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Abstract This paper describes a practical implementation of a line-search interior-
point algorithm for large-scale nonlinear optimization. It is based on the algorithm
proposed by Curtis, Schenk, and Wächter [SIAM J. Sci. Comput., 32 (2010), pp.
3447-3475], a method that possesses global convergence guarantees to first-order
stationary points with the novel feature that inexact search direction calculations
are allowed in order to save computational expense during each iteration. The im-
plementation follows the proposed algorithm, except that additional functionality
is included to avoid the explicit computation of a normal step during every itera-
tion. It also contains further enhancements that have not been studied along with
the previous theoretical analysis. The implementation has been included in the
IPOPT software package paired with an iterative linear system solver and precon-
ditioner provided in the PARDISO software. Numerical results on a large nonlinear
optimization test set and two PDE-constrained optimization problems with con-
trol and state constraints are presented to illustrate that the implementation is
robust and efficient for large-scale applications.
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1 Introduction

The techniques described in this paper are motivated by increased interests in the
solution of large-scale nonlinear optimization problems. By large-scale, we refer
to classes of problems for which contemporary optimization techniques, including
most interior-point methods, have proved to be impractical due to large numbers
of variables/constraints and significant fill-in during the factorization of derivative
matrices. New computationally efficient strategies are needed if such large-scale
problems are to be solved realistically in practical situations.

The main purpose of this paper is to describe a practical implementation, in-
cluding enhanced algorithmic features, for the algorithm proposed and analyzed in
[19]. This algorithm addresses the challenges posed in large-scale nonlinear opti-
mization by employing iterative linear system solvers in place of direct factorization
methods when solving the large-scale linear systems involved in an interior-point
strategy. Moreover, computational flexibility is greatly increased as inexact search
direction calculations are allowed, but controlled sufficiently so that theoretical
convergence guarantees are maintained. Our experience has shown that the imple-
mentation described in this paper achieves these desirable characteristics.

A prime example of a class of problems for which our techniques may be
applicable are those where the constraints involve discretized partial differential
equations (PDEs) [6,7,12,29]. Typical methods for solving these types of problems
generally fall into the categories of nonlinear elimination [2,5,21,32,46], reduced
space [27,28,30,37,42], or full space [8,9,10,26,36] techniques. The algorithm dis-
cussed in this paper fits into the category of full-space methods, but is unique
from many previously proposed approaches in its ability to attain strong theoret-
ical convergence guarantees with great computational flexibility.

We describe our implementation in the context of the generic problem

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≥ 0,

(1.1)

where the objective f : Rn → R, equality constraints cE : Rn → Rp, and inequality
constraints cI : Rn → Rq are assumed to be sufficiently smooth (e.g., C2). If
problem (1.1) is infeasible, however, then our algorithm is designed to return an
approximate stationary point for the unconstrained problem

min
x∈Rn

1
2‖cE(x)‖22 + 1

2‖max{−cI(x), 0}‖22 (1.2)

as a certificate of infeasibility. Here, the “max” of vector quantities is to be un-
derstood component-wise. A solution to (1.2) that does not satisfy the constraints
of problem (1.1) is known as an infeasible stationary point of the optimization
problem.

While the algorithm described in this paper is similar to the one presented in
[19], we present its implementation here in much more detail. In addition, there
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are a number of notable differences. The primary difference is the strategy we
describe for switching between two potential search computation methods. As
described in §2.2, our goal in this strategy is to improve the overall efficiency of the
algorithm while still relying on the theoretical convergence guarantees provided by
the techniques developed in [19]. The other main differences include refinements
of the implemented termination tests for the iterative linear system solver and
Hessian modification strategy, as well as a new adaptive refinement strategy in
the preconditioner computation.

Notation. All norms are considered `2 unless otherwise indicated. A vector com-
posed of stacked subvectors is written in text as an ordered list of subvectors; i.e.,
by (a, b), we mean [aT bT ]T . Parenthesized superscripts (e.g., x(i)) are used to in-
dicate the component of a vector and subscripts are generally used to indicate the
current iteration number in an algorithm. We often drop function dependencies
once they are defined and, when applicable, apply iteration number information
to the function itself; i.e., by fk, we mean f(xk).

2 Algorithm Description

We motivate and describe our implemented algorithm in this section. The method
is based on the series of inexact SQP, Newton, and interior-point algorithms that
have been proposed and analyzed in [13,14,18,19], though the majority relates to
the latest enhancements in [19]. We begin by describing the basic interior-point
framework of the approach, and then discuss at length the major computational
component of the algorithm: namely, the search direction calculation. Further spec-
ifications and details of our software implementation are provided in §3 and §4.

It is important to note that, in the following discussion, we consider scaled

derivatives corresponding to the slack variables for the inequality constraints; see
γ(z;µ), A(z), and W (z, λ;µ) throughout this section. This results in scaled sets
of equations for computing the primal-dual step; i.e., while our focus will be on
linear systems for the computation of the pair (dk, δk), the algorithm will follow
a search direction d̃k where the components corresponding to the slack variables
are scaled as d̃sk = Σkd

s
k. Here, Σ is a diagonal scaling matrix that depends on

the values of the slack variables s. (See [15] for a similar use of a scaled space for
the slack variables.) The analysis in [19] uses Σ = S := diag(s), but it is easy to
see that the convergence proofs in that paper also hold for Σ(i,i) = min{1, s(i)}.
This latter option is used in our implementation as we have experienced it to work
better in practice. Following the primal-dual strategy in [45], our implementation
also maintains multipliers for the simple bounds on the slack variables. However,
for ease of exposition, we suppress discussion of these multipliers until §3.2.

2.1 Interior-Point Framework

The framework of the algorithm is a classical interior-point or barrier strategy. Let
z = (x, s) be the primal variables, where s ∈ Rq is a vector of slack variables, and
let

ϕ(z;µ) := f(x)− µ
q∑
i=1

ln s(i) and c(z) :=

[
cE(x)

cI(x)− s

]
.
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For a sequence of barrier parameters µ ↓ 0, problem (1.1) is solved through the
solution of a sequence of barrier subproblems of the form

min ϕ(z;µ), s.t. c(z) = 0. (2.1)

If f , cE , and cI are continuously differentiable, then first-order Karush-Kuhn-
Tucker (KKT) optimality conditions for (2.1) are[

γ(z;µ) +A(z)Tλ
c(z)

]
= 0 (2.2)

along with s ≥ 0, where λ ∈ Rp+q is a vector of Lagrange multipliers, e ∈ Rq is a
vector of ones,

γ(z;µ) :=

[
∇f(x)
−µS−1Σe

]
, and A(z) :=

[
∇cE(x)T 0

∇cI(x)T −Σ

]
.

In situations where (1.1) is infeasible, (2.2) has no solution, so the algorithm is
designed to transition automatically from solving (2.1) to solving (1.2), where the
latter problem has the KKT conditions

A(z)T c(z) = 0 (2.3)

along with s ≥ 0 and cI(x) − s ≤ 0. In fact, the algorithm maintains s ≥ 0
and cI(x) − s ≤ 0 during each iteration by increasing s when necessary. Thus,
convergence to a solution of the barrier subproblem (2.1) or an infeasible stationary
point of (1.1) is achieved once (2.2) or (2.3), respectively, is satisfied.

