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ABSTRACT

Inter-session variability compensation techniques in speaker recog-
nition systems are typically crucial for achieving a satisfactory per-
formance. General techniques for inter-session variability compen-
sation may not capture session and channel information specific to a
given conversational side. This paper investigates three methods for
estimating a conversational-side-specific projection or affine trans-
form to compensate for session and channel effects. In the first, we
estimate the projection based on an estimate of the within-class co-
variance matrix from the statistics of a conversational-side-specific
subset of the development data. In the second, we use a discrimi-
native objective function to estimate the projection parameters. We
present an iterative algorithm similar to the expectation maximiza-
tion (EM) algorithm to estimate the projection parameters which
maximize this objective function. An affine transform of theobser-
vation vectors of each conversational side is estimated using maxi-
mum likelihood estimation in the third method. The maximum like-
lihood objective function is estimated on a selected subsetof the
training data. We present several experiments that show howthese
three techniques perform compared to our baseline system onthe in-
terview tasks of the NIST 2008 and the NIST 2010 speaker recogni-
tion evaluations. The best method of these techniques givesa perfor-
mance improvement of up to 20% relative compared to the baseline
system.

1. INTRODUCTION

Improved user security in speech-driven telephony applications can
be achieved with automatic speaker verification systems. Degrada-
tion in the performance of these systems due to inter-session variabil-
ity has been one of the main challenges to the deployment of speaker
verification technologies. We investigate how integratingmore in-
formation about the development and the test sets into the speaker
recognition system may improve its performance and robustness.

In this work, we propose three approaches for inter-sessionvari-
ability compensation. In the first approach, the conversational-side-
specific projection of the supervector representation of each enroll-
ment and verification conversational side is constructed byusing
a within-class covariance matrix estimated using a conversational-
side-specific subset of the development data. This subset isselected
based on a measure of similarity between the development setand
the enrollment or the verification conversational side. Subsequently,
this method is called the side-specific within-class covariance pro-
jection (SWCCP) approach. The approach is motivated by the as-
sumption that many of the sources of inter-session and intra-speaker
variability have similar values across conversational sides with high
dot-product scores.

In the second approach, we examine a discriminative objective

function for estimating the projection parameters. Many speaker ver-
ification systems use some variations of principal component anal-
ysis, probabilistic principal component analysis, nuisance attribute
projection, and linear discriminant analysis to achieve a subspace
representation of the conversational sides and compensatefor inter-
session variability. The popularity of these techniques isattributed
to the existence of efficient algorithms to implement them, such as
eigen-value decomposition. Discriminative training offers an alter-
native which optimizes an estimate of the training data recognition
error. Discriminative training has been used in SVM-based speaker
recognition systems [1] and in training the UBM parameters [2] and
provided noteworthy improvements compared to the MLE GMMs.
In this work, we integrate information about the speakers ofthe de-
velopment set into the objective functions used for training the pro-
jection parameters discriminatively and describe an efficient iterative
algorithm to estimate the projection parameters.

In the third approach, an affine transform of the observationvec-
tors of each enrollment and verification conversational side is esti-
mated. The parameters of the affine transform are estimated using
maximum likelihood (ML) estimation. The ML objective function is
estimated for each test side on a subset of the training data selected
based on a similarity measure with respect to that side.

In the next section, we describe the main architecture of the
speaker verification system used in this work. In Section 3, we for-
mulate the problem and describe our objective criteria for the three
approaches. The experiments performed to evaluate the performance
of the systems are described in Section 4. Finally, Section 5contains
a discussion of the results and future research.

2. THE SPEAKER VERIFICATION SYSTEM

In this work, the speaker recognition systems are based on the use of
GMM supervectors. These GMM supervectors are formed from the
concatenation of the MAP [3] adapted means that are normalized ac-
cording to a mapping proposed in [1]. Nuisance Attribute Projection
(NAP) [1] is applied to remove supervector directions that corre-
spond to large intra-speaker variability. In all the systems reported
in this work, 128 nuisance directions were removed. These nuisance
directions, as per our submission in the NIST 2008 speaker recog-
nition evaluation [4], correspond to the eigenvectors withthe largest
eigenvalues of the average within-class covariance matrix[5]. These
supervectors are constructed as follows
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universal background model (UBM) mean for this component, and
Σk is the diagonal covariance matrix of thekth Gaussian component
in the GMM. We use the single iteration MAP adaptation presented
by Reynolds [3] to generate the conversational-side-specific adapted
means,{µadapt

k }, from the UBM means,{µubm
k }.

