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ABSTRACT

Inter-session variability compensation techniques irakperecog-
nition systems are typically crucial for achieving a saisbry per-
formance. General techniques for inter-session vartglibmpen-
sation may not capture session and channel informatiorifgpteca
given conversational side. This paper investigates threthaads for
estimating a conversational-side-specific projectionffine@trans-
form to compensate for session and channel effects. In tte\fie
estimate the projection based on an estimate of the witlhissco-
variance matrix from the statistics of a conversationdésipecific
subset of the development data. In the second, we use andiiscri
native objective function to estimate the projection paeters. We
present an iterative algorithm similar to the expectaticaximiza-
tion (EM) algorithm to estimate the projection parametetsciv
maximize this objective function. An affine transform of thieser-
vation vectors of each conversational side is estimatetjusiaxi-
mum likelihood estimation in the third method. The maximuie-
lihood objective function is estimated on a selected sub&¢he
training data. We present several experiments that showthese
three techniques perform compared to our baseline systetredn-
terview tasks of the NIST 2008 and the NIST 2010 speaker récog
tion evaluations. The best method of these techniques gipesfor-
mance improvement of up to 20% relative compared to the in@sel
system.

1. INTRODUCTION
Improved user security in speech-driven telephony apidica can
be achieved with automatic speaker verification systemgrdoia-
tion in the performance of these systems due to inter-sesaitabil-
ity has been one of the main challenges to the deploymentaikep
verification technologies. We investigate how integratingre in-
formation about the development and the test sets into tbaksp
recognition system may improve its performance and rolesstn

In this work, we propose three approaches for inter-session
ability compensation. In the first approach, the conversatiside-
specific projection of the supervector representation ohearoll-
ment and verification conversational side is constructediging
a within-class covariance matrix estimated using a coaviensal-
side-specific subset of the development data. This subsetdsted
based on a measure of similarity between the developmeiinset
the enrollment or the verification conversational side.s®gfently,
this method is called the side-specific within-class carasée pro-
jection (SWCCP) approach. The approach is motivated by she a
sumption that many of the sources of inter-session and-gpeaker
variability have similar values across conversationatsigith high
dot-product scores.

In the second approach, we examine a discriminative obgcti

function for estimating the projection parameters. Marseder ver-
ification systems use some variations of principal compbaeal-
ysis, probabilistic principal component analysis, nucgattribute
projection, and linear discriminant analysis to achievaulspace
representation of the conversational sides and compefwatder-
session variability. The popularity of these techniqueatigbuted
to the existence of efficient algorithms to implement theothsas
eigen-value decomposition. Discriminative training oéfan alter-
native which optimizes an estimate of the training data gattmn
error. Discriminative training has been used in SVM-bagezhker
recognition systems [1] and in training the UBM paramet@tsapd
provided noteworthy improvements compared to the MLE GMMs.
In this work, we integrate information about the speakerthefde-
velopment set into the objective functions used for trajriime pro-
jection parameters discriminatively and describe an effiicterative
algorithm to estimate the projection parameters.

In the third approach, an affine transform of the observatem
tors of each enrollment and verification conversationa¢ s$desti-
mated. The parameters of the affine transform are estimaied u
maximum likelihood (ML) estimation. The ML objective funah is
estimated for each test side on a subset of the training déeated
based on a similarity measure with respect to that side.

In the next section, we describe the main architecture of the
speaker verification system used in this work. In Sectione&fav-
mulate the problem and describe our objective criterialierthree
approaches. The experiments performed to evaluate therpenfice
of the systems are described in Section 4. Finally, Sectimomnfains
a discussion of the results and future research.

2. THE SPEAKER VERIFICATION SYSTEM

In this work, the speaker recognition systems are basedeousi of
GMM supervectors. These GMM supervectors are formed fram th
concatenation of the MAP [3] adapted means that are norethéiz-
cording to a mapping proposed in [1]. Nuisance Attributgé&ution
(NAP) [1] is applied to remove supervector directions thatre-
spond to large intra-speaker variability. In all the sysfeeported
in this work, 128 nuisance directions were removed. Thegganae
directions, as per our submission in the NIST 2008 speak®gre
nition evaluation [4], correspond to the eigenvectors i largest
eigenvalues of the average within-class covariance mi&¥ixhese
supervectors are constructed as follows

_1
o = Vs (- ), (1)
T
® — [@{@5..@5} , )

wherewy, is the weight of theith Gaussian component in the GMM,

pl4ePt is the MAP adapted mean for this componguit”™ is the



universal background model (UBM) mean for this component| a
3, is the diagonal covariance matrix of théh Gaussian component
in the GMM. We use the single iteration MAP adaptation présgn
by Reynolds [3] to generate the conversational-side-fipexapted
means{.;"*""}, from the UBM means{ "™ }.

