchP andR, while another multi-image templateMback

matchesR andX . Then, a decision needs to be made whether
it would be easier to useMfront and an additional image with
a queue server, or to useMback and an additional image with a
web server. Matching criteria govern how much one is willing
to change between the source system and the multi-image
templates.

C. Graph Models

For the algorithmic matching, we assume that the source
systems and multi-image templates are represented as labeled
graphs. Nodes in the source system have at least two labels, a
type such as “APS install” and a node name such as “Module
1” in the example. Nodes in the multi-image templates have at
least a type label. We require that the same type system is used
for multi-image templates and source systems. In practice,we
may first need a terminology mapping to get the labels from
a discovery tool or CMDB and those of a cloud metadata
schema to agree.

For edges, it is useful to distinguish inclusions from other
dependencies. This is shown as nested boxes versus arrows
in Figures 1 and 2. Inclusions are used for components that
run “inside each other”, offering each other an environmentor
abstraction layer, e.g., a database in a database instance based
on a database installation. Inclusions may imply co-location.

4

Dependencies (arrows) may occur and thus be represented at
different levels of inclusion. In multi-image templates, depen-
dencies will mainly occur for services. In source systems, they
may also occur for inner objects (such as individual modules
and databases) or only be known at the server level (e.g., if
observed via network statistics). We assume in the following
that all server-level dependencies that can be associated with
known software on that server have in fact been associated as
precisely as possible.

Hence formally we have a structure(N, I,D,L) whereN
denotes nodes,I ⊆ N × N inclusions,D ⊆ N × N (other)
dependencies, andL : N → T×Nm×Conf denotes the node
labeling, whereT is the set of node types,Nm the set of node
names, andConf the set of configurations, withǫ ∈ Nm and
ǫ ∈ Conf denoting that no name or configuration is given.

Matching between source systems and multi-image tem-
plates is a kind of subgraph isomorphism problem between
these graphs. How similar a source subgraph and a multi-
image template graph have to be (i.e., really isomorphic or
not quite) in order to be declared a match is determined by
the matching criteria from Figure 3. Three kinds of matching
criteria govern how closely the node labels have to match, how
similar the inclusion graphs per image have to be, and how
similar the dependency graphs have to be. The tradeoffs to be
made when selecting criteria for a specific situation include

• ease of migration; this is best with close matches that do
not require source changes,

• steady-state simplicity; this is best with close matches
that do not require target changes, and

• coverage, i.e., more existing workloads can be migrated;
this is best with looser matching.

A tool should offer a range of matching criteria, and one
may apply them to the same source system and multi-image
templates to find the lowest cost in Phase 3.

IV. D ETAILED ALGORITHM FOR PRECISEMATCHING

We now describe the individual matching from Phase 2 of
the overall method in greater detail as a preparation phase,an
image matching phase, and a dependency matching phase.

In this section, we do this for precise matching. By this we
mean that the multi-image templates are not parameterized,
and that the source structure and a matched multi-image tem-
plate must have precisely the same software components (as
far as they are considered on the templates, typically installs
and services) with the same inclusions and dependencies.
We only allow flexibility in the node matching, and in the
treatment of dependencies on infrastructure software.

The matching problem belongs to the class of graph iso-
morphism problems. Graph isomorphism is in NP, and not
known to be either in P or NP-hard. However, in most practical
cases, we can solve the multi-image matching problem quite
fast, because the multi-image templates are not large. Our
examples with three to five main software installation types
(unparametrized in this section, parametrized in the next
section) are realistic. Furthermore, the nodes have types.This
reduces the possibilities for matching very significantly.

A. Matching Criteria

The multi-image matching builds upon matching individual
software components, i.e., graph nodes. This is governed
by matching criteria of the first kind. At the end of this
subsection, we describe the matching criteria for dependencies
on infrastructure, which belong to the third kind.

Type Labels. Clearly, we have to match the type labels
of the source nodes and the template nodes, e.g., we cannot
match a database install to a web server install. It is best
to have a hierarchical type system so that we can choose
matching criteria with varying strictness, e.g., as follows, with
consequences on subsequent the migration complexity:

1) Only software components of the same product and
exact version match, e.g., a product’s version 9.9 with
version 9.9.

2) Software components of the same product and major
version match, if the minor version of the source com-
ponent is smaller or equal than that of the template
component. E.g., source versions 9 to 9.8 also match
template version 9.9, but not vice versa. This requires
a software upgrade for any version other than 9.9, but
in many cases this is an easy operation provided by the
vendor.

3) All source versions match any newer version of the same
product. This requires more complex upgrades for older
source versions.

4) Even different products of the same class, e.g., databases
from different vendors, match.

Each matching criterion defines a relation “≤” over the type
set T where τs ≤ τt must hold for a source typeτs and a
target typeτt for a match.

