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Abstract
This paper presents a study of the impact on performance
and power consumption of software bloat for Java applica-
tions. With the SPECpower ssj2008 benchmark, we create
three distinct levels of object allocation - Alloc More, Al-
loc Orig and Alloc Less - to represent degrees of optimiza-
tion/tuning for the creation of temporary objects. We then
examine their impact on performance and energy-efficiency
across a range of hardware and software configurations using
real-time power and performance/activity instrumentation.

On a IBM HS21 blade server we see that the smarter allo-
cation strategy, Alloc Less, can obtain a 59% improvement
in energy-efficiency at peak load over the default strategy,
Alloc Orig. On a POWER7 system we examine the sensi-
tivity of the efficiencies of the allocation strategies to lev-
els of multi-threading, cache sizes and JVM tuning. Further,
interaction with power management based on dynamic volt-
age and frequency scaling (DVFS) shows synergistic bene-
fits. DVFS reduces the detrimental impact of software bloat
and can increase the benefits from bloat reduction - with
DVFS, Alloc Less gets to 56% of the power for Alloc More,
whereas without DVFS, its power is at 95% of Alloc More’s.
Experiments on a Nehalem-based server further confirm the
energy-efficiency impact of software bloat reduction and its
benefits to reducing heap sizes.

We also present an analysis of why the JIT compiler is un-
able to perform the key optimization of object reuse that can
be applied by even an inexperienced Java programmer and
present preliminary ideas on a simple annotation based tech-
nique to eliminate this bloat. With a new microbenchmark
for object reuse we show the power-performance tradeoffs
of object reuse in isolation. Finally, our preliminary analysis
with the DaCapo tradesoap and tradebean benchmarks show
that the choice of fine grain messaging/transformations can
have a significant power efficiency impact.

1. Introduction
The role of power-efficient software is gaining recognition
as an under-explored opportunity [13, 23, 33] in energy op-
timization of server systems. Advances in this area have
largely focused on power-awareness in resource manage-

ment software [23], query-optimizers [33] and exploitation
of power-efficient hardware (e.g. DVFS, solid state storage,
heterogeneous cores) [13, 16]. A related consideration has
involved optimizing resource requesters to avoid unecessar-
ily holding on to resources in a way that interferes with hard-
ware and system power management [23].

We believe that there is another promising angle of soft-
ware power-performance optimization, which deserves sim-
ilar attention: the improvement in resource efficiency of typ-
ical operations in large framework based applications.

Studies of software runtime bloat reveal a pervasive pat-
tern of excessive memory, processing and IO overheads in-
curred in these applications. Our own experience with anal-
ysis of several case studies corroborates these findings, e.g.,
we have observed instances of 6 IO copies/transforms of an
input document per request, 60-70% data structure overhead,
1-2 MB temporary objects generated per transaction.

The culture of objects, a sea of abstractions, the use of
computers as communicators and just-in-case programming
have been cited as key software development productivity
trends that lead to such systemic inefficiencies [21]. The
lack of high level insight and the scale of analysis needed
to optimize across components currently make it difficult for
optimizers to keep up with these trends. As a result, it is not
unusual to observe consumption of a gigabyte of memory
per hundred users in applications which need to scale to
millions of users or to find hundreds of thousands of method
calls and objects being created to service a single simple
request [21].

Recent research that studies the effects of object churn
(a typical symptom of bloat) on performance and scaling
describes and characterizes an allocation wall [32] which
can potentially limit the scalability of programs with high
object churn.

However, while we expect reduction of bloat to have an
impact on power-performance, we are not aware of any em-
pirical studies that validate this intuition and provide deeper
understanding of the relationship between bloat reduction
and power-performance improvement.

This paper makes the following contributions:



• It presents the first experimental study, to our knowl-
edge, of the power-performance implications of software
bloat. We present results for SPECpower ssj2008, a well-
known server side Java benchmark (and the first commer-
cial workload benchmark requiring power consumption
and energy-efficiency reports across the full range of sys-
tem loads), for three modern server systems. We show
significant energy efficiency benefits from reducing ob-
ject churn, ranging from 7% to 59%.