Before score normalization, the output scores of the speaker ver-
ification systems can be represented by some kind of generalized
inner product of two vectors representing the verification and the en-
rollment sides [1]. This can be described by the relation

s = ΦT
e KΦv , (3)

whereΦe is the supervector representing the enrollment side,Φv

is the supervector representing the verification side,K is the NAP
projection matrix, ands is the score corresponding to this pair of
recordings.

For all the systems reported in this work, the UBM consists of
1024 mixture components. The UBM parameters are trained us-
ing Maximum Likelihood (ML) training [6]. Both Z-Norm and T-
Norm [7] score normalization approaches were applied separately
for each gender. Further details about the various systems are de-
scribed in the experiments section.

3. THE THREE APPROACHES

In this section, we describe the three approaches for conversational-
side-specific inter-session variability compensation presented in this
paper. We start by describing the method we used for selecting a
subset of the training data to estimate the objective function in each
of the three techniques. This is followed by a detailed description of
the three techniques.

3.1. Training data selection

In each of the three methods of the conversational-side-specific inter-
session variability compensation presented here, a subsetof the
training data is selected to be used for estimating the objective func-
tion and the parameters of the variability compensation technique.
The selection of this subset is based on how close each of its mem-
bers is to the enrollment or the verification conversationalside of
interest. This is determined based on a similarity measure equal to
the dot-product score of the supervector representation ofthe train-
ing and the test conversational sides. We experimented withboth
setting a threshold on the dot-product score to select the subset of
the training data and selecting the K-nearest-neighbors asmembers
of the subset training data. Both approaches give similar results. We
report here the results based on the K-nearest-neighbors algorithm.

3.2. Side-Specific within-class covariance projection (SWCCP)

In this approach, an estimate of the within-class covariance matrix is
calculated using the statistics collected from the subset of the train-
ing data selected as described before. The statistics are weighted for
each training conversation side by a monotonically increasing func-
tion of the dot-product score of the training conversation side and
the test conversation side. This approach is a conversational-side-
specific variation of our implementation of the nuisance attribute
projection (NAP) approach.The details of the steps followed to es-
timate the SWCCP projection for each enrollment and verification
conversational side are:

• Estimate a similarity measure with each training conversa-
tional side based on their dot-product score.

• Calculate a conversational-side-specific projection using an
eigen decomposition of the weighted within-class covariance
matrix estimated using the data of similar training speakers.

• Calculate the final dot-product scores using the projected rep-
resentation of the conversational sides.

3.3. Side-Specific discriminatively trained projection (SDTP)

Estimating the projection parameters using the average within-class
covariance matrix does not directly target reducing the speaker ver-
ification errors on the training data. In this approach, we use a
discriminative criterion regularized with the log-likelihood objec-
tive function. The discriminative criterion reduces the value of the
imposter scores corresponding to the selected subset of thetraining
data. The parameters of the projection are updated using an EM-like
algorithm to maximize the regularized objective function

O = −
J

X

j=1

e
bsj + λL, (4)

whereL is the log likelihood of the test conversational side data es-
timated using the UBM,λ > 0, λ is the regularization parameter,
sj is the jth imposter score,b is the scaling parameter of the im-
poster scores, andJ is the number of imposter scores. The scaling
parameter is estimated on a held-out set to provide proper condi-
tioning of the imposter scores. In the experiments reportedhere,
we used a value forλ which is double the value that ensures all
the imposter scores are positive in the first iteration and iskept the
same for the remaining iterations. Also the imposter scoresare the
speaker recognition scores without NAP compensation and without
ZT normalization. We investigated using the NAP-compensated and
ZT-normalized scores in the objective function but we keep the dis-
cussion and the results in this work to the simpler case of scores
without NAP compensation and without ZT normalization.

We use an iterative algorithm similar to the EM algorithm to
estimate the projection parameters that maximize the objective func-
tion in Equation 4. It can be shown that the update equations for the
projection parameters are
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wherev̂ij is the new estimate of the element of the rejected subspace
matrix in theith row and thejth column, ∂O

∂xiu
is the partial deriva-

tive of the objective function with respect to theith dimension of the
projected supervector representation of the conversational sideu, vdj

is the element of the rejected subspace matrix in thedth row and the
jth column,φdu is thedth element of the supervector representation
of the conversational sideu before projection,U is the number of
conversational sides in the selected subset of the trainingdata.

Since the dot-product score is a linear function of the projected
supervector representation of the conversational sides, estimating the
partial derivative of the discriminative portion of the objective func-
tion is straightforward. However, estimating the partial derivative of
the log likelihood regularization term with respect to the elements of
the projected supervector representation involves inverting the rela-
tion in Equation 1 between the supervector representation and the
UBM means and between the supervector representation and the
posterior probabilities of the UBM Gaussian components given a



specific observation vector. After doing that, the partial derivative of
the log likelihood term with respect to theith dimension of the pro-
jected supervector representation of the conversational sideu can be
written as
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whereµi is theith element of the UBM mean,γki
t is the posterior

probability of the corresponding UBM Gaussian component given
thetth observation of the conversational sideu.