We treat operating systems like installs, possibly with their
own matching criterion because operating system upgrades or
changes have particularly large consequences.

Name Labels.We do not match the name label of the source
systems, as user-given names seem too unlikely to ever match
names in templates. Mostly, names are given to objects, e.g.,
exact names of databases, and object names will come over in
the migration of application-specific code and data. Installs are
very rarely named, but installation directories may changeand
this induces modifications for Phase 4. Services are sometimes
named, and if those change to names of corresponding services
on templates, one needs to consider whether there are any
uses of these names directly in objects that are migrated, and
also plan those modifications in Phase 4. Formally, the non-
matching may be done by usingǫ for all name labels in the
template images, and defining thatǫ matches all names.

Node Configurations.Configuration files may also be com-
pared if the configurations on the actual images in the image
library are taken as somewhat prescriptive, in order to simplify
later management, and thus at least partially prescribed inthe
template metadata. For example, if a source database instance
defines a certain diagnostic level, a target image diagnostic
level may be desired to be at least as good.

Configuration matching need not be considered in single-

5

image IaaS cloud migrations, since there is no existing mid-
dleware on the target images. However, it would also be
useful in migrations with single-image platform-as-a-service
cloud targets, and in our case when selecting single-image
targets for those source servers that did not get a multi-image
match. As matching criteria, one may define a “≤” relation
on configuration parameters, wherecs ≤ ct must hold for a
source parametercs and a target parameterct for a match.

Helper Software. Typical servers contain infrastructure
programs like shells, Java runtimes, monitoring agents, and
security software. One may or may not want to include these
programs in the matching. For instance, if one desires to
unify the monitoring infrastructure by the cloud migration,
one will not match on the current monitoring agents and
will not migrate them, but rather use those provided on the
cloud images. However, one has to analyze whether there
are modifications to plan in Phase 4. This may not be
the case with OS-level monitoring software, but, e.g., with
configurations of a host firewall software. Software that is not
to be matched is deleted from the source graph now.

Dependencies on Infrastructure Servers.An IT infras-
tructure includes common services, e.g., DNS, LDAP, and
print servers. Such servers cannot be put into each multi-
image template. However, many source servers depend on
these services. Hence, in the matching, dependencies on such
services are not considered. This may be done by deleting
all nodes of these types and all dependencies with them from
the source graph. Alternatively, one may represent dangling
dependencies in the multi-image templates, e.g., a dependency
from an application server to a not-included LDAP server,
meaning that this multi-image template can use a general
LDAP server available in a target cloud. In the following, we
use the first alternative.

B. Preparation Phase (2a)

In Figure 4, the preparation phase of a precise matching
method is shown.

i. Delete helper software, infrastructure dependencies,
and client connections

ii. Exclude servers with OS or installs not matching any
templates, or without any template installs

iv. Exclude connectivity components with dangling
dependencies

v. Reduce source graph to inclusion depth of templates,
lifting the dependencies

vi. Match connectivity component sizes

iii. Exclude servers with un-understood dependencies

Fig. 4. Preparation phase for precise matching.

In Step i, delete not-to-be considered helper software, in-
frastructure servers, and dependencies on them from the source
graph according to the matching criteria.

In Step ii, make a list or hash tableSI of software installs
occurring at least once in a multi-image template, and exclude
all source servers that include an installs 6∈ SI . Further
exclude source servers without any installs ∈ SI .

In Step iii, we exclude source servers that have a de-
pendency on the server level that has not been associated
with a software component on this server. This is typically a
dependency found by network observation, and indicates that
some software on this server was not discovered (neither as
helper software nor as infrastructure software nor as a main
software component) or sufficiently analyzed for dependencies
to allow correct matching.

In Step iv, we divide the server level of the source graph into
connectivity components. By server-level we mean that every
dependency of two nodes is only considered as a server-to-
server dependency in this division, so that we operate on a
simpler server-only graph. A connectivity component is a set
of nodes in a graph that have no link to nodes outside this
set, but cannot be divided into smaller such sets. Figure 2,
assuming nothing was deleted in Steps i to iii, has two
connectivity components, serversS, T ,U , V and serversP ,R,
andX . Connectivity components can be determined efficiently
with well-known methods. Note that the source graph in
this step may contain dangling dependencies, e.g., to other
servers where no discovery was run, or to servers excluded
in Steps ii and iii. Servers with dangling dependencies and
others connected to them are also excluded in this step.
Precise matching implies that every match has to be between
a remaining source connectivity component and a multi-image
template.

In Step v, we reduce the components on the source servers
to the levels of depth included in multi-image templates, i.e.,
typically installs and services. If there are inner dependencies,
they are first lifted to the next-outer remaining level, e.g.,
a dependency on a database becomes a dependency on the
surrounding instance, and a dependency from a URL becomes
a dependency from the surrounding web server. Multiple
resulting dependencies between the same two components
are reduced to one. (Or if dependencies were labeled, only
dependencies with the same labels would be reduced to one.)