• It includes a detailed cross platform evaluation of these
implications across a range of hardware and software
configurations covering different processors, multiple
levels of multithreading, cache sizes, power manage-
ment, JVM tuning and heap sizes.

i. We find that workload tuning and system character-
istics such as SMT and cache size both are important
factors in the impact of bloat reduction, e.g. non-tuned
(out of the box) JVM configurations show more than
20% improvement with lower bloat.

ii. Using real-time component level power and perfor-
mance activity instrumentation we then determine
that the first order effects of runtime bloat in the
form of temporary objects on energy efficiency oc-
cur through its impact on the memory hierarchy us-
age - processor cache effectiveness, off-chip memory
latency/bandwidth and memory reference activity.

iii. Next, we show that dynamic voltage and frequency
scaling (DVFS) based power management has a syn-
ergistic relation with the benefits from bloat reduc-
tion, achieving 42% power savings between the high-
est bloat alternative and the original implementation
at equivalent performance, compared to 3% savings
without DVFS.

iv. We also find that the better allocation strategy could
tolerate significant heap size reduction with better per-
formance. This has the potential to generate addi-
tional energy efficiencies from better DRAM low-
power mode exploitation, higher degrees of work-
load/virtual machine consolidation and reduction in
physical memory used.

• It shows how the access to higher level semantic insights
can enable even non-experts in Java to exploit oppor-
tunities for significant bloat reduction that sophisticated
runtime optimizers without such semantic knowledge are
unable to accomplish. We suggest ways in which these
kinds of insights could be generalized into annotations
that can enable automated solutions for a related class of
bloat patterns.

The rest of this paper is organized as follows. Section 2
presents background on the problem of software bloat and
qualitatively describes how it impacts consumption of re-
sources and power. Section 3 describes the problem of object

churn in SPECpower ssj2008 and presents an optimization
to reduce it. Section 4 presents experimental results. Sec-
tion 5 describes why a modern JIT compiler is unable to op-
timize the excessive allocation of objects, and presents pre-
liminary ideas on an annotation based approach to deal with
the problem in a semi-automated manner. Section 6 presents
results for additional benchmarks and Section 7 describes
related work. Finally, Section 8 presents conclusions.

2. Software runtime bloat and energy
efficiency

Software impacts power consumption primarily through its
hardware resource utilization at runtime. The power effi-
ciency characteristics of the hardware-firmware resources
determine the actual power consumption for a given utiliza-
tion profile.

Software encounters a variety of hardware resources on
any given system - compute engines on the processor, on-
chip memory, off-chip memory and disk storage being typ-
ical components. Every system is designed/configured with
a particular balance of these resources. An imbalanced use
of these resources, can cause a performance wall and under-
utilization of other resources. For example high cache miss
rates caused by profligate use of objects/method calls can
cause under-utilization of the processor cores. If the system
hardware-firmware are unable to react to the underutilization
of components to lower their power consumption the situa-
tion not only causes poorer performance but also results in
lower energy efficiency.

The exact utilization of physical resources is tightly
linked to the virtual resource management by the runtime
systems. In general, we term the excessive usage of the num-
ber or capacity of any virtual resource by the software as
software runtime bloat.

2.1 Symptoms of software runtime bloat
Large framework intensive applications exhibit symptoms of
pervasive run-time bloat [21]: patterns of excessive activity
or memory usage that typically span methods across multi-
ple layers [9, 31], e.g.:

• the problem of object churn (high volumes of temporary
objects [9], i.e. short lived objects that are allocated on
the Java heap) and nested chains of data copies [31]

• long sequences of expensive transformations with nested
transformations, including additional transformations for
reusing existing parsers, serializers, formatters, [19, 21]

• high data structure representation overhead (typically
50%-80% [18], plus data duplication across layers.

• inflation of memory, protocol costs and method indirec-
tions relative to actual data and logic, due to dynamic
type description and dispatch mechanisms [21].