Before score normalization, the output scores of the spe&ke
ification systems can be represented by some kind of gepedali
inner product of two vectors representing the verificatiod the en-
rollment sides [1]. This can be described by the relation

s =0 'Kd,, ®)
where ®. is the supervector representing the enrollment siele,
is the supervector representing the verification sides the NAP

e Calculate a conversational-side-specific projection gisin
eigen decomposition of the weighted within-class covaxéan
matrix estimated using the data of similar training spesker

e Calculate the final dot-product scores using the projecpd r
resentation of the conversational sides.

3.3. Side-Specific discriminatively trained projection (®TP)

Estimating the projection parameters using the averagenwifass
covariance matrix does not directly target reducing thekpever-
ification errors on the training data. In this approach, we as
discriminative criterion regularized with the log-liketod objec-
tive function. The discriminative criterion reduces théueaof the

projection matrix, ands is the score corresponding to this pair of ImPoster scores corresponding to the selected subset afihing

recordings.

data. The parameters of the projection are updated usindy/alike

For all the systems reported in this work, the UBM consists ofalgorithm to maximize the regularized objective function

1024 mixture components. The UBM parameters are trained us-

ing Maximum Likelihood (ML) training [6]. Both Z-Norm and T-
Norm [7] score normalization approaches were applied sépigr
for each gender. Further details about the various systeendea

scribed in the experiments section.

3. THE THREE APPROACHES

In this section, we describe the three approaches for ceatrenal-
side-specific inter-session variability compensatiorspneed in this
paper. We start by describing the method we used for seteetin
subset of the training data to estimate the objective fondti each
of the three techniques. This is followed by a detailed dpson of
the three techniques.

3.1. Training data selection

In each of the three methods of the conversational-sideHgpmter-
session variability compensation presented here, a sufstte
training data is selected to be used for estimating the tigefunc-
tion and the parameters of the variability compensatiohriiggie.
The selection of this subset is based on how close each okits-m
bers is to the enrollment or the verification conversatigidé of
interest. This is determined based on a similarity measgueldo
the dot-product score of the supervector representatidheotfrain-
ing and the test conversational sides. We experimented laith
setting a threshold on the dot-product score to select theesiof
the training data and selecting the K-nearest-neighborseasbers
of the subset training data. Both approaches give simifalte We
report here the results based on the K-nearest-neighlgstaim.

3.2. Side-Specific within-class covariance projection (SG/CP)

In this approach, an estimate of the within-class covadanatrix is
calculated using the statistics collected from the subk#teotrain-
ing data selected as described before. The statistics aghted for
each training conversation side by a monotonically inérepRinc-
tion of the dot-product score of the training conversatiae and
the test conversation side. This approach is a conversdisie-
specific variation of our implementation of the nuisanceitaite
projection (NAP) approach.The details of the steps folldwe es-
timate the SWCCP projection for each enrollment and vetiica
conversational side are:

J
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wherelL is the log likelihood of the test conversational side data es
timated using the UBM)X > 0, A is the regularization parameter,
s; Is the jth imposter score) is the scaling parameter of the im-
poster scores, and is the number of imposter scores. The scaling
parameter is estimated on a held-out set to provide propadico
tioning of the imposter scores. In the experiments repohiee,
we used a value foA which is double the value that ensures all
the imposter scores are positive in the first iteration aricejg the
same for the remaining iterations. Also the imposter scareghe
speaker recognition scores without NAP compensation atttbwf

ZT normalization. We investigated using the NAP-compesaind
ZT-normalized scores in the objective function but we kdepdis-
cussion and the results in this work to the simpler case afesco
without NAP compensation and without ZT normalization.

We use an iterative algorithm similar to the EM algorithm to
estimate the projection parameters that maximize the tigeftinc-
tion in Equation 4. It can be shown that the update equationthé
projection parameters are
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wherev;; is the new estimate of the element of the rejected subspace
matrix in theith row and thejth column,a‘z%? is the partial deriva-
tive of the objective function with respect to tith dimension of the
projected supervector representation of the conversatsiteu, vq;
is the element of the rejected subspace matrix indtheow and the
jth column,¢4,, is thedth element of the supervector representation
of the conversational side before projection[J is the number of
conversational sides in the selected subset of the traatey

Since the dot-product score is a linear function of the mtejeé
supervector representation of the conversational sidéma&ting the
partial derivative of the discriminative portion of the ebjive func-
tion is straightforward. However, estimating the partiafidative of
the log likelihood regularization term with respect to tteneents of
the projected supervector representation involves imgthe rela-
tion in Equation 1 between the supervector representationtize

e Estimate a similarity measure with each training conversaUBM means and between the supervector representation &and th

tional side based on their dot-product score.

