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IBM Power Architecture

Tejas S. Karkhanis and José E. Moreira
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598

SYNONYMS

IBM Power, IBM PowerPC

DEFINITION

The IBM Power architecture is an instruction set architecture (ISA) imple-
mented by a variety of processors from IBM and other vendors, including
Power7, IBM’s latest server processor. The IBM Power architecture is de-
signed to exploit parallelism at the instruction, data and thread level.

DISCUSSION

1 Introduction

IBM’s Power ISATM is an instruction set architecture designed to expose and
exploit parallelism in a wide range of applications, from embedded comput-
ing to high-end scientific computing to traditional transaction processing.
Processors implementing the Power ISA have been used to create several
notable parallel computing systems, including the IBM RS/6000 SP, the
Blue Gene family of computers, the Deep Blue chess playing machine, the
PERCS system, the Sony Playstation 3 game console, and the Watson sys-
tem that competed in the popular television show Jeopardy!

Power ISA covers both 32-bit and 64-bit variants and, as of its latest ver-
sion (2.06 Revision B [8]), is organized in a set of four “books”, as shown in
Figure 1. Books I and II are common to all implementations. Book I, Power
ISA User Instruction Set Architecture, covers the base instruction set and re-
lated facilities available to the application programmer. Book II, Power ISA
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Virtual Environment Architecture, defines the storage (memory) model and
related instructions and facilities available to the application programmer.
In addition to the specifications of Books I and II, implementations of the
Power ISA need to follow either Book III-S or Book III-E. Book III-S, Power
ISA Operating Environment Architecture – Server Environment, defines the
supervisor instructions and related facilities used for general purpose imple-
mentations. Book III-E, Power ISA Operating Environment Architecture –
Embedded Environment, defines the supervisor instructions and related fa-
cilities used for embedded implementations. Finally, Book VLE, Power ISA
Operating Environment Architecture – Variable Length Encoding Environ-
ment, defines alternative instruction encodings and definitions intended to
increase instruction density for very low end implementations.

BOOK-I

BOOK-II

BOOK-III-S

BOOK-VLE

User Instruction Set Architecture

Virtual Environment Architecture

BOOK-III
Operating Environment Architecture

Server
Environment

BOOK-III-E
Embedded
Environment

Variable
Length
Encoding

Figure 1: Books of Power ISA version 2.06.

Figure 2 shows the evolution of the main line of Power architecture server
processors from IBM, just one of the many families of products based on
Power ISA. The figure shows, for each generation of processors, its introduc-
tion date, the silicon technology used, and the main architectural innovations
delivered in that generation. Power7 [9] is IBM’s latest-generations server
processor and implements the Power ISA according to Books I, II and III-S
of [8]. Power7 is used in both the PERCS and Watson systems and in a va-
riety of servers offered by IBM. The latest machine in the Blue Gene family,
Blue Gene/Q, follows a Book III-E implementation.

Power ISA was designed to support high program execution performance
and efficient utilization of hardware resources. To that end, Power ISA pro-
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Figure 2: Evolution of main line Power architecture server processors.

vides facilities for expressing instruction level parallelism, data level par-
allelism, and thread level parallelism. Providing facilities for a variety of
parallelism types gives the programmer the flexibility in extracting the par-
ticular combination of parallelism that is optimal for his or her program.

2 Instruction level parallelism

Instruction level parallelism (ILP) is the simultaneous processing of several
instructions by a processor. ILP is important for performance because it
allows instructions to overlap, thus effectively hiding the execution latency of
long latency computational and memory access instructions. Achieving ILP
has been so important in the processor industry that processor core designs
have gone from simple multicycle designs to complex designs that implement
superscalar pipelines and out-of-order execution [15]. Key aspects of Power
ISA that facilitate ILP are: independent instruction facilities, reduced set
of instructions, fixed length instructions, and large register set.