The origin of this kind of systemic bloat is linked to
the same software development trends that have undeni-
ably been extremely successful in fueling the growth and
widespread impact of software. Unfortunately, these over-
heads incur a run-time cost despite the best efforts of current
Java optimizers, which lack higher level insight and are lim-
ited in their ability to perform optimizations that span com-
ponents [9, 24, 31].

2.2 Impact of runtime data bloat on resource
utilization

Bloat in long lived objects, due to high data structure rep-
resentation overheads occupy JVM heap space, directly
accounting for excess memory usage and indirectly con-
tributing to processing costs like extra pointer dereferences,
cache usage inefficiencies and data transfer sizes when sub-
sequently copied.

Bloat manifested in short lived objects (i.e. unnecessary
temporary objects causing high object churn) affect exe-
cution time and processing costs in terms of cache foot-
print, memory bandwidth usage (and even pathlength in case
of costly initialization sequences). Temporary objects also
cause higher memory pressure by spreading the memory
footprint of the application because the memory can only
be reused only after the next garbage collection cycle. This
leads to larger heap sizes and/or excessive garbage collec-
tion. Additionally even when neither memory bandwidth or
heap size is a constraint, these temporaries result in an in-
creased memory activity because of inefficient cache utiliza-
tion.

Both aspects of bloat lead to reduced power efficiency.

2.3 Impact of runtime data bloat on power
consumption

Runtime data bloat increases energy consumption by in-
creasing the memory capacity and bandwidth resources re-
quired per transaction or compute task. On energy propor-
tional hardware the increase in resource consumption trans-
lates to proportional increase in energy; in other cases the in-
crement may be lower but tagged on to a high base cost. Sec-
ondly, if the bloated usage affects a bottlenecked resource,
then it can aggravate power-performance inefficiencies. En-
ergy proportional hardware may consume less power in this
situation than non energy proportional hardware because of
the reduced utilization levels of the non-bottlenecked re-
sources caused by poor scaling. Thirdly, though we do not
explore this aspect in our paper, software bloat can cause
indirect energy losses by raising startup/idle footprint and
response times, hurting efficient power management.

Software bloat does not directly impact resource manage-
ment, but efficient power-aware resource management can
enable savings in resource utilization through the reduction
of bloat to translate more effectively to system level power
savings.

3. Reducing object churn in
SPECpower ssj2008

SPECpower ssj2008 is a server energy-efficiency bench-
mark from SPEC [25] combining both power and perfor-
mance measures for a workload at different load-levels. The
workload is based on SPECjbb2005, but it has some signifi-
cant modifications to inject transactions in bursts and to gen-
erate multiple load levels based on a maximum achievable
transaction rate measured during initial calibration phases.
The benchmark begins at 100% load and then at each subse-
quent step drops the intensity by 10%, finishing with a test at
idle. During the entire run, the system power consumption is
measured. The benchmark metric is an energy-efficiency
score composed of a ratio of the sum of the transaction
throughput for each load level to the sum of the average
power for each load level (including an idle period).

SPECpower is the first commercial workload benchmark
requiring power consumption and energy-efficiency reports
as well as examination of these characteristics across the full
range of system loads. Together with its implementation in a
Java framework it offers a unique avenue for our studies on
power-performance impact of runtime software bloat in the
context of server-side Java.

Resource utilization characterization: According to prior
characterization studies [12], the long lived data footprint
of SPECpower ssj2008 is approximately 50MB per ware-
house, and about 8KB of temporary objects are generated
per ssjop.

3.1 SPECpower ssj2008 memory bloat analysis
SPECpower ssj2008 is a fairly simple application compared
to typical complex deeply layered enterprise Java workloads
where software bloat tends to be most pronounced. For ex-
ample, stack depths are small, more than 3 times lower than
those observed in application server stacks.

3.1.1 Long lived data bloat
We collected heap dumps for a sample run of the benchmark
on a 64bit JVM and analysed data structure health metrics
using an offline tool [20]. Figure 1 shows the results.

While there was a 60% data structure overhead in long
lived objects, the actual volume of the overhead is limited
because the long lived data footprint is just 50MB per hard-
ware thread (the benchmark uses 1 warehouse per hardware
thread).