3.4. Side-Specific maximum likelihood affine transform

In this approach, an affine transform of the observation vectors of
each test conversational side is estimated using maximum likelihood
estimation. The objective function and therefore the parameters of
the affine transform are estimated using a selected subset ofthe train-
ing data as described before. The affine transform parameters are
estimated using the EM algorithm by optimizing the following aux-
iliary function.
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whereQ(λ|λr) is the auxiliary function after therth iteration,

λ =
ˆ

µ1 Σ1 . . . µG ΣG

˜

is the set of UBM parameters after transformation,γ
g
t is the posterior

probability of the Gaussian componentg at timet, µg is the mean
vector of the UBM Gaussian componentg, Σg is the covariance
matrix of the UBM Gaussian componentg, G is the total number of
UBM Gaussian components, andN is the total number of observa-
tions.

The affine transform is applied to the feature vectors of the con-
versational side as

z = Dy + e, (8)

wherey is the observed feature vector,z is the transformed feature
vector,D is ann×n matrix,e is ann× 1 vector,n is the dimension
of the feature vector.

4. EXPERIMENTS

The three previously discussed methods to compensate for the inter-
session variability effects were evaluated on the interview tasks of
the core condition of the NIST 2010 and the NIST 2008 Speaker
Recognition Evaluations (SRE) [4] and compared to the baseline
system.

The development data set for the experiments performed on
the NIST 2008 evaluation consists of a combination of audio from
the NIST 2004 speaker recognition database, the Switchboard II
Phase III corpora, the NIST 2006 speaker recognition database, and
the NIST 2008 interview development set. The collection contains
13770 conversational sides: 6038 sides of male speakers and7732
sides of female speakers. The total number of speakers in thedevel-
opment data is 1769 speakers: 988 female speakers and 781 male
speakers. For experiments performed on the NIST 2010 evalua-
tion data, we added the NIST 2008 evaluation data to the develop-
ment set. In both cases, the development set was used to estimate

the UBM parameters, to estimate the expected within-class covari-
ance matrix over all speakers for NAP compensation, as well as for
gender-dependent ZT-norm score normalization.

4.1. Baseline system

The baseline speaker recognition system, following [8], has the fron-
tend of the IBM large vocabulary English telephone conversations
automatic speech recognition (ASR) system. The 40-dimension fea-
tures for the IBM ASR system are estimated from sequences of 13-
dimensional perceptual linear prediction (PLP) features by using a
linear discriminant analysis (LDA) projection, and then applying
a maximum likelihood linear transformation (MLLT). The acous-
tic model consists of 250K diagonal-covariance Gaussian compo-
nents. In the context of speaker-adaptive training, vocal tract length
normalization (VTLN) and feature-space maximum likelihood lin-
ear regression (FMLLR) are used. A feature-based minimum phone
error (FMPE) transform is applied on top of the utterance-specific
FMLLR transforms. A single pass of MLLR adaptation is also per-
formed. The language model is a 72K-vocabulary interpolated back-
off 4-gram language model. Each conversational side in boththe
training and the testing data is represented by a GMM mean based
supervector of dimension 40960 as described in Section 2. The UBM
is trained using the development set by maximum likelihood estima-
tion. The system performance was measured at two operating points,
namely in terms of the Equal-Error Rate (EER) and the minimum
Detection Cost Function (DCF) as defined in the evaluation plan for
both the NIST 2008 and NIST 2010 evaluations [4].

4.2. Experimental Setup

Four systems are compared in the experiments: the baseline system,
the side-specific within-class covariance projection (SWCCP) sys-
tem with the same structure as the baseline system, the side-specific
discriminatively trained projection (SDTP) with the conversational-
side-specific projection to compensate for inter-session variability is
estimated using the discriminative criterion in Equation 4, and the
side-specific maximum likelihood affine transformation (SMLAT)
system which uses a conversational-side-specific affine transform for
inter-session variability compensation as described in Section 3.

For the SWCCP algorithm, we used the K-nearest-neighbor
method with K equal to 120 for subset selection. The conversational
sides in the selected training data subset are then used to estimate the
average within-class covariance matrix. The six eigenvectors corre-
sponding to the six largest eigenvalues of the estimated within-class
covariance matrix form the basis for the rejected subspace.The com-
ponents of the testing conversational side of interest corresponding
to this rejected subspace are then removed. This process is repeated
for all the enrollment and the verification conversational sides in the
evaluation data.