At an iterate (zk, λk), the algorithm computes a primal-dual search direc-
tion (dk, δk) satisfying appropriate conditions for guaranteeing global convergence;
see §2.2. Given such a direction, we compute the scaled search direction d̃k :=
(dxk , Σkd

s
k) along which a line search is performed. The line search involves two con-

ditions. First, to maintain positivity of the slack variables, a stepsize αmax
k ∈ (0, 1]

satisfying the fraction-to-the-boundary rule

sk + αmax
k Σkd

s
k ≥ (1− η1)sk (2.4)

is determined for a given constant η1 ∈ (0, 1). We use η1 = max{0.99, 1 − µ} in
our implementation. The algorithm then backtracks from this value to compute
αk ∈ (0, αmax

k ] yielding sufficient decrease in the penalty function

φ(z;µ, π) := ϕ(z;µ) + π‖c(z)‖, (2.5)

where π > 0 is a penalty parameter. The condition we enforce is

φ(zk + αkd̃k;µ, π) ≤ φ(zk;µ, π)− η2αk∆mk(dk;µ, π) (2.6)

where η2 ∈ (0, 1) is a given constant (we choose η2 = 10−8), and where∆mk(dk;µ, π)
is a quantity related to the directional derivative of the penalty function along the
computed search direction. We define ∆mk(dk;µ, π) in equation (2.10) in §2.2. In
the dual space, we update λk+1 ← λk + βkδk where βk is the smallest value in
[αk, 1] satisfying

‖γk +ATk λk+1‖ ≤ ‖γk +ATk (λk + δk)‖. (2.7)
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That is, we set λk+1 so that the norm of the dual feasibility vector is at least as
small as would be obtained for a unit steplength in the dual space.

Our complete interior-point framework is presented as Algorithm 1. In the
algorithm, we refer to two search direction computation variants, Algorithms 2 and
4, that are presented in §2.2. These methods include mechanisms for computing
(dk, δk) and updating the penalty parameter π. The termination criteria for the
original problem (1.1) and the barrier problem (2.1), the choice of the initial point,
and the updating rule for the barrier parameter µ are identical with those in [45].

Algorithm 1 Interior-Point Framework

1: (Initialization) Choose line search parameters η1, η2 ∈ (0, 1), an initial barrier parameter
µ > 0, and an initial penalty parameter π > 0. Initialize (x0, s0, λ0) so that the slack
variables satisfy s0 > 0 and s0 ≥ cI(x0). Set k ← 0.

2: (Tests for convergence) If convergence criteria for (1.1) are satisfied, then terminate and
return xk as an optimal solution. Else, if convergence criteria for (1.2) are satisfied and xk
is infeasible for (1.1), then terminate and return xk as an infeasible stationary point.

3: (Barrier parameter update) If convergence criteria for (2.1) are satisfied, then set µ ∈ (0, µ),
reset π > 0, and go to step 2.

4: (Search direction computation) Compute (dk, δk) and update π by Algorithm 2 or Algo-

rithm 4. Set the search direction as d̃k ← (dxk , Σkd
s
k).

5: (Line search) If d̃k = 0, then αk ← 1. Else, let αmax
k be the largest value in (0, 1] satisfying

(2.4) and let l be the smallest value in N0 such that αk ← 2−lαmax
k satisfies (2.6).

6: (Iterate update) Set zk+1 ← zk + αkd̃k, sk+1 ← max{sk+1, cI(xk+1)}, update λk+1

according to (2.7), set k ← k + 1, and go to step 3.

2.2 Search Direction Computation

The main computational component of each iteration of Algorithm 1 is the primal-
dual search direction calculation (step 4). We describe two related approaches for
computing this direction, presented as Algorithms 2 and 4 in this subsection. The
first approach is a simpler calculation, but global convergence for the overall algo-
rithm is only guaranteed with this method if an infinite subsequence of iterations
involve (scaled) constraint Jacobians {Ak} that have full row rank and singular
values bounded away from zero. Otherwise, the second approach must be employed
to ensure convergence. The two algorithms have many common features, and we
start by discussing the components present in both techniques. (In §3.1 we discuss
our implemented mechanism for having the algorithm dynamically choose between
these two approaches during each iteration of Algorithm 1.)

The search direction computation is based on Newton’s method applied to the
KKT conditions of problem (2.1). Defining the scaled Hessian matrix

W (z, λ;µ) :=

[
∇2
xxf 0
0 ΣΞΣ

]
+

p∑
i=1

λ
(i)
E

[
∇2
xxc

(i)
E 0

0 0

]
+

q∑
i=1

λ
(i)
I

[
∇2
xxc

(i)
I 0

0 0

]
, (2.8)

a Newton iteration for (2.2) is defined by the linear system[
Wk A

T
k

Ak 0

] [
dk
δk

]
= −

[
γk +ATk λk

ck

]
. (2.9)
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In (2.8), the diagonal matrix Ξ is the Hessian (approximation) for the barrier term;
see §3.2. We use second derivatives of the objective and constraint functions for the
numerical experiments reported in §4 in order to achieve a fast local convergence
rate as in Newton’s method. However, global convergence can be guaranteed by
only requiring that Wk is a uniformly bounded real symmetric matrix.

The central issue that must be confronted when applying Newton’s method
for large-scale applications is that exact solutions of (2.9) are computationally
expensive to obtain. Therefore, our major concern is how an iterative linear system
solver can be employed for solving (2.9) in such a way that inexact solutions are
allowed, yet global convergence of the algorithm is guaranteed. This issue was the
inspiration for all of the algorithms proposed in [13,14,18,19], and the approaches
described below are derived from these methods.

Algorithms 2 and 4 each outline a series of termination tests for an iterative
solver applied to (2.9) that state conditions under which an inexact solution (dk, δk)
can be considered an acceptable direction for step 4 in Algorithm 1. In the following
bullets we define the quantities that appear in these tests.

– Let the dual residual vector corresponding to the first block of equations in
(2.9) be

ρk(dk, δk) := γk +Wkdk +ATk (λk + δk).

If the linear system (2.9) is solved exactly, then this quantity is zero, but in
our tests we only require that it is sufficiently small in norm.

– Let the constraint residual vector corresponding to the second block of equa-
tions in (2.9) be

rk(dk) := ck +Akdk.

Again, if (2.9) is solved exactly, then this quantity is zero, but in our tests we
only require that it is relatively small in norm. In some cases, this is enforced
implicitly via other conditions.

– Let the overall primal-dual relative residual be

Ψk(dk, δk) :=

∥∥∥∥[ρk(dk, δk)
rk(dk)

]∥∥∥∥/∥∥∥∥[γk +ATk λk
ck

]∥∥∥∥ .
To promote fast convergence, this relative residual should be small [20]. Thus,
our implementation aims to compute steps for which this relative residual is
below a desired threshold. If the iterative linear system solver is unable to
achieve this accuracy after a given number of iterations, however, then we re-
move this restriction and are content with potentially less accurate solutions
that satisfy our remaining termination criteria. In addition, our test for trigger-
ing modifications to the Hessian matrix (to ensure descent) is only considered
if Ψk(dk, δk) is small, since otherwise unnecessary Hessian modifications may
be made based on inaccurate intermediate solutions in the iterative solver.

For convex problems, the optimization algorithm can focus exclusively on Ψk,
terminating the calculation of (dk, δk) whenever this value is below a threshold [20].
For nonconvex problems, however, the priority is to find solutions to (2.2) that
correspond to minimizers of the optimization problem and not saddle points or
maximizers. The methods developed in [13,14,18,19] therefore include additional
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conditions and procedures that aid the algorithms in converging toward minimizers
of (2.1). These additional conditions involve the following quantities.