3.1.2 Temporary objects bloat or object churn
The volume of short lived objects, on the other hand, is
large when the benchmark runs on system configurations
that can achieve high throughput. For example, at 1 million
ssj operations per second, 8 KB of temporary objects per
transaction amounts to 8 GB/s of object churn.

If we could create a big enough variation in this object
churn, we expect to observe perceptible power-performance
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Figure 1. SPECpower ssj2008 Data Structure Health

effects. Hence we decided to focus on identifying ways to
vary the degree of bloat in uneccessary temporary objects,
so that we could study power-performance implications of
this category of bloat in SPECpower ssj2008.

Turning off escape analysis in the JVM only changed
the temporary allocations per transaction by 10%, and was
not very effective in creating the substantial variation we
desired. However, there is a particular allocation site that
is responsible for about half of the temporaries. A review
of the corresponding source code revealed an opportunity
for significantly reducing these allocations using object
reuse/pooling. We used this observation as starting point
for our studies on the effects of reducing temporary objects
bloat.

We also noticed another code fragment explicitly opti-
mized for object reuse. Without this conscious optimiza-
tion by the programmer, the object churn of the benchmark
would have been higher. Unoptimizing this code provided a
way to study the effects of increasing bloat in a way that can
occur naturally in such applications.

3.2 Changes for reducing object churn (AllocLess)
Here we look at the particular allocation site in SPECpower ssj2008
(Figure 2) for opportunity to significantly reduce the number
of temporary objects generated with object reuse/pooling.
This allocation site generates temporary String objects:

The routine getLine() is invoked (Figure 3) in a loop for
copying the contents of the screen buffer into strings which
are used to populate an XML transaction log (populateXML()),
using the routine putLine().

These strings get unreferenced when the transaction log
is next cleared by invoking the routine clear() (Figure 4)
so that it can be re-populated by the following transaction

class TransactionLogBuffer {

...

public String getLine(int line) {

----> return new String(screenBuf[line]);

}

..

}

Figure 2. Temporary string objects allocation site: get-
Line()

Instead of clearing the transaction log at the end of the
transaction, the calling routines (Figure 5) invoke clear()
during a subsequent transaction sometime before the next
invokation of populate() of the same XML transaction
log.

There are 80 lines of 24 characters each, which amounts
to about 4-5KB of object churn per transaction. Based on
the observation that the effective lifetime of these strings
holds till the next transaction clears the log, this churn may
be eliminated by reusing the memory of these strings when
populating the XML log for the next transaction. We im-
plemented this by maintaining a pool (a simple array) of
string lines and reusing these string lines instead of issuing
fresh string allocations in getLine(). Since String objects are
immutable in Java, we had to use reflection to modify the
contents of the underlying array in order to enable it to be
reused. There are no synchronization overheads for the pool.
The transaction log’s object instance is only accessed by the
thread that is running the corresponding warehouse’s trans-
actions.

3.3 Changes for increasing object churn (AllocMore)
Here we examine a code site where explicit object reuse op-
timization has been utilized in the original code. We examine
how object reuse here can be disabled to model a situation
without explicit optimization which would lead to increase
in temporary object bloat.

The XMLTransactionLog maintains a line cache to reuse
cleared document element lines (a LIFO pool) instead of
creating them afresh for every transaction. The putLine()
routine (Figure 6) is designed to first check for available
entries in the line cache pool and reuse them, while the
clear() routine (Figure 7) places cleared entries back into
the pool.

Therefore for experimenting with the effects of increasing
object churn, we disable the addition of cleared entries to the
lineCache. This causes fresh allocations to occur at every
transaction instead of reusing lines from the cache.



public class XMLTransactionLog {

...

public void populateXML(TransactionLogBuffer log_buffer) {

for (int i = 0; i < log_buffer.getLineCount(); i++) {

putLine(log_buffer.getLine(i), i);

}

}

...

private final void putLine(String s, int n) {

...

---> lineNode.getLastChild().getLastChild().setNodeValue(s);

...

}

...