2.1 Independent instruction facilities

Conceptually, Power ISA views the underlying processor as composed of sev-
eral engines or units, as illustrated in the floor plan for the Power7 processor
core shown in Figure 3. Book I of the Power ISA groups the instructions
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into “facilities”, including (1) the branch facility, with instructions imple-
mented by the instruction fetch unit (IFU); (2) the fixed-point facility, with
instructions implemented by the fixed-point unit (FXU) and load-store unit
(LSU); (3) the floating-point facility, with instructions implemented by the
vector and scalar unit (VSU); (4) the decimal floating-point facility, with
instructions implemented by the decimal floating-point unit (DFU); and (5)
the vector facility, with instructions implemented by the vector and scalar
unit (VSU). Also shown in Figure 3 is the instruction-sequencing unit (ISU),
which controls the execution of instructions, and a level-2 cache.

256 Kbyte L2 cache

ISU

DFU

FXU

VSU

LSU

IFU

Figure 3: Power7 processor core floorplan, showing the main units.

Origins of this conceptual decomposition are in the era of building pro-
cessors with multiple integrated circuits (chips). With a single processor
spread across multiple chips, the communication between two integrated
circuits took significantly more time relative to communication internal to a
chip. Consequently, either the clock frequency would have to be reduced or
the number of stages in the processor pipeline would have to be increased.
Both approaches, reducing clock frequency and increasing the number of
pipeline stages, can degrade performance. The decomposition into multiple
units allowed a clear separation of work and each unit could be implemented
on a single chip for maximum performance.
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Today, the conceptual decomposition provides two primary benefits.
First, because of the conceptual decomposition, the interfaces between the
engines are clearly defined. Clearly defined interfaces lead to hardware de-
sign that is simpler to implement and to verify. Second, the conceptual
decomposition addresses the inability of scaling frequency of long on-chip
wires that can be a performance limiter, just as it addressed wiring issues
between two or more integrated circuits when the conceptual decomposition
was introduced.

2.2 Reduced set of non-destructive fixed length instructions

Power ISA consists of a reduced set of fixed length 32-bit instructions. A
large fraction of the set of instructions are non-destructive. That is, the
result register is explicitly identified, as opposed to implicitly being one of
the source registers. A reduced set of instructions simplifies the design of
the processor core and also verification of corner cases in the hardware.

Ignoring the Book-VLE case, which is targeted to very low end systems,
Power ISA instructions are all 32-bits in length, thus the beginning and end
of every instruction is known before decode. The bits in an instruction word
are numbered from 0 (most significant) to 31 (least significant), following the
big-endian convention of the Power architecture. All Power ISA instructions
have a major opcode that is located at instruction bits 0 to 5. Some instruc-
tions also have a minor opcode, to differentiate among instructions with the
same major opcode. The location and length of the minor opcode depends
on the major opcode. Additionally, every instruction is word-aligned. Fixed
length, word aligned, and fixed opcode location make the instruction pre-
decode, fetch, branch prediction, and decode logic simpler, when compared
to the decode logic of variable length ISA. Srinivasan et. al. [16] present
a comprehensive study of optimality of pipeline length of Power processors
from a power and performance perspective.

Instruction set architectures that employ destructive operations (i.e.,
one of the source registers is also the target) must temporarily save one of
the source registers, if the contents of that register are required later in the
program. Temporarily saving and later restoring registers often lead to store
to and load from, respectively, a memory location. Memory operations can
take longer to complete than a computational operation. Non-destructive
operations in Power ISA eliminate the need for extra instructions for saving
and restoring one of the source registers, facilitating higher instruction level
parallelism.
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2.3 Large register set

Power ISA originally specified 32 general purpose (fixed-point, either 32- or
64-bit) and 32 floating-point (64-bit) registers. An additional set of 32 vector
(128-bit) registers were added with the first set of vector instructions. The
latest specification, Power ISA 2.06, expands the number of vector registers
to 64. A large number of registers means that more data, including function
and subroutine parameters, can be kept in fast registers. This in turn avoids
load/store operations to save and retrieve data to and from memory and
supports concurrent execution of more instructions.

2.4 Load/store architecture

Power ISA specifies a load-store architecture consisting two distinct types of
instructions: (1) memory access instructions, and (2) compute instructions.
Memory access instructions load data from memory into computational reg-
isters and store the data from the computational registers to the memory.
Compute instructions perform computations on the data residing in the
computational registers. This arrangement decouples the responsibilities of
the memory instructions and computational instructions, providing a pow-
erful lever to hide the memory access latency by overlapping long latency of
memory access instructions with compute instructions.