– Let a local model of the penalty function φ(z;µ, π) at zk be

mk(d;µ, π) := ϕk + γTk d+ π‖ck +Akd‖.

The reduction in this model yielded by a given dk is

∆mk(dk;µ, π) := mk(0;µ, π)−mk(dk;µ, π)

= − γTk dk + π(‖ck‖ − ‖ck +Akdk‖).
(2.10)

It can be shown (see [19]) that this quantity yields

Dφk(d̃k;µ, π) ≤ −∆mk(dk;µ, π),

where Dφk(d̃k;µ, π) is the directional derivative of φ(z;µ, π) at zk along d̃k. To
ensure that d̃k is always a descent direction for the merit function, the termi-
nation tests require that this model reduction is sufficiently large, potentially
after an increase of π.

We are now prepared to present our first approach, given as Algorithm 2 below.
The algorithm contains three termination tests that are similar in spirit and form
to those contained in Algorithm 4 later on. The first states that a given (dk, δk) is
acceptable if it corresponds to a sufficiently accurate solution to (2.9) and yields a
sufficiently large reduction ∆mk(dk;µ, π) for the most recent value of the penalty
parameter π. Generally speaking, this condition is the one expected to be satisfied
most often in a run of Algorithm 1. The second test corresponds to situations when
the first test may not be satisfied by the current value of π, and so it includes con-
ditions under which we allow an increase in this value. Finally, the third condition
is only necessary to allow an update of the multipliers if the primal variables are
already (nearly) optimal. In [13,14,18,19], these tests are called sufficient merit
function approximation reduction termination tests (SMART tests, for short) due
to the significant role that ∆mk(dk;µ, π) plays in the theoretical behavior the algo-
rithm. For our numerical experiments, we choose J = 100, κdes = 10−3, κ = 10−2,
ε1 = 0.09, θ = 10−12µ (where µ is the current value of the barrier parameter),
ζ = 10−4, τ = 0.1, κ3 = 10−3, ε3 = 10−8, and κW = 10−2. See §3.2 for our choices
of ξ and Dk.

The assumption on the iterative linear system solver (see step 7) is that it
computes a sequence of search directions such that, in the limit, Ψk → 0. Then it
can be shown that Algorithm 2 (and Algorithm 4 below) are finite. The method
also dynamically modifies Wk during the computation to ensure descent proper-
ties of the search direction; see [14,18,19] for motivation and §3.2 for details. In
particular, we assume that Wk � 2θI after a finite number of modifications.

Our second approach, Algorithm 4, can be viewed as a replacement for Al-
gorithm 2 in situations when the constraint Jacobian may be ill-conditioned or
rank-deficient. In such cases, it is necessary to regularize the search direction com-
putation since otherwise the calculation may not be well-defined, or at best may
lead to long, unproductive search directions. Moreover, in order to guarantee global
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Algorithm 2 Inexact Newton Iteration with SMART Tests

1: (Initialization) Choose parameters J ∈ N0, κdes ∈ (0, 1), κ ∈ (0, 1), ε1 ∈ (0, 1), θ > 0,
ζ > 0, τ ∈ (0, 1), κ3 ∈ (0, 1), ε3 > 0, κW > 0, and ξ > 0. Choose a diagonal matrix
Dk � 0. Initialize j ← 1 and (dk, δk)← (0, 0).

2: (Residual test) If j ≤ J and Ψk > κdes, then go to step 7.
3: (Termination test 1) If Ψk ≤ κ and the model reduction condition

∆mk(dk;µ, π) ≥ max{ 1
2
dTkWkdk, θ‖dk‖2}+ ε1πmax{‖ck‖, ‖r(dk)‖ − ‖ck‖} (2.11)

holds, then terminate by returning (dk, δk) and the current π.
4: (Termination test 2) If the residual conditions

‖ρk(dk, δk)‖ ≤ κ‖ck‖
‖rk(dk)‖ ≤ κ‖ck‖

are satisfied and the curvature condition 1
2
dTkWkdk ≥ θ‖dk‖2 holds, then terminate by

returning (dk, δk) and π ← max{π, πt + ζ} where

πt ←
γTk dk + 1

2
dTkWkdk

(1− τ)(‖ck‖ − ‖rk(dk)‖)
.

5: (Termination test 3) If the dual displacement δk yields

‖ρk(0, δk)‖ ≤ κ3‖γk +AT
k λk‖

and the primal and dual feasibility measures satisfy

‖ck‖ ≤ ε3‖γk +AT
k λk‖,

then terminate by returning (0, δk) (i.e., reset dk ← 0) and the current π.
6: (Hessian modification) If Ψk ≤ κW and 1

2
dTkWkdk < θ‖dk‖2, then modifyWk ←Wk+ξDk,

reset j ← 1 and (dk, δk)← (0, 0), and go to step 2.
7: (Search direction update) Perform one iteration of an iterative solver on (2.9) to compute

an improved (approximate) solution (dk, δk). Increment j ← j + 1 and go to step 2.

convergence, the algorithm must avoid scenarios such as that described in a coun-
terexample to the convergence of certain interior-point algorithms [43].

Algorithm 4 performs these tasks by decomposing the primal search direction
as dk := vk + uk, where the normal component vk represents a direction toward
linearized feasibility and the tangential component uk represents a direction toward
optimality. The normal component vk is defined as an approximate solution to the
subproblem

min 1
2‖rk(v)‖2

s.t. ‖v‖ ≤ ω‖ATk ck‖
(2.12)

for some ω > 0. The trust region constraint regularizes the computation of the
normal step and controls the size of this component even when Ak loses rank.
We initially choose ω = 100 in our implementation, but have found it practically
beneficial to potentially increase this value at the end of iteration k according to
the following rule (see [18]):

ω ←

{
min{10ω, 1020} if ‖vk‖ = ω‖ATk ck‖ and αk = 1,

ω otherwise.
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This rule increases ω if the algorithm accepts a unit steplength for a step whose
normal component hits the trust region boundary, suggesting that the trust region
constraint may be impeding fast convergence.

As with the linear system (2.9), an exact solution of (2.12) is computationally
expensive to obtain. However, global convergence is guaranteed as long as vk is
feasible for problem (2.12) and satisfies the Cauchy decrease condition

‖ck‖ − ‖r(vk)‖ ≥ εv(‖ck‖ − ‖r(ᾱkv̄k)‖) (2.13)

for some constant εv ∈ (0, 1) (we choose εv = 0.1); see [18,19]. The vector v̄k :=
−ATk ck is the steepest descent direction for the objective of problem (2.12) at v = 0
and the steplength ᾱk is the solution to the one-dimensional optimization problem

min 1
2‖ck + ᾱAkv̄k‖2, s.t. ᾱ ≤ ω. (2.14)

A number of techniques have been developed and analyzed for the inexact so-
lution of large-scale instances of problem (2.12) with solutions satisfying a Cauchy
decrease condition; e.g., see the conjugate-gradient method described in [40]. In
our software, we implemented Algorithm 3 below, which is a type of inexact dog-
leg approach [34,35] and was also proposed in [19]. We begin by computing the
Cauchy point vCk := ᾱkv̄k, and then (approximately) solve the augmented system
(e.g., see [16]) [

I ATk
Ak 0

] [
vNk
δNk

]
= −

[
0
ck

]
, (2.15)

which for an inexact solution yields the residual vector

ΨNk (vNk , δ
N
k ) :=

[
ρNk (vNk , δ

N
k )

rk(vNk )

]
:=

[
vNk +ATk δ

N
k

Akv
N
k + ck

]
.