Figure 3. Populating XML log: Code that references the strings

public class XMLTransactionLog {

...

public void clear() {

...

while ((next_node =

current_node.getPreviousSibling()) != null) {

...

---> lineNode.getLastChild().getLastChild().setNodeValue("");

...

current_node = next_node;

}

}

}

Figure 4. Clearing XML log: Code that releases the references

class NewOrderTransaction extends Transaction {

...

public synchronized void processTransactionLog() {

...

---> xmlOrderLog.clear();

setupOrderLog();

...

// create XML representation

---> xmlOrderLog.populateXML(orderLog);

...

}

...

}

Figure 5. A populated XML log is cleared at the next transaction



private final void putLine(String s, int n) {

...

// Check and see if a line element is available

// in the line cache

...

if (cacheLength > 0) {

---> // fetch a line from the line cache

Node lineNode = lineCache.remove(cacheLength - 1);

ssjDocument.appendChild(lineNode);

...

}

else {

---> // Create a new line element and append it to the document

Element lineNode = (Element) document.createElement("Line");

ssjDocument.appendChild(lineNode);

Element newData = (Element) document.createElement("LineData");

lineNode.appendChild(newData);

Node new_node = document.createTextNode(s);

newData.appendChild(new_node);

}

}

Figure 6. Code that uses entries from the lineCache pool

public void clear() {

...

while ((next_node = current_node.getPreviousSibling()) != null) {

Node lineNode = baseElement.removeChild(current_node);

...

// set the removed line’s LineData Text Value to ""

lineNode.getLastChild().getLastChild().setNodeValue("");

// add the removed line to the lineCache

----> lineCache.add(lineNode);

}

current_node = next_node;

}

};

Figure 7. Code that adds cleared entries to the lineCache pool

4. Power-performance impact: Experiments
and Results

This section summarizes our different experiments to study
the power-performance effects of temporary objects bloat in
SPECpower ssj2008 with different systems and conditions.

Our first set of experiments are on a 2-socket IBM HS21
blade with modest amount of memory, representative of
the popular blade server space. We also had power man-
agement disabled during our studies on this system, again
quite representative of vast majority of production servers
today. More detailed experiments and analysis on two newer,
larger server systems are then discussed. The first set is on a
POWER7 processor based IBM POWER 750 server with de-
tailed sub-system level power-performance instrumentation
where we examine power-performance implications of soft-

ware bloat and its sensitivity to SMT modes, cache sizes,
JVM tuning, and and power management. The second set
is with a Intel Nehalem processor based IBM x3650 M2
server to confirm cross-platform nature of our findings on
the POWER7 system as well as some additional findings re-
lated to JVM heap size reductions.

4.1 Experiments on a blade server
System description: The system is an IBM HS21 blade
server with dual processor sockets with quad-core Intel(R)
Xeon(R) E5450 processors, 8GB DDR2 memory. The oper-
ating system kernel was Linux 2.6.33-rc8, configured with-
out DVFS (no cpufreq). We ran a 64-bit JVM of IBM J9
(build 2.4, JRE 1.6.0). SPECpower ssj2008 was configured
to run with 1 JVM per socket.



We ran the benchmark at 2 load levels, 100% and 50%
and compared the effects of disabling escape analysis and
our code modifications for reducing and increasing bloat.
Power measurements were collected using IPMI commands
to the service processor that employs on-board measurement
circuitry for accurate power measurements. The volume of
temporary objects generated was computed by post process-
ing garbage collection logs1 using the IBM GCMV tool. Ta-
ble 1 presents our results normalized against a baseline run
of the original benchmark code (with escape analysis en-
abled by default).

ssjops power temp objs ssjops per
100% load (% of (% of) per txn watt (% of

baseline) baseline) KB baseline)
Original 100 100 8 100
DisableEA 92 99.2 8.68 92.8
Alloc Less 165 104 3 159
Alloc More 59 97.5 11 60.5

ssjops power temp objs ssjops per
50% load (% of (% of) per txn watt (% of

baseline) baseline) KB baseline)
Original 100 100 8 100
DisableEA 91 99.8 8.68 91.2
Alloc Less 164 101.6 3 161.6
Alloc More 57.5 98.4 11 58.4

Table 1. Power-perf impact on Intel Harperton

The allocation wall effect [32] seems to be fairly pro-
nounced on this system, with substantial improvements in
performance (65%) seen with reduction of temporary ob-
jects even with low GC overheads. The additional power
consumption for this performance gain was just 4%, leading
to a high performance/watt improvement (58%). We also ex-
perimented with larger heap sizes, using more JVMs and dif-
ferent bindings - we observed similar relative improvements
in performance from software bloat reduction for these too.