For the SDTP approach, we used the K-nearest-neighbor method
with K equal to 200 for subset selection. The conversationalsides in
the selected training data subset are then used to estimate the objec-
tive function in Equation 4 and the update equation of the projection
parameters in Equation 5. The rank of the rejected subspace matrix
is set to five. The components of the testing conversational side of
interest corresponding to this rejected subspace are then removed.
This process is repeated for all the enrollment and the verification
conversational sides in the evaluation data.

For the SMLAT approach, the conversational sides in the train-
ing data which are selected with the K-nearest-neighbor method are
then used to estimate the maximum likelihood objective function and



Task Description
Int-S Interview speech from the same microphone

in training and test.
Int-D Interview speech from different microphones

in training and test.
Int-NTel Interview speech in training and normal

vocal effort telephone speech in test.
Int-NMic Interview speech in training and normal

vocal effort telephone microphone speech in test.

Table 1. Description of the interview NIST 2010 core condition
evaluation tasks reported in our experiments.

Performance
minDCF (x103) and EER (%) (in parentheses)

System Int-S Int-D Int-NTel Tel-NMic
Baseline 0.39 (3.4) 0.52 (5.1) 0.38 (4.1) 0.45 (3.4)
SWCCP 0.35 (3.1) 0.47 (4.9) 0.36 (3.9) 0.40 (3.2)
SDTP 0.32 (2.9) 0.45 (4.7) 0.36 (3.8) 0.41 (3.3)
SMLAT 0.39 (3.3) 0.49 (5.0) 0.35 (3.8) 0.42 (3.3)

Table 2. The results on the NIST 2010 interview core condition tasks
comparing the baseline system with systems using conversational-
side-specific intersession variability compensation.

the update equations of the parameters of the transform. Theaffine
transform which is estimated by maximizing the ML objectivefunc-
tion is then applied to each feature vector of the test side before es-
timating the UBM-based supervector representation of the test con-
versational side. This process is then repeated for all the enrollment
and the verification conversational sides in the evaluationdata.

The results are first reported on the interview tasks of the core
condition of the NIST 2010 speaker recognition evaluation.The de-
scription of these tasks is provided in Table 1. In this first set of
experiments, the NIST 2008 evaluation data is added to the origi-
nal set of development data. This combined development set is used
to build the UBM and estimate the NAP projection of the baseline
system. As shown in Table 2, the performance of the two systems
which uses the subspace removal approach outperforms both the
baseline system and the system which uses an affine transformon
all the tasks. The results in Table 2 show also that the SDTP system
outperforms the SWCCP system on the Int-S and the Int-D tasksbut
not on the other tasks. The difference between the results ofthe two
approaches is mostly insignificant.

The results are then reported on the interview tasks of the core
condition of the NIST 2008 speaker recognition evaluation.The de-
scription of these tasks is provided in Table 3. As shown in Table 4,
the performance of the two systems which use the subspace removal
approach outperform both the baseline system and the SMLAT sys-
tem. However, the results in Table 4 show also that the SMLAT
system performs slightly better compared to the results in Table 2.

5. CONCLUSIONS

The SWCCP and the SDTP systems consistently outperforms the
baseline system on the NIST 2010 and NIST 2008 interview core
condition tasks. Both systems also consistently outperforms the
SMLAT system on these evaluation tasks. In both cases, the im-
provement is achieved by removing a conversational-side-specific

Task Description
Int-Int-All Interview speech in training and in test.
Int-Int-S same-mic. interview speech in training and test.
Int-Int-D different-mic. interview speech in training and test.

Table 3. Description of the interview NIST 2008 core condition
evaluation tasks reported in our experiments.

Performance
minDCF (x103) and EER (%) (in parentheses)

System Int-Int-D Int-Int-S Int-Int-All
Baseline 0.194 (4.2) 0.029 (0.91) 0.193 (4.1)
SWCCP 0.162 (3.2) 0.019 (0.64) 0.164 (3.2)
SDTP 0.159 (3.1) 0.020 (0.73) 0.163 (3.2)
SMLAT 0.176 (3.7) 0.021 (0.77) 0.174 (3.7)

Table 4. The results on the NIST 2008 interview core condition tasks
comparing the baseline system with systems using conversational-
side-specific intersession variability compensation.

subspace of the supervector representation of the test conversational
sides. Integrating training speaker information into the estimation
of the parameters of the rejected subspace in both cases is thought
to account for this improvement. In the SMLAT approach, estimat-
ing the parameters of the affine transform using maximum likelihood
estimation did not provide significant improvement compared to the
baseline on most of the NIST 2010 and the NIST 2008 evaluation
tasks.
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