Note that an exact solution of (2.15) yields the least-norm solution of (2.12) for
ω =∞. The inexact dogleg step is then defined as a point along the line segment
between the Cauchy point and vNk that is feasible for problem (2.12) and satisfies
the Cauchy decrease condition (2.13). We tailor this approach into one that has
worked well in our tests. In particular, we consider the fraction-to-the-boundary
rule (2.4) when choosing between the Cauchy point and the inexact dogleg step.
The constants defined in the algorithm are set as κv = 10−3 and ε̄v = 10−10 in
our implementation, and the iteration limit for the linear solver in step 3 is 200.

We are now prepared to present Algorithm 4. Due to the fact that the normal
component vk is computed separately from the tangential component uk, we now
apply an iterative linear system solver to the reformulated system[

Wk A
T
k

Ak 0

] [
dk
δk

]
= −

[
γk +ATk λk
−Akvk

]
(2.16)

where the second block of equations stipulates Akdk = Akvk; i.e., progress toward
linearized feasibility is aimed to be similar to that obtained by vk. The relative
residual Ψk is redefined accordingly as

Ψk(dk, δk) :=

∥∥∥∥[ ρk(dk, δk)
−Akvk +Akdk

]∥∥∥∥/∥∥∥∥[γk +ATk λk
−Akvk

]∥∥∥∥ .
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Algorithm 3 Normal Component Iteration

1: (Initialization) Choose parameters εv ∈ (0, 1), κv ∈ (0, 1), ε̄v > 0 and ω > 0.
2: (Cauchy point computation) Set vCk = ᾱk v̄k where v̄k = −AT

k ck and ᾱk solves (2.14).
3: (Inexact augmented system solve) Apply an iterative linear system solver to (2.15) to

compute (vNk , δ
N
k ) satisfying ‖ΨN

k (vNk , δ
N
k )‖ ≤ max{κv‖ck‖, ε̄v} and ‖rk(vNk )‖ ≤ ‖rk(vCk )‖

or as the last vector computed before an iteration limit is reached.
4: (Inexact dogleg computation) Set vDk = (1 − α)vCk + αvNk where α ∈ [0, 1] is the largest

value such that vDk is feasible for (2.12). Set αC
k and αD

k as the largest values in [0, 1]

satisfying (2.4) along vCk and vDk , respectively. If

‖rk(αD
k v

D
k )‖ ≤ εv‖rk(αC

k v
C
k )‖,

then set vk ← vDk ; else, set vk ← vCk .

It is important to note that the second block of equations in (2.16) is consistent,
and so the entire system is consistent for suitable Wk. We choose the input param-
eters for Algorithm 4 to be the same as those used in Algorithm 2. The values for
the new constants are chosen to be ε2 = 0.9 and ψ = 0.1. Conditions on the dual
residual are complicated by the fact that we require information from the previous
iteration (see [19]).

3 Algorithm Details

In this section we discuss further algorithmic details and enhancements to the
methods described in §2. In particular, we describe our technique for deciding
between Algorithms 2 and 4 for each iteration during a run of Algorithm 1, expand
on our method for modifying Wk during these two algorithms, and discuss the
incorporation of a flexible penalty function.

3.1 Switching between search direction calculations

Algorithm 1 paired with Algorithm 4 constitutes an approach that is theoretically
globally convergent to first-order stationary points under common assumptions
[19]. However, as Algorithm 2 will produce viable search directions in most practi-
cal situations and, in contrast to Algorithm 4, it only requires the inexact solution
of a single linear system, it is generally advantageous to pair Algorithm 1 with
Algorithm 2 rather than with Algorithm 4. Thus, our implementation computes
search directions with Algorithm 2 and only switches to Algorithm 4 when there is
evidence that Algorithm 2 may be unable to produce a productive search direction.

Our trigger for switching between the two search direction algorithms is based
on the steplength obtained as a result of the line search. If during a given iteration
of Algorithm 1, Algorithm 2 has been employed for computing the search direction
and the line search produces a steplength below a given threshold ᾱ1, then this
may be an indication that Ak is losing rank, causing the steps to become too
large. (Of course, the short steplength may simply be due to the nonlinearity of
the problem functions themselves, but even in that case the algorithm may benefit
by employing Algorithm 4.) In such cases, we decide to employ Algorithm 4 in
the following iteration of Algorithm 1 and continue to employ it until an iteration
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Algorithm 4 Regularized Inexact Newton Iteration with SMART Tests

1: (Initialization) Choose parameters J ∈ N0, κdes ∈ (0, 1), ψ > 0, θ > 0, κ ∈ (0, 1),
ε1 ∈ (0, 1), ε2 ∈ (0, 1), ζ > 0, τ ∈ (0, 1), κ3 ∈ (0, 1), ε3 ∈ (0, 1), κW > 0, and ξ > 0.
Choose a diagonal matrix Dk � 0. Compute vk by Algorithm 3. Initialize j ← 1 and
(dk, δk)← (0, 0).

2: (Residual test) If j ≤ J and Ψk > κdes, then go to step 10.
3: (Direction decomposition) Set uk ← dk − vk.
4: (Tangential component test) If

‖uk‖ ≤ ψ‖vk‖ (2.17)

or if the inequalities

1
2
uTkWkuk ≥ θ‖uk‖2 (2.18a)

(γk +Wkvk)Tuk + 1
2
uTkWkuk ≤ 0 (2.18b)

are satisfied, then continue to step 5; otherwise, go to step 8.
5: (Dual residual test) If the dual residual condition

‖ρk(dk, δk)‖ ≤ κmin

{∥∥∥∥[γk +AT
k λk

Akvk

]∥∥∥∥ , ∥∥∥∥[γk−1 +AT
k−1λk

Ak−1vk−1

]∥∥∥∥} (2.19)

is satisfied, then continue to step 6; otherwise, go to step 8.
6: (Termination test 1) If the model reduction condition

∆mk(dk;µ, π) ≥ max{ 1
2
uTkWkuk, θ‖uk‖2}+ ε1π(‖ck‖ − ‖rk(vk)‖) (2.20)

is satisfied, then terminate by returning (dk, δk) and the current π.
7: (Termination test 2) If the linearized constraint condition

‖ck‖ − ‖rk(dk)‖ ≥ ε2(‖ck‖ − ‖rk(vk)‖) > 0

is satisfied, then terminate by returning (dk, δk) and π ← max{π, πt + ζ} where

πt ←
γTk dk + 1

2
uTkWkuk

(1− τ)(‖ck‖ − ‖rk(dk)‖)
.

8: (Termination test 3) If the dual displacement δk yields

‖ρk(0, δk)‖ ≤ κ3 min

{∥∥∥∥[γk +AT
k λk

Akvk

]∥∥∥∥ ,∥∥∥∥[γk−1 +AT
k−1λk

Ak−1vk−1

]∥∥∥∥}
and the stationarity and dual feasibility measures satisfy

‖AT
k ck‖ ≤ ε3‖γk +AT

k λk‖,

then terminate by returning (0, δk) (i.e., reset dk ← 0) and the current π.
9: (Hessian modification) If Ψk ≤ κW , but both (2.17) and (2.18a) do not hold, then modify
Wk ←Wk + ξDk, reset j ← 1 and (dk, δk)← (0, 0), and go to step 2.