Disabling escape analysis only resulted in a small reduc-
tion in temporary objects for these runs. Note that Alloc
More also includes extra initialization costs for temporaries
and not solely overheads due to allocation.

Reduced heap size runs A lower temporary objects allo-
cation rate can potentially also enable lower heap sizes to be
used. Reduced heap size runs are interesting from a power-
performance perspective, because any significant savings in
memory footprint could enable (i) low-power mode usage
for inactive memory ranks, (ii) the use of a smaller mem-
ory configuration of the system for cost and power savings,
or (iii) allocation of spared memory to another virtual parti-
tion for improved workload consolidation with same system
configuration/power envelope.

We compared the effects of a 4 fold reduction in heap
size on the two alternatives (Alloc More and Alloc Less). The

1 obtained by specifying the -verbosegc JVM parameter

results are shown in table 2, normalized with respect to the
original baseline run with full heap.

heap ssjops power % time
size (% of (% of) in

(relative) baseline) baseline) GC
Alloc More 100% 59 97.5 1.2
Alloc More 25% 48.6 97.8 18.6
Alloc Less 100% 165 104 0.7
Alloc Less 25% 130.5 102.8 13.6

Table 2. Reduced heap comparisons on Intel Harperton at
100% load level

We observe that a significant fraction of time is spent in
GC - a few global collections and a large number of nursery
collections. This leads to a substantial degradation in perfor-
mance and energy-efficiency (for same memory configura-
tion) for both variants of temporary object allocations. Even
so, the alternative with less bloat, Alloc Less, has a 30.5%
better performance than the original allocation even at one-
fourth the original heap size.

Based on the promising results from these initial experi-
ments, we decided to perform more detailed investigation of
the effects on larger server systems with more memory ca-
pacity and bandwidth, and power management capabilities.
We expect the allocation wall effect to be not as pronounced
on such systems.

4.2 Experiments on an IBM POWER7 processor
platform

The POWER7 processor is the latest in the IBM POWER
processor family. It has 8 4-way multi-threaded cores for a
total of 32 threads per procesor, separate 32-K L1 data and
instruction caches per core, 256K L2 cache per core and
a total of 32MB of shared on-chip L3 cache. Our experi-
mental system is a prototype IBM POWER 750 server with
4 POWER7 sockets interconnected by an SMP fabric and
4x4GB DDR3-1066 dimms per socket, for a total of 64GB of
memory. The system software stack consists of the POWER
hypervisor running a pre-release AIX 6.1 level with 32-bit
IBM J9 Java sdk (1.6.0).

POWER7 processor is designed for energy-efficiency and
dynamic power management support [28] incorporating the
second-generation of IBM EnergyScale [17] power man-
agement stack. The primary power management capability
examined in our study is Dynamic Voltage and Frequency
Scaling (DVFS) of the processor. Second-generation load-
based DVFS scaling algorithms for IBM POWER platforms
of those presented by Rajamani et al [22] are employed
in some of the evaluations discussed below. Power manage-
ment and monitoring are built-in facilities provided by real-
time firmware running on a dedicated power management
controller, called TPMD. Traces of fine-grain power mea-
surements at the system and sub-system (processor socket
and memory sub-systems) level, power management actions



like frequency changes and synchronized memory controller
statistics are obtained from the TPMD for the results dis-
cussed in this work.