In Step vi, we exclude connectivity components whose size,
i.e., the number of servers in them, is different from the size
of each multi-image template.

Figure 5 shows the result of applying the preparation phase
to the source system from Figure 2. As matching criteria for
Step i, we declared that network file system (NFS) servers
and file systems are infrastructure, and that external incoming
dependencies on web server URLs are client connections and
thus irrelevant (as they are not shown in the multi-image
templates, but will obviously occur). ServerX is excluded in
Step ii because there are no Queue installs in the multi-image
templates. Thus in Step iv also its connectivity component with
serversP andR is excluded. The objects in the application
servers and DB installs disappear in Step v because the multi-
image templates only prescribe installs and services. The
dependencies of these inner components, e.g., those between

6

Module 1 and DBa, and Module 2 and DBb, have been lifted
to the containing services. The result is Figure 5.

Server S

Web
ser-
ver

APS install

Server T

DB install

DB instanceApp server A

App server B
Server U

DB install

DB instance

Fig. 5. Example source system after preparation phase.

Several of these preparation steps are not strictly needed.
However, they are efficient, and in practice they significantly
reduce the problem size for the following more complex
steps. They also give simple human-understandable reasons
for non-migratability of certain source systems. Furthermore,
they can be used in a situation that may initially be most
common, where a set of multi-image templates and single-
image templates is chosen specifically for the standardization
of a given source enterprise environment.

C. Image Matching Phase (2b)

In Phase 2b, we start matching each multi-image template
M from the catalog with each source connectivity component
SC that remains after the preparation phase. LetM consist of
imagesI1, . . . , In, and letSC consist of serversS1, . . . , Sn.
In this phase, we determine which pairs of images match; in
Phase 2c we investigate the dependencies.

Hence fori, k = 1, . . . , n we want to determine whether
Ii and Sk have the same included components. If yes, we
determine the setΦ of possible mappings between the nodes
of Ii andSk. This is a tree isomorphism problem (because the
inclusion relation of servers, install, services etc. yields a tree
per image or server) with typically very few nodes. Methods to
solve it include term unification with commutative operators.
We present pseudo-code of such an algorithm, which we call
treematch.

It is recursive, takes two tree nodes as input, and outputs
“false” or (“true”, Φ) whereΦ is the set of possible mappings
between the trees.

Initially, we call treematch(Ii, Sk), i.e., with the images
themselves as tree roots. A definition oftreematch(c, d) for
arbitrary tree nodesc, d is given as follows:

• Let l, m be the number of children ofc andd. If l 6= m,
return “false”. If l = m = 0, return (“true”,{ǫ}), whereǫ
denotes an empty mapping. Else initializeΦ to the empty
set.

• Explore each bijective mappingφ(c1, . . . , cm) =
(d1, . . . , dm) from the children of image componentc
to the children of source componentd wheretype(ci) ≥
type(di) for all i:

– For i = 1, ...,m call treematch(ci, di).
– If all m calls return (“true”,Φi), augment the current

setΦ by the following set of mappings:

{φ ∪ φ1 ∪ . . . ∪ φm | ∀i = 1, . . . ,m : φi ∈ Φi}.

• If Φ is still empty after the previous step, return “false”,
else return (“true”,Φ).

Note thattreematch, by itself, can be used for single-image
matching as well as multi-image matching.

D. Dependency Matching (2c)

In the dependency matching phase, we take each possible
node matching and determine whether the dependencies also
match (i.e., are isomorphic). LetM andSC be as above.

We investigate every bijective mappingψ : {I1, . . . , In}
→ {S1, . . . , Sn} wheretreematch(Ii, ψ(Ii)) returned (“true”,
Φi) for all i. In other words,ψ is a potential mapping of the
servers after Phase 2b. Typically, there will be at most one
such mapping for each pair ofM andSC . The maximum of
n! mappingsψ can only occur if all the images in the multi-
image template have the same components. Even this is not a
problem for a smalln like 3, 4, or 5.

Givenψ, we consider each combinationφ1 ∈ Φ1, . . ., φn ∈
Φn of detailed image mappings, and let

λ = ψ ∪ φ1 ∪ . . . ∪ φn

denote the overall mapping of all the nodes of all the images
in M and SC . Typically, there will also be only one such
mappingλ.

Next we determine whether the dependencies configured
in the multi-image template are also present between the
corresponding source components; we label such source de-
pendencies as “used”. For each overall mappingλ:

• Label all the dependencies in the source connectivity
componentSC as “unused”.