10: (Search direction update) Perform one iteration of an iterative solver on (2.16) to compute
an improved (approximate) solution (dk, δk). Increment j ← j + 1 and go to step 2.

yields a steplength above ᾱ1. The motivation for this choice is that Algorithm 1
paired with Algorithm 2 is guaranteed to converge for an equality-constrained
problem (e.g., a given barrier subproblem) under common assumptions, including
that the constraint Jacobians have full row rank and their smallest singular values
are bounded away from zero. Specifically, for the analysis of Algorithm 2 in [14],
the latter assumption is used to show that the steplength αk is bounded away from



12 Frank E. Curtis et al.

zero. Thus, we use a small steplength αk as an indicator to switch to Algorithm 4.
In our implementation, we choose the threshold value to be ᾱ1 = 10−3.

We have also included a fall-back mechanism in our implementation that causes
the algorithm to switch from Algorithm 2 to Algorithm 4 during an iteration of
Algorithm 1 if the iterative linear system solver fails to produce an acceptable
search direction even after tightening tolerances for the preconditioner (see §4).

3.2 Hessian modification strategy

In the definition of the Hessian matrix Wk in (2.8), the choice Ξk = µS−2
k corre-

sponds to the so-called primal interior-point iteration. This was considered for the
global convergence analysis in [19]. However, our implementation follows the more
efficient primal-dual interior-point strategy Ξk = S−1

k Yk, where Yk = diag(yk) with
dual variables yk corresponding to the slack bounds (i.e. s ≥ 0). It is easy to see
that the analysis in [19] still holds as long as the condition

νµS−2
k � Ξk � νµS−2

k (3.1)

is satisfied for some constants ν ≥ 1 ≥ ν > 0; we choose ν = 1010 and ν = 10−10 in
our experiments. This is achieved by adjusting yk if necessary after each iteration
to ensure (3.1), as described in [45].

Our strategy for modifying the Hessian in Algorithms 2 and 4 is analogous to
the one described in [45], where a multiple of the identity is added to the unscaled

Hessian matrix. This corresponds to using

Dk =

[
I 0
0 Σ2

k

]
.

Furthermore, we choose ξ according to the strategy for choosing δw in Algorithm IC
in [45]. However, in contrast to Algorithm IC, our trigger for a modification is not
the inertia of the primal-dual system. Rather, we trigger a modification based on
the conditions described in step 6 of Algorithm 2 and step 9 of Algorithm 4. We
have also found it beneficial in our numerical experiments to trigger a modification
at the start of the search direction computation if in the previous iteration the
line search reduced αk due to the sufficient decrease condition (2.6). This leads to
somewhat shorter search directions and makes the acceptance of larger steplengths
αk more likely, often leading to a reduction in iteration count.

3.3 Flexible penalty function

An important algorithmic feature of our code is the use of a flexible penalty func-
tion [17]. This mechanism is designed to avoid a pitfall of penalty functions, namely
the potential for the algorithm to set an unnecessarily large value of the penalty
parameter and thus restricting the iterates to remain close to the feasible region.
This can lead to small steplengths and slow convergence.

The effect of the flexible penalty function on our line search is that, instead of
requiring αk to satisfy the sufficient decrease condition (2.6) for a fixed π, we only
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require that αk satisfies a sufficient decrease condition for some π in an interval
[πl, πu]. In particular, given πl ≤ πm ≤ πu, αk ∈ (0, αmax

k ] is acceptable as long as

φ(zk + αkd̃k;µ, π) ≤ φ(zk;µ, π)− η2αk∆mk(dk;µ, πm)

for some π ∈ [πl, πu].
(3.2)

Generally speaking, πl and πu can be set to relatively small and large values,
respectively, and πm need only be set large enough so that the model reduction
∆mk(dk;µ, πm) is sufficiently positive. However, all of these values need to be
updated carefully in order to ensure convergence.

We have adapted the strategy proposed in [17] for updating πl and πu and for
setting πm during each iteration. In fact, πu is intended to play the role of the
original penalty parameter value as presented in Algorithms 2 and 4 (except in
the model reduction conditions (2.11) and (2.20)), so the update for this value is
the same as that for π in Termination test 2 of each of these algorithms. The only
difference is that, in the context of a flexible penalty function, πu can be initialized
to a larger value than one would normally initialize the penalty parameter in other
approaches; in our experiments, we initialize πl ← 10−6 and πu ← 1. The value πl,
as in [17], is designed to reflect the changes in the nonlinear (i.e., not the model)
functions as the overall algorithm proceeds. We only update this quantity after
the line search whenever (3.2) failed to hold for π = πl. In such cases, we update

πl ← min{πu, πl + max{10−4(χ− πl), 10−4}},

where

χ :=
φ(zk + αkd̃k;µ)− φ(zk;µ)

‖c(zk)‖ − ‖c(zk + αkd̃k)‖
.

After a repeated number of updates of this form, the algorithm could potentially
set πl = πu, but this is rare in practice, meaning that in general the flexible penalty
function provides a much wider variety of steps to be acceptable to the line search
than a classical penalty function.

There are two more issues to consider regarding the use of a flexible penalty
function. One concerns the value of π that appears in the model reduction con-
ditions (2.11) and (2.20). For this value, we choose πl so that either condition
will be satisfied more easily. The second issue is the choice of πm, for which we
consider two cases. If in the current iteration Termination test 2 was satisfied, but
Termination test 1 was not, then we follow [17] and set πm to be the maximum of
πl and πt, where πt is computed during Termination test 2. This choice guaran-
tees that the model reduction ∆mk(dk;µ, πm) is sufficiently positive. Otherwise,
if Termination Test 1 was satisfied, then we set πm to be πl since, based on our
decision to use πl as the penalty parameter value in (2.11) and (2.20), this choice
also guarantees that the model reduction ∆mk(dk;µ, πm) is positive. Overall, in
either case, we guarantee that (3.2) is a sufficient decrease condition for φ.

4 Numerical Experiments

The algorithm described in the previous sections was implemented in the IPOPT

open-source optimization package1; for our experiments we use revision 1954 of

1 http://www.coin-or.org/Ipopt/
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the branches/parallel development branch. The linear systems are solved using
the iterative linear system solvers and preconditioners implemented in the PARDISO

software package2 version 4.1.1. The finite-element discretization of the PDEs in
§4.2-4.3 was implemented using the open-source libmesh library [31]3, revision
3881 in its trunk branch, together with the PETSc library [3]4 version 3.1-p3. The
three-dimensional meshes for the example in §4.3 are generated with the tetgen

software5.
In IPOPT, we use the default parameter settings with a termination tolerance

10−6, together with the parameter choices given in the previous sections. The iter-
ative linear solver in PARDISO uses the SQMR algorithm [23] with a preconditioner
based on a multi-level incomplete factorization [11,38,39]. Here, we allow a depth
up to 30 in the multi-level approach, the Bollhöfer constant bounding the norm
of the inverse of the factor is chosen to be κ = 2, and the dropping tolerance for
the factor and the Schur complement are set to be τ = 10−2 and ε = 10−3, respec-
tively. We use κ, τ , and ε here to refer to quantities in [38]. The SQMR method
is allowed a maximum number of 1500 iterations. If this number is exceeded, then
the preconditioner is recomputed with tightened tolerances (both divided by 3)
and the iteration counter is reset. If necessary, the tolerances are tightened re-
peatedly. If an acceptable solution for Algorithm 2 has not been computed after 4
such attempts, then the method reverts to Algorithm 4. If an acceptable solution
for Algorithm 4 has not been computed after 4 such attempts, then the last com-
puted inexact solution is used (without guarantees for a successful line search). In
either of these latter two cases, before a new linear system is solved, the dropping
tolerances are multiplied by 3, until they reach the default setting described above.