2.5 ILP in Power7

Power7 is an out-of-order superscalar processor that can operate at frequen-
cies exceeding 4 GHz. In a given clock cycle, a Power7 processor core can
fetch up to eight instructions, decode and dispatch up to six instructions,
issue and execute up to eight instructions, and commit up to six instruc-
tions. To ensure a high instruction throughput, Power7 can simultaneously
maintain about 250 instructions in various stages of processing. To further
extract independent instruction for parallelism, Power7 implements register
renaming – each of the architected registers are mapped to a much larger set
of physical registers. Execution of the instructions is carried by a total of 12
execution units. Power7 implements the Power ISA in a way that extracts
high levels of instruction level parallelism while operating at a high clock
frequency.
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3 Data level parallelism

Data level parallelism (DLP) consists of simultaneously performing the same
type of operations on different data values, using multiple functional units,
with a single instruction. The most common approach of providing DLP in
general purpose processors is the Single Instruction Multiple Data (SIMD)
technique. SIMD (also called vector) instructions provide a concise and
efficient way to express DLP. With SIMD instructions, fewer instructions
are required to perform the same data computation resulting in lower fetch,
decode and dispatch bandwidth, and consequently higher power efficiency.

Power ISA 2.06 contains two sets of SIMD instructions. The first one
is the original set of instructions implemented by the vector facility since
1998 and also known as AltiVec [6] or Vector Media Extensions (VMX)
instructions. The second is a new set of SIMD instructions called Vector-
Scalar Extension (VSX).

3.1 VMX instructions

VMX instructions operate on 128-bit wide data, which can be vectors of byte
(8-bit), half-word (16-bit) and word (32-bit) elements. The word elements
can be either integer or single-precision floating point numbers. The VMX
instructions follow the load/store model, with a 32-entry register set (each
entry is 128-bit wide) that is separate from the original (scalar) fixed- and
floating-point registers in Power ISA 2.06.

3.2 VSX instructions

VSX also operates on 128-bit wide data, which can be vectors of word (32-
bit) and double word (64-bit) elements. Most operations are on floating-
point numbers (single and double precision) but VSX also includes inte-
ger conversion and logical operations. VSX instructions also follow the
load/store model, with a 64-entry register set (128 bits per entry) that over-
laps the VMX and floating-point registers. VSX requires no operating-mode
switches. Therefore, it is possible to interleave VSX instructions with float-
ing point and integer instructions.

3.3 Power7 vector and scalar unit (VSU)

The vector and scalar unit of Power7 is responsible for execution of the VMX
and VSX SIMD instructions. The unit contains one vector pipeline and four
double-precision floating-point pipelines. A VSX floating-point instruction
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uses two floating-point pipelines and two VSX instructions can be issued
every cycle, to keep all floating-point pipelines busy. The four floating-point
pipelines can each execute a double-precision fused multiply-add operation,
leading to a performance of 8 flops/cycle for a Power7 core.

4 Thread level parallelism

Thread level parallelism (TLP) is the simultaneous execution of multiple
threads of instructions. Unlike ILP and DLP, that rely on extracting par-
allelism from within the same program thread, TLP relies on explicit par-
allelism from multiple concurrently running threads. The multiple threads
can come from the decomposition of a single program or from multiple in-
dependent programs.

4.1 Thread level parallelism within a processor core

In the first systems that exploited thread level parallelism, different threads
executed on different processor cores and shared a memory system. Today,
processor core designs have evolved such that multiple threads can run on
single processor core. This increases resource utilization and, consequently,
the computational throughput of the core. Effectively, TLP within a core
enables hiding of the long latency events of stalled threads with forward
progress of active threads. Examples of Power ISA processors that sup-
port multithreading within a core include Power5 [14], Power6 [10], and
Power7 [9] processors.