• For each dependency(c, d) of the multi-image template
M (where c, d are components of this multi-image
template):

– Check whether a dependency(λ(c), λ(d)) exists in
the source connectivity componentSC and is “un-
used”. (If it exists, it is automatically “unused” as
long as we have single dependencies between each
pair of components.)

– If no, mappingλ is not a match, and we abort it.
– If yes, mark(λ(c), λ(d)) as “used”.

• If the loop was not aborted, check whether all the
dependencies of the source connectivity component are
“used”. If yes, the multi-image templateM and the
source connectivity componentSC are a match with the
overall mappingλ, else not.

E. Later Phases for Precise Matching

Phase 3, the selection of an overall mapping, is relatively
simple in the case of precise matching. As entire connectivity
components of the source system have to precisely match
a multi-image template, the only possible ambiguity is if
a source connectivity component matches two structurally
identical multi-image templates with slightly different node
details, according to the chosen matching criteria for nodes.
E.g., if there are multi-image templates with two versions of a

7

database product, and we use loose matching of versions, there
may be two matches for one source connectivity component
SC . In such cases, we can compute modification costs for
choosing a multi-image templateM with node mappingλ
from Phases 2b and 2c as

cost(SC ,M) =
∑

n∈M

mod cost(λ(n), n),

where n are nodes in the multi-image templateM and
mod cost(x, y) denotes the costs for modifying nodex into
nodey. We may simply compare the costs for the possible
templatesM for eachSC individually. However, if we are
still designing a good multi-image template catalog in parallel
with analyzing the source system, we may add steady-state
management costs for each multi-image template we need,
say a constant cost. Then the costs to be optimized over all
connectivity componentsSC i, i = 1, . . . , σ, with possible
matchesMi become

σ∑

i=1

cost(SC i,Mi) + |{Mi | i = 1, . . . , σ}|,

where| · | denotes the size of a set.
In the modification planning and migration (Phase 4 and 5),

the configurations of source software components that were
matched to a multi-image template are aligned with the config-
urations of the corresponding components of the multi-image
template. The matching criteria used before should ensure that
this is feasible. In particular, dependencies may be configured
differently in the source systems than on the images in the
templates, e.g., some addresses may be embedded in actual
code, while the application servers in the image library would
have their dependencies configured in XML files according
to Java Enterprise Edition standards. To fully benefit from
the multi-image templates, such cases should be found and
remediated, e.g., as initiated for Java code in [12].

V. OTHER MATCHING VARIANTS

In this section, we describe variants of the preceding algo-
rithm.

A. Precise Matching with Parameterized Templates

As a second algorithm refining our overall method, we
consider precise matching with parameterized multi-image
templates, such asM ′ andM ′′ in Figure 1. The preparation
phase is as for non-parametrized multi-image templates, except
that the size-matching step vi is skipped. Then the following
steps are performed for node matching and dependency match-
ing. For each multi-image templateM in the catalog with
imagesI1, . . . , In, and each remaining source connectivity
componentSC with serversS1, . . . , Sm with m ≥ n:

• For i = 1, . . . , n; k = 1, . . . ,m determine whetherIi
and Sk have the same included components, and the
set Φ of possible mappings, with the same algorithm
treematch(Ii, Sk) as in the case with non-parameterized
multi-image templates. (Recall that we currently only

parametrize the number of entire images, not compo-
nents on images; otherwise we would have to modify
treematch too.)

• For each partitioning (S1,1, . . . , S1,m1
), . . . ,

(Sn,1, . . . , Sn,mn
) of S1, . . . , Sm such that each

Si,k matchesIi:
– Construct the corresponding expanded multi-image

template, i.e., withmi copies of each imageIi, and
all the corresponding dependencies.

– Match the dependencies as in the non-parametrized
case.

This should yield zero or one matches if the parameter-
ized multi-image template was defined so that no two
separately listed images have the same component trees.

B. Less Strict Matching Variants

Several less strict matching criteria for Phases 2b and 2c
are conceivable, with increased work needed in the actual
migration.

Unused dependenciesin the multi-image templates may
be allowed. This means performing the dependency matching
with λ−1 instead ofλ and without a test whether all depen-
dencies are labeled “used” at the end. This variant makes no
real sense for multi-image templates with very few depen-
dencies as in our examplesM , M ′ andM ′′: If any of these
dependencies is not used, one could better use two templates
with fewer images each. In those cases our preparation phase
would already exlude the potential mappings due to different
sizes of the connectivity components. But this variant might
make sense if there were multiple preconfigured dependencies
between certain pairs of images. In the actual migration, the
unused dependency configurations on the instantiations of the
multi-image templates may be retained for potential futureuse,
or deleted.