The numerical experiments in the following sections illustrate the performance
of our implementation on a large nonlinear optimization test set and on two PDE-
constrained problems. Overall, we show that the method is robust and provides
improved computation times compared to the default IPOPT algorithm as problem
sizes grow large. The results were obtained on 8-core Intel Xeon machines with
2.33GHz clock speed and 32GB RAM, running Ubuntu Linux with GNU 4.4.1
compilers. To avoid tainted CPU times caused by memory bus contention, we ran
only one serial process at a time.

4.1 Standard Nonlinear Programming Test Sets

To assess the robustness of the algorithm we compare its performance with the
default method implemented in IPOPT on problems from the CUTEr test set [24,
25] for which AMPL models [22] are available.6 We include all feasible problems
that have at least one degree of freedom, are not unbounded, and which do not
have inequality constraints with both lower and upper bounds in the formulation
(the latter is a purely superficial limitation of our current implementation).

Since these problems are not very large, we changed the setting for the PARDISO

preconditioner so that the multi-level strategy continues until the Schur comple-

2 http://www.pardiso-project.org/
3 http://libmesh.sourceforge.net/
4 http://www.mcs.anl.gov/petsc/
5 http://tetgen.berlios.de/
6 http://orfe.princeton.edu/˜rvdb/ampl/nlmodels/cute/
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ment matrix reaches the size 10 (instead of the default 5000). This has the effect
that we will always obtain a multilevel iterative preconditioner for matrices that
have more than 10 equations. Allowing a CPU-time limit of 30 minutes and a
limit of 3000 IPOPT iterations, the default algorithm in IPOPT [45] using a direct
factorization with PARDISO and a filter line-search procedure is able to find a point
satisfying the termination criteria in 592 out of a total of 617 optimization prob-
lems, giving a success rate of 96%. Note that some of the problems do not satisfy
the regularity assumptions made for the global convergence analysis in [44]. Fail-
ures are also due to exceeding the iteration limit (12 cases), and to numerical issues
caused by ill-conditioning. The CPU time limit was not reached for any problem
by the default algorithm.

Algorithm 1 terminated successfully for 549 problems (89% success rate), ex-
ceeding the iteration limit in 12 and the CPU time limit in 20 cases. In the majority
of the remaining cases, the algorithm broke down because no suitable precondi-
tioner could be computed and the iterative linear system solver did not converge.
As the scope of this paper does not include convergence issues of the linear sys-
tem solver, we did not explore this issue in further detail. We note that for 142
problems, the algorithm switched to Algorithm 4 at some point.

We also compare this performance with that of the original algorithm in [19],
which always uses Algorithm 4 (i.e., it decomposes the step computation) in every
IPOPT iteration. That method was successful for only 518 problems, yielding a
success rate of 84%. The iteration limit was exceeded in 18 cases, and the CPU time
limit was hit for 33 problems. This demonstrates that an increase in robustness
was obtained for our implementation with the addition of the switching strategy
described in §3.1.

We also note that our algorithm is able to solve the counterexample from
[43] in 20 iterations, reverting to Algorithm 4 twice (for one iteration each time),
following the adaptive step computation strategy described in §3.1. By contrast,
the algorithm fails if steps are always computed using Algorithm 2 because the
stepsizes αk converge to zero, as expected from the analysis in [43].

4.2 Optimal boundary control

Our first PDE-constrained optimization problem is an optimal control problem
motivated by the “Heating with radiation boundary conditions” example in Sec-
tion 1.3.1 of [41]:

min
u,T

∫
Γ

u da

subject to

−∆T = 0 in Ω (4.1a)

∂T

∂n
= α(u− T 4) on Γ (4.1b)

T ≥ Tmin
j in Ωj for j = 1, . . . , NS (4.1c)

u ≥ 0 on Γ. (4.1d)

Here, T denotes temperature in a domain Ω ⊆ R3, and the term ∂T
∂n denotes

the outward-pointing normal derivative of the temperature on the boundary Γ of
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Ω. The boundary condition (4.1b) expresses the radiation heat loss according to
the Stefan-Boltzmann law with a Stefan’s constant α > 0, where the control u
dictates heat that can be resupplied on Γ . The goal is to minimize the amount of
heat supplied while attaining a temperature of at least Tmin

i within NS subregions
Ωj ⊆ Ω. Following the common finite element approach, we multiply (4.1a) with
a test function v ∈ H1(Ω) and apply Green’s formula together with (4.1b). The
weak formulation of the PDE is then to find T ∈ H1(Ω) such that

0 = −
∫
Ω

∆Tv dx =

∫
Ω

∇T · ∇v dx− α
∫
Γ

(T 4 − u) v da ∀v ∈ H1(Ω). (4.2)

We generate a regular mesh of tetrahedrons, each with volume h3/24 for a
discretization parameter h > 0, and use the standard linear finite element basis
functions {ϕi}i=1,...,nh

. Projecting (4.2) onto the generated finite dimensional sub-

space V h by approximating T with Th =
∑
i T

(i)ϕi and u by uh =
∑
i u

(i)ϕi (the

latter requires discretized values u(i) only corresponding to the boundary Γ ), we
solve the finite-dimensional problem

min
u(i),T (i)

∑
i

u(i)
∫
Γ

ϕi da

subject to

0 =

∫
Ω

∑
i

T (i)∇ϕi · ∇ϕj dx

− α
∫
Γ

(
(
∑
i

T (i)ϕi)
4 −

∑
i

u(i)ϕi

)
ϕj da for j = 1, . . . , nh (4.3a)

T (i) ≥ Tmin
j for j ∈ {1, . . . , NS} and i ∈ {̂i | ∃x ∈ Ωj : ϕî(x) = 1} (4.3b)

u(i) ≥ 0. (4.3c)

We choose α = 1 and Ω = (0, 1)3 and define two regions to be heated, Ω1 =
[0.1, 0.2]× [0.05, 0.3]× [0, 0.1] and Ω2 = [0.8, 1]× [0.75, 1]× [0.7, 1], with associated
threshold temperatures of Tmin

1 = 2.5 and Tmin
2 = 2. In (4.3b), we used the fact

that a nodal finite element basis was chosen, so that maxx∈Ω ϕi(x) = 1, and for all
x ∈ Ω we have

∑
i ϕi(x) = 1. Since ∇ϕi · ∇ϕj = O(1/h2) and

∫
E
dx = O(h3) for a

tetrahedron E, we multiply (4.3a) by 10−2/h in our implementation, to ensure that
the gradients of these constraints do not vanish as h→ 0. Similarly, the objective
function was scaled internally by the factor 10−2/(h2).