4.2.1 Impact of allocation strategies
We again compare the default allocation approach with the
less and more bloat options of Alloc Less and Alloc More,
on the POWER7 system. The measured temporary object
space allocation per transaction were 6.9KB/txn for original,
1.8KB/txn for Alloc Less and 9.8KB/txn for Alloc More.
Figure 8 shows the impact of this on the memory controller
and memory power statistics.

Reducing software bloat reduces memory traffic to 67%
resulting in a lowering of memory power consumption to
87%, the memory bandwidth per ssjop dropped to 63%. At
the other end, Alloc More, has 134% of the Mem BW/ssjop
as the original allocation. However, the impact of this in-
creased Mem BW demand per transaction on the total band-
width and memory power consumption is much less. The
reason for this is that the overall throughput takes a signifi-
cant hit for Alloc More because of increase cache pressure.
While the memory controller’s capacity is not taxed by the
increase in bandwidth demands, the additional latency for
traffic from on-chip cache to off-chip DRAM impacts the
performance of Alloc More significantly.

This impact can be confirmed in Figure 9. The Norm
score bars reflect normalized SPECpower ssj2008 scores
that are the energy-efficiency metric for the benchmark and
Norm Perf and Norm Power bars the aggregate Performance
(numerator) and Power (denominator) components for the
efficiency score. So there is a 25% drop in performance for
Alloc More while there is a 7% increase in performance
for Alloc Less. With near identical power consumption, the
performance improvements have very similar impact on the
energy-efficiency score too.

4.2.2 Impact of Multi-threading
The experiments done earlier exploit the full 4-way multi-
threading capability of the POWER7 processors. The pro-
cessors also support lower levels of multi-threading. For our
next set of experiments we examine the impact of software
bloat with just two threads enabled per core. Figures 10
and 11 show the memory statistics and impact summary for
the benchmark running in SMT2 mode comparing both Al-
loc More and Alloc Less with the original allocation ap-
proach, Alloc Orig. The memory statistics show that Alloc
Less provides very similar improvements and Alloc More
similar degradation in memory statistics for SMT2 mode
as they did for SMT4 mode (captured in Figure 8), with
slightly larger improvements in BW/ssjop metric for Alloc
Less. When we look for the impact of these improvements,
we see that Alloc More does suffer in a similar fashion in
SMT2 mode too (79% of Alloc Orig’s score in SMT2 mode
and 76% in SMT4 mode). However, Alloc Less achieves
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Power7 system

a much smaller improvement than it did for SMT4 mode -
102% in SMT2 mode versus 107% in SMT4 mode.

The main difference between the SMT modes is the cache
pressure being roughly halved for SMT2 versus SMT4. Al-
loc More that worsens this cache pressure still produces
a similar net degradation performance. However, with the
cache pressure being relatively less with the original allo-
cation, the improvement in memory usage that Alloc Less
brings gets muted on overall performance.

All other results on the POWER7 system are for experi-
ments conducted in the full 4-way SMT mode.
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Figure 10. Memory Statistics for SPECpower ssj2008 on
Power7 system in SMT2 mode
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Figure 11. Impact Summary for SPECpower ssj2008 on
Power7 system in SMT2 mode

4.2.3 Cache size impact
With Alloc Less showing a higher performance impact in
SMT4 vs SMT2 mode, possibly from additional cache pres-
sure, we decided to examine if our relatively large on-chip
cache was hiding some of the potential degradation effects
of software bloat i.e. if reducing software bloat with Alloc
Less could have a more pronounced impact if we had smaller
processor caches. Configuring each of the processors with
16MB of L3 cache we compared the relative performance
of Alloc Less with the original, Alloc Orig. The results are
summarized in Figures 12 and 13.
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Figure 12. Memory Statistics for SPECpower ssj2008 on
Power7 system with Half Caches

With just half the cache size, we actually see a narrowing
of the gap between Alloc Less and original in the memory
statistics (e.g. Mem Bw/ssjop at 80% instead of 63% as seen
in Figure 8). However, the net impact statistics in Figure 13
show the full picture. There is a 19% improvement for Alloc
Less over Alloc Orig on the energy-efficiency score from a
21% increase in performance, as opposed to a 7% increase in
performance with 32MB caches. From the memory statistics
it is clear that this bigger relative performance improvement
for Alloc Less is not from reducing memory traffic per ssjop
but from the increased sensitivity to cache capacity and
latency with the smaller caches. So it is clear that the large
on-chip caches of the POWER7 play a key role in mitigating
software bloat.