Unused componentsin the multi-image template may also
be permitted. We may have a set of source servers that
are a subset of the components of a multi-image template,
e.g., a set like multi-image templateM ′ but without the web
proxy. Using multi-image templateM ′ here may be considered
a waste of components and may not be allowed (i.e., in
most cases precise matching will be preferred regarding this
aspect), but the method can be extended to accept the unused
components. The method makes more sense than with the
sample templates from Figure 1 if the templates include
images with several major software components each, or if
one starts also matching on minor software components such
as compilers and infrastructure management software.

Additional dependencies on the source systemsmay be
permitted. A typical multi-image template will not have dan-
gling dependencies (except possibly to infrastructure servers
as introduced above), i.e., all dependencies are only amongthe
images of the multi-image template. One goal of the simplified
management via multi-image templates is not to introduce
additional dependencies that are not known in the templates.
Therefore, we consider the dependency mapping described
above, where every dependency of the source system must be

8

“used” at the end, preferable. However, this may be relaxed
to permit a certain number of additional dependencies.

Server stacking or unstackingmay be permitted. We may
permit that software installations that are on different servers
in the source system are stacked onto the same image in the
target system, or vice versa. In Figure 2, we may permit
that the web server from serverP and the application server
install from serverR are moved onto the same image, thus
making the union of these two servers similar to imageI
in multi-image templateM . Or we may permit that the web
server and the application server install from serverS are split,
thus making that part similar to imagesI ′ andK ′ of multi-
image templateM ′. In this case, the algorithmtreematch can
remain the same, but it is now called on installs, not on images.
Similarly, the graph matching remains the same, but only for
installs and inner components. The mapping of installs to
images may be arbitrary, or may only allow that installs from
different servers are joined, but not that installs from oneserver
are separated, or vice versa. Joining is typically easier than
separating (because of the corresponding application dataand
helper software), but as we will see in the enterprise example
below, certain levels of unstacking may be needed because
current servers tend to contain more components than one is
likely to want in the cloud images.

Software stacking or unstackingmay also be permitted,
i.e., we may permit that software components of the same
type, which were so far inside different outer components,
can be stacked together into one, or vice versa. In Figure 2,
software stacking may allow that we move Module 3 into
application serverA, omit application serverB, and thus
make this application server install identical to those in multi-
image templatesM , M ′, and M ′′. If this is permitted, it
may be conditioned on a node configuration compatibility
test as described above. Unstacking may permit separation
of software components that were previously together. For
instance, we might move application serversA andB into
different installs, and move URLw onto a different web server.
Then we can splitw andB off onto a new serverS′ (only for
the matching algorithms, not onto a real physical server). We
then get two independent connectivity componentsS, T and
S′, U that we can each map to multi-image templateM .

Generally, in variants where the matching is not precise,
the matching step may score different matchings according
to the differences between source systems and multi-image
templates, and possibly give cost estimates for each change.
These scores or cost estimates are taken into account in
selecting the overall mapping in Phase 3.

VI. ENTERPRISEEXAMPLE

In the following, we analyze an actual enterprise environ-
ment. The discovered source data are real, but the real use
case was not yet a migration to a cloud with multi-image
templates. Hence we analyze what a suitable set of multi-
image templates for this environment could be, and what
coverage we obtain by using different matching criteria. Thus
we use our matching algorithms with more free variables:

In each step, the relevant characteristics of the multi-image
templates are initially unknown. We simultaneously choose
these characteristics and the matching criteria, aiming ata
good tradeoff between degree of standardization and how
many source servers pass this matching step.

The environment contains about 1600 servers. As operating
system (OS), more than 1000 run AIX, 200 Linux, and 300
Windows, plus a few outliers. Note that this is not an
example of an entire enterprise, but already an environment
preselected for a potential transformation. This allowed us to
gather detailed software data. We used the Galapagos tool [11]
for the discovery.

As Step i of the preparation phase, we excluded, e.g.,
compilers, interpreters and IT management software from our
discovery results. The remaining key middleware installations
are shown Table I. 1204 of the servers contain at least one
such key middleware installation. We anonymized the actual
products by naming only classes, with numbers for differ-
ent products. E.g., DBMS1 means a first database product,
DBMS2 a second one, WEB means web servers, PROX web
proxy servers, APS application servers, MESS messaging
software (queues), CRM customer relationship management
systems, COLL collaboration products, and SCHED workload
schedulers. The numbers per OS do not quite add up because
of the few outlier OSes.