We executed our implementation of the optimization algorithm for four choices
of the discretization level. As initial point, we chose T = Tinit with Tinit =
1.1(Tmin

1 + Tmin
2 ), and u = (Tinit)

4. Table 4.1 shows the discretization parame-
ter (h), number of optimization variables (#var), number of simple bound con-
straints (#bds), number of equality constraints (#eq), and number of inequality
constraints (#ineq) for various instances of this example. Tables 4.2 and 4.3 pro-
vide performance measures in the form of number of iterations (it), final objective
value f(x∗), CPU seconds (CPUs), and CPU seconds per iteration (CPUs/it) for
the default IPOPT algorithm and for the new algorithm using inexact steps, respec-
tively. The last column in Table 4.3 shows the overall CPU time speedup of the
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Fig. 4.1 Optimal state (left) and control (right) for the boundary control example. The
regions Ω1 (top) and Ω2 (bottom) are visualized as a box. It is interesting to note that the
corners of the regions Ω1 and Ω2 are heated most, instead of the inner part of its surface.

h #var #bds #eq #ineq
0.05 47263 5724 42461 0
0.04 89453 9183 81951 0
0.03 199389 16498 186319 0
0.02 670153 42313 640151 0

Table 4.1 Problem sizes for instances of the boundary control example.

h it f(x∗) CPUs CPUs/it
0.05 29 40.6349 675.85 23.31
0.04 33 39.9458 2806.16 85.04
0.03 34 37.7909 16330.56 480.31
0.02 46 40.9115 304780.45 6625.66

Table 4.2 Performance measures for the default algorithm applied to the boundary control
example.
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h it f(x∗) CPUs CPUs/it speedup
0.05 33 40.6349 374.17 11.34 1.81
0.04 33 39.9458 646.77 19.60 4.34
0.03 37 37.7909 4495.83 121.51 3.63
0.02 47 40.9115 38824.33 826.05 7.85

Table 4.3 Performance measures for the inexact algorithm applied to the boundary control
example.

inexact algorithm compared to the default method. Figure 4.1 shows the optimal
solution for the finest discretization h = 0.02.

We clearly see a significant gain in computation speed that becomes more pro-
nounced as the problem size increases. For the largest problem with a discretization
parameter h = 0.02, the speedup is a factor of 7.85.

The tables list the average CPU time per iteration, but it should be noted
that the step computation requires considerably more time towards the end of
the optimization procedure than at the beginning. Taking the h = 0.02 case as
an example, in the first 22 IPOPT iterations the preconditioners (each computed
in less than one minute) have fill-in factors of at most 3 and SQMR requires only
between 35 and 200 iterations, leading to times of less than 4 minutes for each step
computation. However, in the last IPOPT iterations, the dropping tolerances have to
be tightened (down to about 3·10−4 and 3·10−5, respectively). At the tightest level
of these tolerances, the preconditioner (computed in up to 9 minutes) has a fill-in
factor of almost 10 and still SQMR requires more than 1000 iterations, leading
to times up to 35 minutes at this level. Even though our results demonstrate
significant improvements due to the use of iterative linear system solvers, this
illustrates that finding preconditioners that are less dependent on the conditioning
of the saddle point matrix in (2.2) as µ approaches zero is still an area of active
research (see, e.g., [1,4]).

4.3 Server room cooling

Our second example is motivated by the real-life problem of cooling computer
equipment in a server room. In our simplified model, we assume that (cold) air
is blown into the room from air conditioners (AC), and that (hot) air leaves the
room at exhausts (Ex); see Figure 4.2. Inside the domain lies equipment with hot
surfaces that need to be cooled by sufficient airflow passing alongside.

For simplicity, we suppose that air is incompressible, has no internal friction,
and that all velocities are far below the speed of sound. Under these assumptions,
we can model air velocity y(x) as the gradient of a potential Φ(x) satisfying the
Laplace equation

−∆Φ = 0 in Ω (4.4)

for a domain Ω ⊆ R3. Appropriate boundary conditions for the walls (and non-
heat producing surfaces of the equipment) ΓW , cold air inlets ΓACi

, exhausts ΓExi
,
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Ω

ΓW

AC1 ΓAC1

AC2

ΓAC2

AC3

ΓAC3

Ex1ΓEx1

Eq1

ΓT

ΓT

ΓW ΓW

Eq2

ΓT

ΓT

ΓW ΓW

Fig. 4.2 Illustration of the geometry of the server room cooling model projected onto the
x3 = 0 axis. Cool air is pumped into the room via the AC units on the boundary in order to
cool the hot surfaces of the equipment ΓT . Air flows out of the room via the exhaust at ΓEx1

.

and heat producing surfaces of the equipment ΓT , respectively, are

∂Φ

∂n
= 0 on ΓW (4.5a)

∂Φ

∂n
= −uACi

ΨΓACi
on ΓACi

(4.5b)

∂Φ

∂n
= +uExi

ΨΓExi
on ΓExi

(4.5c)

∂Φ

∂n
= 0 on ΓT ; (4.5d)

see also Figure 4.2. Here, ∂Φ
∂n denotes the outward-pointing normal derivative of

the potential, and ΨΓACi
(x) (i = 1, . . . , NAC) and ΨΓExi

(x) (i = 1, . . . , NEx) de-
fine airflow velocity profiles on the surfaces of the air conditioners and exhausts,
respectively. Similarly, uACi

∈ R and uExi
∈ R denote control parameters for the

maximal flow rates at these air inlets and outlets. The weak formulation of (4.4)
with (4.5) is to find Φ ∈ H1(Ω) such that

0 = −
∫
Ω

∆Φv dx

=

∫
Ω

∇Φ · ∇v dx+

NAC∑
i=1

∫
ΓACi

uACi
ΨΓACi

v da

−
NEx∑
i=1

∫
ΓExi

uExi
ΨΓExi

v da ∀v ∈ H1(Ω).

(4.6)

It is important to note that (4.6) has a solution only if the controls satisfy the
mass balance equation

NAC∑
i=1

∫
ΓACi

uACi
ΨΓACi

da−
NEx∑
i=1

∫
ΓExi

uExi
ΨΓExi

da = 0, (4.7)
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and in that case (4.6) only determines the potential Φ ∈ H1(Ω) up to an additive
constant. Therefore, a normalization condition will be introduced below.

As a constraint, we require that the air speed at the heat-producing surfaces
has a minimum velocity so that heat is carried away. More precisely, recalling that
the velocity is the gradient of the potential function Φ, we impose a point-wise
state constraint

‖∇Φ(x)‖22 ≥ y2
min for all x ∈ ΓT (4.8)

with a constant ymin > 0.
To obtain the discretized problem, we generate an irregular mesh of tetra-

hedrons, each with maximal volume h3, again choose a finite-dimensional subset
V h ⊆ H1(Ω) with a basis {ϕi}i=1,...,nh

, and express the finite-dimensional approx-

imation Φh of Φ =
∑
i φ

(i)ϕi with coefficients φ ∈ Rnh . Defining u = (uAC , uEx)
as the vector consisting of all control parameters, the discretized PDE (4.6) then
becomes

Aφ−Bu = 0,

where A denotes the stiffness matrix A(i,j) =
∫
Ω
∇ϕi ·∇ϕjdx, and B = [BAC BEx]

implements the boundary conditions with B
(i,j)
AC = −

∫
ΓACj

ΨΓACj
ϕi da and B

(i,j)
Ex =∫

ΓExj
ΨΓACj

ϕi da.