4.2 Memory coherence models

For programs where the concurrent threads share memory while working on
a common task, the memory consistency model of the architectures plays a
key role in the performance of TLP as a function of the number of threads.
The memory consistency model specifies how memory references from dif-
ferent threads can be interleaved. Power ISA specifies a release consistency
memory model. A release consistency model relaxes the ordering of mem-
ory references as seen by different threads. When a particular ordering
of memory references among threads is necessary for the program, explicit
synchronization operations must be used.
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4.3 TLP support in Power7 processor

The structure of a Power7 processor chip is shown in Figure 4. There are
eight processor cores and three levels of cache in a single chip. Each processor
core (which includes 32-Kbyte level 1 data and instruction caches) is paired
with a 256-Kbyte level 2 (L2) cache that is private to the core. There is also
a 32-Mbyte level 3 (L3) cache that is shared by all cores. The level 3 cache
is organized as eight 4-Mbyte caches, each local to a core/L2 pair. Cast outs
from an L2 cache can only go to its local L3 cache, but from there data can
be cast out across the eight local L3s.
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32-Kbyte 
L1 I-cache

32-Kbyte 
L1 D-cache

Core (ST, SMT2, SMT4)
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L1 I-cache
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L1 D-cache
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Memory

8 cores (up to 32 threads)
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Fetch

Cast out

Cast out

Fetch Store

Figure 4: Structure of a Power7 processor chip.

Each core is capable of operating in three different threading modes:
single-threaded (ST), dual-threaded (SMT2), or quad-threaded (SMT4).
The cores can switch modes while executing, thus adapting to the needs
of different applications. The ST mode delivers higher single-thread per-
formance, since the resources of a core are dedicated to a the execution of
that single thread. The SMT4 mode partitions the core resources among
four threads, resulting in higher total throughput at the cost of reduced
performance for each thread. The SMT2 mode is an intermediate point.

A single Power7 processor chip supports up to 32 simultaneous threads
of execution (8 cores, 4 threads per core). Power7 scales to systems of 32
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processor chips or up to 1024 threads of execution sharing a single memory
image.

5 Summary

Since its inception in the Power1 processor in 1991, the Power architecture
has evolved to address the technology and applications issues of the time.
The ability of Power architecture to provide instruction, data and thread
level parallelism has enabled a variety of parallel systems, including some
notable supercomputers.

Power ISA allows exposing and extraction of ILP primarily because of
the RISC principles embodied in the ISA. The reduced set of fixed length
instructions enables simple hardware implementation that can be efficiently
pipelined, thus increasing concurrency. The larger register set provides sev-
eral optimization opportunities for the compiler as well as the hardware.

Power ISA provides facilities for data level parallelism via SIMD instruc-
tions. VMX and VSX instructions increase the computational efficiency of
the processor by performing the same operation on multiple data values.
For some programs DLP can be extracted automatically by the compiler.
For others, explicit SIMD programming is more appropriate.

Power ISA supports thread level parallelism through a release consis-
tency memory model. Because of the release consistency, Power ISA based
systems permit aggressive software and hardware optimizations that would
otherwise be restricted under a sequential consistency model.

The Power7 processors implements the latest version of Power ISA and
exploits all forms of parallelism supported by the instruction set architec-
ture: instruction level parallelism, data level parallelism and thread level
parallelism.

RELATED ENTRIES

Blue Gene, PERCS, IBM SP, Cell Processor

BIBLIOGRAPHIC NOTES

Official information on the Power instruction set architecture is available in
the Power.org website1. In particular, the latest version of the Power ISA

1www.power.org
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(2.06 revision B), implemented by the Power7 processor, can be found in [8].
An early history of the Power architecture is provided by Diefendorff [3].

Details of Power architecture including the instruction specification and pro-
gramming environment are given in several reference manuals [7, 11, 12, 13].

Evolution of IBM’s RISC philosophy is explained in [2]. More detailed
information on the microarchitecture of specific Power processors can be
found for Power4 [17], Power5 [14], Power6 [10], and Power7 [9] processors.

The AltiVec Programming Environment Manual [12] and AltiVec Pro-
gramming Interface Manual [13] are two thorough references for effectively
employing AltiVec. Gwennap [6] and Diefendorff [4] have a good survey of
Power AltiVec.

Methods for extracting instruction level parallelism for the Power archi-
tecture are described in [7]. One of the key impediments to data level paral-
lelism is unaligned memory accesses. To overcome these unaligned accesses
Eichenberger, Wu and O’Brien [5] present some data level parallelism opti-
mization techniques. Finally, Adve and Gharacharloo’s tutorial on shared
memory consistency model [1] is a great reference for further reading on
thread level parallelism.
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