Software #hosts #installs #AIX #Linux #Windows
PROX1 7 12 7 0 0
WEB1 304 465 268 29 6
WEB2 86 86 0 0 86
APS1 289 324 238 40 8
APS2 3 3 0 1 2
DBMS1 818 1547 633 53 129
DBMS2 110 110 5 92 13
DBMS3 68 91 0 0 68
DBMS4 45 60 1 26 16
DBMS5 28 28 1 27 0
MESS1 150 150 132 17 1
MESS2 3 3 0 0 3
COLL1 214 310 170 7 36
CRM1 31 31 31 0 0
SCHED1 78 83 74 0 4

TABLE I
SOFTWARE INSTALLS IN OUR ENVIRONMENT

As to the choice of software for the multi-image tem-
plates, there is a clear dominance of WEB1, APS1, DBMS1,
MESS1, and COLL1 in this environment. They are particu-
larly dominant on the AIX servers, while the Linux servers
in particular contain a variety of other databases, and the
Windows servers also contain a lot of Windows-specific web
servers and databases. Given the dominance of APS1 as an
application server, almost all the 3-tier structures, which we
mainly want to migrate to instances of multi-image cloud
templates, contain APS1 as their middle layer. Slightly looking
ahead in the algorithm, we analyzed the dependencies of APS1
components. They show that APS1 is predominantly used with
WEB1, DBMS1, and MESS1. Hence for this example, we
decide that our multi-image template library focusses on these
four software types.

9

In Step ii, we use a loose matching criterion that allows all
versions of these software types. This criterion is reasonable
as an enterprise that standardizes on multi-image templates
is likely to also standardize on the newest software versions.
Upgrades (unless from very old versions) are relatively cheap
compared with other modifications we have discussed. Thus
Step ii excludes all servers that contain any major software
install outside these four, or none of the major software types
at all. We ignored the OS types in this step, assuming that
templates for the 3 major OS versions would be made and
upgrades would be allowed. OS upgrades are significant work,
but given the templates, we have to perform per-application
migration rather than simple physical-to-virtual transformation
anyway. This leaves us with 683 servers that are potential can-
didates for migration to such a multi-image template library.

Step iii did not further restrict this, as no network-based
discovery was run in this environment. This is not a choice
we recommend.

In Step iv we encountered very many exclusions. This
surprised us as we had performed the initial test that ap-
plication servers of type APS1 are mainly used with the
other software types we chose, and because this environment
was chosen for a transformation project where one should
expect that multi-component applications would be treated
as a whole. Nevertheless, many of the remaining internal
connectivity components (i.e., if one does not count dangling
dependencies) have dangling dependencies, i.e., connections
to servers that contain other software or that were not scanned
so that one cannot decide about their suitability for a multi-
image template. We see this for all our types of connections,
but in particular for connections from database aliases to
real databases. Hence in this enterprise IT environment, real
database servers often seem outside the subsets of servers
where discovery is performed at the same time. In classical
types of migrations of business applications, this is indeed less
of a problem, because outgoing dependencies to servers that
are not currently migrated typically do not require reconfigura-
tion on either side. If real migration to multi-image templates
were considered for this environment, one should extend the
discovery recursively to connected servers. Else one would
need to keep the actual database servers off the multi-image
templates, but that contradicts the idea of preconfiguring all
the important dependencies on the template images.

As a matter of interest, we show the sizes of the internal
connectivity components of the 683 candidate servers in
Table 2.

Size 1 2 3 4 5 6 7 9 13 20 22 31 82
Count 381 13 13 6 2 2 2 1 1 1 1 1 1

TABLE II
CONNECTIVITY COMPONENT SIZES AND COUNTS AMONG SERVERS WITH

ONLY THE SOFTWARE CHOSEN FOR TEMPLATES.

However, after Step iv we only found ten truely independent
connectivity components, five of size 2 and five of size 3.

We studied their reduced version according to Step v. In
principle, we are now carrying out Phases 2b and 2c, image
and dependency matching, with the template structures as free
variables. Given this small set, it amounted to analyzing the 10
given graphs for similarities. A few only have a database and
one or two remote versions of it. The rest are all different. We
describe those here as samples of how even small structures
of 3-tier software types can vary in a real enterprise.

The simplest two-server structure is one server with APS1
and a remote DBMS1, and the corresponding DBMS1 server.
Another is two servers, each with a connected 3-tier structure
of WEB1, APS1, and DBMS1, where the two web servers
interact in both directions, see Figure 6 left. The internal
structure of the two application servers and the two database
servers is similar, but with different data; they do indeed
seem to belong together. Another structure is two servers with
WEB1 and APS1 each, and with one-directional communica-
tion between the two web servers.

WEB1 APS1 DBMS1

DBMS1APS1WEB1

WEB1 APS1

APS1WEB1

DBMS1

Fig. 6. Two of the real source connectivity components.

The first 3-server structure has two servers with WEB1
and APS1 each that seem to be replica, both accessing the
same DBMS1 on a third server, see Figure 6 right. The next
structure contains one server with WEB1, APS1, and DBMS1,
and two other servers with remote database definitions to two
different databases on the first server. The last one has two
APS1 servers, each accessing a different database in the same
service on a third server, and one of the first two servers also
has a remote database definition to yet another database on
the third server. The two APS1 servers have similar modules,
but one contains additional management modules.