posterior probabilities of the UBM Gaussian componentemgia



specific observation vector. After doing that, the parteihtive of

the log likelihood term with respect to thith dimension of the pro-
jected supervector representation of the conversatigtakiscan be

written as

t=T
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wherey; is theith element of the UBM meamfi is the posterior
probability of the corresponding UBM Gaussian componewémi
thetth observation of the conversational sige

3.4. Side-Specific maximum likelihood affine transform

In this approach, an affine transform of the observationorsobf

each test conversational side is estimated using maxinkatihood

estimation. The objective function and therefore the patans of
the affine transform are estimated using a selected subitet tvhin-

ing data as described before. The affine transform parasnater
estimated using the EM algorithm by optimizing the follogyiaux-

iliary function.

QU = D377 (log Sl + (2 — 19) " Ty (2 — 11g))

g=1t=1
7

whereQ(A|\") is the auxiliary function after theth iteration,

A:[/Jq

is the set of UBM parameters after transformatighis the posterior
probability of the Gaussian componeptat timet, p4 is the mean
vector of the UBM Gaussian componeqt X, is the covariance
matrix of the UBM Gaussian componentG is the total number of
UBM Gaussian components, aidis the total number of observa-
tions.

The affine transform is applied to the feature vectors of tre ¢
versational side as

3 pe o |

z =Dy +e, (8)

wherey is the observed feature vectaris the transformed feature
vector,D is ann x n matrix,eis ann x 1 vector,n is the dimension
of the feature vector.

4. EXPERIMENTS

The three previously discussed methods to compensatecfanttr-
session variability effects were evaluated on the intentiesks of

the UBM parameters, to estimate the expected within-clasars
ance matrix over all speakers for NAP compensation, as el
gender-dependent ZT-norm score normalization.

4.1. Baseline system

The baseline speaker recognition system, following [83,tha fron-
tend of the IBM large vocabulary English telephone conuérsa
automatic speech recognition (ASR) system. The 40-direrfsia-
tures for the IBM ASR system are estimated from sequence8-of 1
dimensional perceptual linear prediction (PLP) featungsising a
linear discriminant analysis (LDA) projection, and therplyng

a maximum likelihood linear transformation (MLLT). The ase
tic model consists of 250K diagonal-covariance Gaussianpoe
nents. In the context of speaker-adaptive training, vaeatiength
normalization (VTLN) and feature-space maximum likeliddo-
ear regression (FMLLR) are used. A feature-based minimuomg@h
error (FMPE) transform is applied on top of the utterancectjc
FMLLR transforms. A single pass of MLLR adaptation is also-pe
formed. The language model is a 72K-vocabulary interpdlbtek-

off 4-gram language model. Each conversational side in bogh
training and the testing data is represented by a GMM meagdbas
supervector of dimension 40960 as described in Section@ UBM

is trained using the development set by maximum likelihostthea-
tion. The system performance was measured at two operaiintsp
namely in terms of the Equal-Error Rate (EER) and the minimum
Detection Cost Function (DCF) as defined in the evaluatian fbr
both the NIST 2008 and NIST 2010 evaluations [4].

4.2. Experimental Setup

Four systems are compared in the experiments: the basgtites
the side-specific within-class covariance projection (SYPE sys-
tem with the same structure as the baseline system, thesg@igfic
discriminatively trained projection (SDTP) with the cors&tional-
side-specific projection to compensate for inter-sesstwiability is
estimated using the discriminative criterion in Equatioradd the
side-specific maximum likelihood affine transformation (ISMT)
system which uses a conversational-side-specific affinftvem for
inter-session variability compensation as described ¢1i&@e 3.

For the SWCCP algorithm, we used the K-nearest-neighbor
method with K equal to 120 for subset selection. The contiersal
sides in the selected training data subset are then usetin@atsthe
average within-class covariance matrix. The six eigemrsatorre-
sponding to the six largest eigenvalues of the estimateuinwilass
covariance matrix form the basis for the rejected subspBoe com-
ponents of the testing conversational side of interesesponding
to this rejected subspace are then removed. This procesgdated

the core condition of the NIST 2010 and the NIST 2008 Speakefor all the enrollment and the verification conversationdes in the

Recognition Evaluations (SRE) [4] and compared to the basel
system.