Thus, the finite-dimensional optimization problem is

min
φi,ui,ū

∑
βjuACj

subject to

Aφ−Bu+ γeū = 0 (4.9a)

γeTφ− γ̄ū = 0 (4.9b)

eTBu = 0 (4.9c)∫
Γe

∇φ(x) · ∇φ(x) da− y2
min

(∫
Γe

da

)
≥ 0 for Γe ⊆ ΓT (4.9d)

u ≥ 0 (4.9e)

with weights βi > 0 in the objective function, and e = (1, . . . , 1)T ∈ Rnh . Here,
(4.9c) is a compact way of writing (4.7), and (4.9d) is the discretized version of
(4.8), which is posed for all element faces Γe contained in a heat producing surface
ΓT . Note that the constraint (4.9d) is nonlinear and nonconvex. Again, in our
implementation of the above problem, we scaled the constraints (4.9a) and (4.9d)
by factors 10−2/h and 10−1/h, respectively, to ensure that the gradients of those
functions do not vanish as h→ 0.

To overcome the ill-posedness of the PDE, an auxiliary variable ū ∈ R has
been added to the problem statement. Eqn. (4.9a) includes the discretized PDE,
where the term γeū acts as a constant virtual source or sink all over Ω. Since
we impose the mass conservation in (4.9c) explicitly, this term eventually yields
ū = 0. Furthermore, an integral-type equation is imposed in (4.9b). Indeed, eTφ
can be understood as a discretization of

∫
Ω
Φdµ for some measure µ depending

on the finite-element discretization and is eventually set to zero in (4.9b) since
ū = 0, therefore normalizing the velocity potential Φ. Arguing alternatively from a
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Fig. 4.3 Optimal solution of the server room cooling optimization example. On the left, we
see the streamlines of the airflow, going from the main AC on the left to the exhaust on the
right. On the right, we have a bottom view of the domain Ω, where the colors have been chosen
to be dark if the air velocity is close to the threshold ymin = 1. One can clearly see a region at
the wall of the larger piece of equipment, at which the velocity is close to critical, indicating
the location of the active constraints (4.9d) in ΓT .

linear-algebra point-of-view, while the linear system Aφ = b determining the state
variables φ is singular with e being an eigenvector corresponding to the eigenvalue
0, it can be shown that the linear system[

A γe

γeT −γ̄

] [
φ

u

]
=

[
b

0

]
is non-singular and provides a solution satisfying Aφ = b.

For our experiments we choose βi = 1, γ = 1, γ̄ = 108, ymin = 1, ΓAC1
=

{0}× [0.4, 0.6]× [0.2, 0.4], ΓAC2
= [0.4, 0.6]×{0}× [0.2, 0.4], ΓAC3

= [0.4, 0.6]×{1}×
[0.2, 0.4], and ΓEx1

= {1} × [0.4, 0.6] × [0.6, 0.8]. The equipment is placed so that
ΩEq1 = [0.2, 0.7]× [0.2, 0.4]× [0, 0.8] and ΩEq2 = [0.2, 0.6]× [0.6, 0.8]× [0, 0.8] with
the remaining boundary components ΓT and ΓW defined accordingly as illustrated
in Figure 4.2. The airflows at the inlets and outlets are assumed to have quadratic
profiles, e.g., on ΓACi

= {a(1)} × [a(2), b(2)]× [a(3), b(3)], we choose

ΨΓ (x) =
4(x(2) − a(2))(b(2) − x(2))

(b(2) − a(2))2
· 4(x(3) − a(3))(b(3) − x(3))

(b(3) − a(3))2
.

Due to the nooks in Ω created by the equipment, numerical experiments with
linear finite elements showed only linear L2-convergence of the PDE solution as
h→ 0. However, since (4.8) involves the gradient of the state variable, superlinear
convergence is crucial. Thus, we have chosen quadratic finite-elements and ob-
served quadratic convergence for the PDE solution. Specifically, for three choices
of the mesh size parameter, h = 0.2, 0.1, 0.05, we computed the state variables
from (4.9a)–(4.9b) for fixed values of the control parameters. Then we refined the
mesh, corresponding to a value of h/2, and recomputed the state variables. The
L2-differences for the refined and original mesh were calculated as 3.87 · 10−3,
1.04 · 10−3 and 2.50 · 10−4. Thus we observed factors of 3.7 and 4.2 for a bisection
in h, which indicates quadratic convergence.
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h #var #bds #eq #ineq
0.04 38582 4 38579 869
0.03 88398 4 88395 1528
0.02 285510 4 285507 3409
0.015 663886 4 663883 6110

Table 4.4 Problem sizes for instances of the server room cooling example.

h it f(x∗) AC1 AC2 AC3 CPUs CPUs/it
0.04 23 15.4372 15.102 0.335 0.0 1019.16 44.31
0.03 21 15.5283 15.235 0.293 0.0 4511.48 214.83
0.02 33 15.5694 15.311 0.258 0.0 69427.33 2103.86
0.015 32 15.6509 15.428 0.223 0.0 528320.22 16510.01

Table 4.5 Performance measures for the default algorithm applied to the server room cooling
example.

h it f(x∗) AC1 AC2 AC3 CPUs CPUs/it speedup
0.04 20 15.4372 15.102 0.335 0.0 622.31 31.12 1.64
0.03 24 15.5283 15.235 0.293 0.0 1710.30 71.26 2.64
0.02 28 15.5694 15.311 0.258 0.0 10008.50 357.45 6.94
0.015 27 15.6509 15.428 0.223 0.0 29526.53 1093.58 17.89

Table 4.6 Performance measures for the inexact algorithm applied to the server room cooling
example.

Table 4.4 shows problem size information for various instances of this problem.
As starting point for our experiments, we calculated the solution of (4.9a)–(4.9c)
for uACi

= 20. Tables 4.5 and 4.6 provide performance measures for the default
IPOPT algorithm and for our implementation, respectively, where now we break
down the optimal objective values into those for the control variables uACi

for each
of the three air conditioners. Also here we see a clear reduction in computation
time achieved by using the inexact algorithm, without a loss in solution accuracy.
Specifically, the computation time for the largest instance with more than 600, 000
variables was reduced from more than 6 days to 8.2 hours, a speedup by a factor
of 17.89. Figure 4.3 shows the optimal solution for the finest discretization.

In this example, the default settings for the preconditioner thresholds were
sufficient in each iteration, so that no tightening occurred. For the h = 0.015 case,
the computation time for the preconditioner ranged from 164 to 234 seconds (with
an average of 204 seconds), the number of SQMR iterations was 204–1129 with
an average of 396, and the time spent in SQMR ranged from 365 to 2018 seconds
(with an average of 719 seconds). While there is some variation, we did not observe
such a clear degeneration of computation time per iteration towards the end of
the optimization as we saw for the example in §4.2.

5 Conclusion and Final Remarks

We have presented a detailed description of an implementation of a primal-dual
interior-point method for large-scale nonconvex optimization where the search di-
rections are computed inexactly by means of an iterative linear system solver.
Ideally, the algorithm computes a search direction through the inexact solution
of a single linear system (as in [14]). However, when appropriate, it falls back on



On the Implementation of an Inexact Interior-Point Algorithm 23

the step decomposition strategy proposed in [19] so that, overall, the strong global
convergence properties presented in [19] are attained. Numerical experiments on
a large set of test problems and on two PDE-constrained optimization problems
have also been presented. These results demonstrate the robustness of the approach
and illustrate the significant speedup our algorithm attains when compared to an
algorithm based on direct factorizations of the primal-dual system matrices.

The implementation of our algorithm and the two PDE-constrained problems
in §4 allows distributed memory parallel execution with MPI. In this paper, we
have concentrated on serial execution with the serial iterative linear system solver
in PARDISO. In the future, we plan to explore distributed memory performance
using PSPIKE [33].
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