As this was a very small sample, we also show some
statistics over larger server sets from earlier steps that may be
useful to take into account in designing multi-image template
sets, or in research and development of efficient methods for
complex migrations.

The sum of the column #installs in Table I is 3304, i.e.,
on average 2.75 major software installs per server. Hence one
either needs to consider template images with multiple major
software types too, or, to reduce the image sprawl, explore un-
stacking options to obtain simpler and fewer templates. Among
the 683 candidate servers after Step ii, out of the 15 possible
combinations of the four software types on the images, only
one does not occur (APS1+MESS1). The distribution is 311
servers with 1 software type, 182 with two, 105 with 3, and
85 with 4. Hence if we decide on template images with only 1
main software type, we almost halve our candidates, or need
unstacking. Else we get quite a variety of individual images
even among just these 4 software types.

We also saw a significant number of servers with several
installs of the same software. A first conjecture may be that

10

they are successive product versions and the older ones may
no longer have services running. For the former, deletion may
be helpful for standardization, but this can typically not be
decided automatically, but needs validation with server owners
and business application owners, as there may be cases where
services are only instantiated under certain conditions, even
though one tends to think of production environments as
having their 3-tier services constantly running. Actually, for
about 1/3 of our installs we found no service.

VII. R ELATED WORK

Clouds and their potential benefits are described, e.g., in [1,
3, 15]. We assume that readers are familiar with commercial
offerings. Migration of existing business applications into
clouds, however, is not yet common in large enterprises.
Typically large enterprises use clouds for development andtest
environments where content is newly assembled on a cloud
image after deployment, or in a few cases for applications
that are new or have to be reprogrammed anyway.

Multi-image templates have initially been proposed as a
software deployment mechanism in [2, 7, 8], without actual
prebuilt images in an image library. The use of multi-image
templates in clouds has been specifically addressed in [5].
This means the preparation of actual groups of virtual images
according to the templates, and the use of deployment scripts
to adapt the communication setups among the images to actual
addresses when they are instantiated on actual servers.

Migration of business applications is a serious topic in
industry, but rarely published. Classic use cases are hardware
refresh, server consolidation, operating system upgrades, soft-
ware upgrades, software consolidation (e.g., vendor changes)
and software stacking (e.g., multiple databases into a database
farm). All this is done on a larger scale than, e.g., SOA
transformation or business process transformation. An early
industrial white paper is [16]; a more recent overview is [18].
Configuration migration and changes are addressed in [13,
17]. An application of such techniques to clouds is described
in [20]. This kind of automation does not enable any significant
changes yet. Hence matching of existing stuctures with very
similar cloud templates, as we investigate it, is importantfor
finding candidates for cost-effective migration.

Placement of virtual machines on servers is addressed
in [14, 19]; with the advent of clouds with live migration [6]
this is evolving from a migration topic into a cloud-internal
management topic. These works are about the hardware con-
solidation aspects of virtualization, while ours is about the
software standardization aspect. A work on network aspects
of cloud migration is [10]. It considers network and firewall
settings if not all servers are migrated to a cloud. It assumes
pure P2V (physical-to-virtual) transformation without software
standardization and thus without any matching with given
templates.

A start into analyzing servers for migratability to standard
images was made in [9]. It considers single images and installs
only, and thus no tree or graph matching. Other novel features
in our work are the variable matching criteria, the optimization

of the selection of the template set, and a real enterprise
example. We consider real examples very important; e.g., they
made the assumption that each software type occurs at most
once on each source server, which we found to be often
violated.

VIII. C ONCLUSIONS

Standardization of virtual images via clouds is considereda
key factor in reducing IT management cost, the dominant cost
of current IT. Virtualization is a key enabler of this option,
but, if not used carefully, can also cause the opposite effect, as
image sprawl may increase overall IT management costs. As
most business applications need more than one image, there
are efforts to provide multi-image templates in catalogs and
actual multi-image structures ready for deployment in clouds.

We have provided a framework for planning how to migrate
existing business applications to such clouds, as this is the only
way of gaining wide adoption and significantly decreasing
real enterprise costs in a reasonable period of time. We have
presented matching criteria that enable a tradeoff between
the difficulty of migration and coverage, i.e., how much of
the existing software and data can be migrated. We have
seen in an enterprise environment with 1600 servers that the
migration will not be trivial, because the current structures
are heterogeneous and complex. In particular, we have seen
that options to unstack currently co-located software willbe
important. The complexity of the example supports the overall
hypothesis that large gains can be obtained if standardization
to a cloud with multi-image templates is actually performed.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing.Commununications of the ACM (CACM), 53(4):50–58,
2010.