evaluation data.
For the SDTP approach, we used the K-nearest-neighbor thetho

The development data set for the experiments performed owith K equal to 200 for subset selection. The conversatisiths in

the NIST 2008 evaluation consists of a combination of authonf
the NIST 2004 speaker recognition database, the Switcbbibar
Phase Il corpora, the NIST 2006 speaker recognition datglend
the NIST 2008 interview development set. The collectiontaims
13770 conversational sides: 6038 sides of male speakerg7z3&i
sides of female speakers. The total number of speakers ohetred-

the selected training data subset are then used to estineatdjec-
tive function in Equation 4 and the update equation of th¢ggotmn
parameters in Equation 5. The rank of the rejected subspatixm
is set to five. The components of the testing conversatidadel af
interest corresponding to this rejected subspace are #rmaoved.
This process is repeated for all the enrollment and the watifin

opment data is 1769 speakers: 988 female speakers and 781 mabnversational sides in the evaluation data.

speakers.
tion data, we added the NIST 2008 evaluation data to the dgvel

For experiments performed on the NIST 2010 evalua

For the SMLAT approach, the conversational sides in therai
ing data which are selected with the K-nearest-neighbohatkare

ment set. In both cases, the development set was used tatstimthen used to estimate the maximum likelihood objective tioncand



Task Description

Int-S Interview speech from the same microphone
in training and test.
Int-D Interview speech from different microphones

in training and test.

Int-NTel | Interview speech in training and normal
vocal effort telephone speech in test.
Int-NMic | Interview speech in training and normal

Table 1. Description of the interview NIST 2010 core condition

evaluation tasks reported in our experiments.

Performance
minDCF (x10%) and EER (%) (in parentheses
System Int-S Int-D Int-NTel | Tel-NMic

Baseline| 0.39 (3.4)| 0.52 (5.1)| 0.38 (4.1)| 0.45 (3.4)
SWCCP| 0.35(3.1)] 0.47 (4.9)] 0.36 (3.9)| 0.40 (3.2)
SDTP | 0.32(2.9)] 0.45(4.7)] 0.36 (3.8)| 0.41 (3.3)
SMLAT | 0.39(3.3)] 0.49 (5.0)| 0.35 (3.8)| 0.42 (3.3)

Task Description

Int-Int-All | Interview speech in training and in test.

Int-Int-S same-mic. interview speech in training and test.

—

vocal effort telephone microphone speech in test.

Int-Int-D different-mic. interview speech in training and test.

Table 3. Description of the interview NIST 2008 core condition
evaluation tasks reported in our experiments.

Performance
minDCF (x10%) and EER (%) (in parentheses)
System Int-Int-D Int-Int-S Int-Int-All

Baseline| 0.194 (4.2)| 0.029 (0.91)] 0.193 (4.1)
SWCCP | 0.162 (3.2)| 0.019 (0.64)]  0.164 (3.2)
SDTP | 0.159 (3.1)| 0.020 (0.73)]  0.163 (3.2)
SMLAT | 0.176 (3.7)| 0.021 (0.77)] 0.174 (3.7)

Table 4. The results on the NIST 2008 interview core condition tasks
comparing the baseline system with systems using coni@mgit
side-specific intersession variability compensation.

Table 2. The results on the NIST 2010 interview core condition taskssubspace of the supervector representation of the tesexsational

comparing the baseline system with systems using coni@nait
side-specific intersession variability compensation.

the update equations of the parameters of the transform affine
transform which is estimated by maximizing the ML objectivac-
tion is then applied to each feature vector of the test siflerbes-
timating the UBM-based supervector representation ofékedon-
versational side. This process is then repeated for allnhaleent
and the verification conversational sides in the evalualata.

The results are first reported on the interview tasks of the co

condition of the NIST 2010 speaker recognition evaluatibime de-
scription of these tasks is provided in Table 1. In this fiedt af

experiments, the NIST 2008 evaluation data is added to tigé or

nal set of development data. This combined developmens sesteid

to build the UBM and estimate the NAP projection of the bameli
system. As shown in Table 2, the performance of the two system
which uses the subspace removal approach outperforms beth t
baseline system and the system which uses an affine transform

all the tasks. The results in Table 2 show also that the SDEeBy

outperforms the SWCCP system on the Int-S and the Int-D tasks

not on the other tasks. The difference between the resuttedivo
approaches is mostly insignificant.

The results are then reported on the interview tasks of the co

condition of the NIST 2008 speaker recognition evaluatibime de-
scription of these tasks is provided in Table 3. As shown inld4,

the performance of the two systems which use the subspacwaém
approach outperform both the baseline system and the SMi&T s

sides. Integrating training speaker information into tls@neation

of the parameters of the rejected subspace in both casesughh

to account for this improvement. In the SMLAT approach, reati

ing the parameters of the affine transform using maximuntitiked
estimation did not provide significant improvement comparethe
baseline on most of the NIST 2010 and the NIST 2008 evaluation
tasks.
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