[2] W. Arnold, T. Eilam, M. H. Kalantar, A. V. Konstantinou, and A. Totok.
Automatic realization of soa deployment patterns in distributed environ-
ments. InProc. 6th Intern. Conf. Service-Oriented Computing (ICSOC),
LNCS 5364, pages 162–179, 2008.

[3] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan &
Claypool Publishers, 2009.

[4] A. Caracas, D. Dechouniotis, S. Fussenegger, D. Gantenbein, and
A. Kind. Mining semantic relations using NetFlow. In3rd IEEE/IFIP
Int. Workshop on Business-Driven IT Management (BDIM), pages 110–
111, 2008.

[5] T. C. Chieu, A. Mohindra, A. Karve, and A. Segal. Solution-based
deployment of complex application services on a cloud. InIEEE Intern.
Conf. Service Operations, Logistics and Informatics (SOLI), pages 282–
287, 2010.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. InProc. 2nd
Symposium on Networked Systems Design and Implementation (NSDI).
USENIX, 2005.

[7] T. Eilam, M. H. Kalantar, A. V. Konstantinou, and G. Pacifici. Reducing
the complexity of application deployment in large data centers. In
Integrated Network Management (IM), pages 221–234, 2005.

[8] T. Eilam, M. H. Kalantar, A. V. Konstantinou, G. Pacifici,J. Pershing,
and A. Agrawal. Managing the configuration complexity of distributed
applications in internet data centers.IEEE Communications Magazine,
44(3):166–177, 2006.

[9] R. Filepp, L. Shwartz, C. Ward, R. Kearney, K. Cheng, C. Young,
and Y. Ghosheh. Image selection as a service for cloud computing
environments. InProc. 8th Intern. Conf. Service-Oriented Computing
(ICSOC), LNCS 6470, to appear, 2010.

11

[10] M. Y. Hajjat, X. Sun, Y.-W. E. Sung, D. A. Maltz, S. G. Rao,
K. Sripanidkulchai, and M. Tawarmalani. Cloudward bound: planning
for beneficial migration of enterprise applications to the cloud. In Proc.
of ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 243–254,
2010.

[11] N. Joukov, B. Pfitzmann, H. V. Ramasamy, and M. V. Devarakonda.
Application-storage discovery. In3rd Annual Haifa Experimental
Systems Conference (SYSTOR’10), Haifa, Israel, May 2010. ACM.

[12] N. Joukov, V. Tarasov, J. Ossher, B. Pfitzmann, S. Chicherin, M. Pistoia,
and T. Tateishi. Static discovery and remediation of code-embedded
resource dependencies. In12th IFIP/IEEE Intern. Symp. on Integrated
Network Management (IM’2011), to appear, 2011.

[13] Q. Ma, Y. Li, K. Sun, and L. Liu. Model-based dependency management
for migrating service hosting environment. InProc. IEEE Intern. Conf.
on Services Computing (SCC 2007), pages 356–363, 2007.

[14] S. Mehta and A. Neogi. ReCon: A tool to recommend dynamicserver
consolidation in multi-cluster data centers. InIEEE/IFIP Network Op-
erations and Management Symposium (NOMS), pages 363–370, 2008.

[15] D. Owens. Securing elasticity in the cloud.Commununications of the
ACM (CACM), 53(6):46–51, 2010.

[16] Sector7. An application centric view of server consolidation and IT
optimization. Sector7, 2003. http://www.sector7.com/products and
services/openvms/server-consolidation-it-optimization-whitepaper.pdf.

[17] M. Sethi, K. Kannan, N. Sachindran, and M. Gupta. Rapid deployment
of SOA solutions via automated image replication and reconfiguration.
In Proc. IEEE Intern. Conf. on Services Computing (SCC 2008),
volume 1, pages 155–162, 2008.

[18] M. Torchiano, M. D. Penta, F. Ricca, A. D. Lucia, and F. Lanubile.
Software migration projects in Italian industry: Preliminary results from
a state of the practice survey. In23rd IEEE/ACM Intern. Conf.
on Automated Software Engineering - Workshop Proceedings (ASE
Workshops), pages 35–42, 2008.

[19] A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and migration
cost aware application placement in virtualized systems. In Middleware
2008, pages 243–264, 2008.

[20] C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp,
R. Kearney, B. Peterson, L. Shwartz, and C. C. Young. Workload
migration into clouds – challenges, experiences, opportunities. In IEEE
3rd Intern. Conf. on Cloud Computing, pages 164–171, 2010.

[21] X. Zheng, M. Zhan, Z. M. Mao, and P. Bahl. Automating network
application dependency discovery: Experiences, limitations, and new
solutions. InProc. 8th Symp. on Operating Systems Design and Im-
plementation (OSDI 2008), pages 117–130, San Diego, CA, December
2008.

12