4.2.4 Impact of tuned workloads
For SPECpower ssj2008, significant tuning efforts were un-
dertaken to obtain good performance on the platform. While
system vendors can invest tuning efforts for specific bench-
marks, often system users may not be able to invest signif-
icant efforts for tuning their code. To study if our observa-
tions are unduly biased by working with a well-tuned set-
tings for benchmark, we performed experiments with out-
of-the-box run scripts for the benchmark i.e. only the default
JVM and OS settings were used. For the non-tuned runs
we measured the allocation rates at 8.23 KB/txn for orig-
inal approach and 2.87 KB/txn for Alloc Less. Figures 14
and 15 provide the corresponding relative improvements for
Alloc Less without benchmark tuning. In the memory statis-
tics, while there appears to be similar reduction in Mem
BW/ssjop the reduction in memory bandwidth and power are
smaller. The reason again appears to be increased throughput
for Alloc Less compared to the original, as confirmed by the
summary impact statistics in Figure 15. The improvement
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Figure 13. Impact Summary for SPECpower ssj2008 on
Power7 system with Half Caches

82
% 87

%

69
%

95
%

66
%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Norm Mem BW Norm Mem Rds Norm Mem Wrs Norm Mem
Power 

Norm Mem
BW/ssjop

R
at

io
 o

f 
A

llo
c 

le
ss

 t
o

 A
llo

c 
o

ri
g

Figure 14. Memory Statistics for SPECpower ssj2008 on
Power7 system without tuning

in throughput is 24% for Alloc Less as opposed to 7% with
the tuning (shown in Figure 9. There is a corresponding im-
provement in the energy-efficiency score with power being
nearly the same again. Thus we can see here that non-tuned
workloads might see an even bigger performance/efficiency
impact from software bloat than tuned executions.

4.2.5 Impact of power management
Next we examine the influence of power management on the
impact of software bloat by enabling the processor voltage
and frequency scaling algorithms for energy reduction im-
plemented in the TPMD. With full caches and tuning Fig-
ure 16 shows the impact for both the introduction of more
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Figure 15. Impact Summary for SPECpower ssj2008 on
Power7 system without tuning
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Figure 16. Impact Summary for SPECpower ssj2008 on
Power7 system with DVFS

software bloat with Alloc More and the reduction of bloat
with Alloc Less. There appears to be a marginal reduction
in the impact of software bloat with the relative score for
Alloc More coming in at 78% (versus 76% in Figure 9 with-
out DVFS) and the relative score for Alloc Less being 106%
(versus 107% in Figure 9 without DVFS).

Continuing further, we conducted the half cache and no-
tuning comparisons of Alloc Less with original but now with
power management enabled - the results are captured in Fig-
ures 17 and 18. In both these scenarios, the processor is
working at less than its full capacity even at peak load allow-
ing the DVFS algorithms to take advantage of the exposed
slack for power reduction. For the without tuning scenario,
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Figure 17. Impact Summary for SPECpower ssj2008 on
Power7 system with half cache and DVFS
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Figure 18. Impact Summary for SPECpower ssj2008 on
Power7 system without tuning and with DVFS

the exposed slack is so big that the DVFS algorithm can meet
the demand with the lowest frequency for both Alloc Orig
and Alloc Less (even for its 22% greater performance). So
the power numbers are same leading to the performance ra-
tio being reflected as also the ratio for the energy-efficiency
score. For the half cache scenario Alloc Less needs to use
higher frequencies for meeting the additional demand that
it is able to satisfy and so has a higher power cost (108%).
Consequently this lowers the score improvement to 112%
for a performance improvement of 121%.

A different view of the impact of reducing software
bloat is presented in Figures 19 and 20. Here the alloca-
tion strategies are compared on their power consumption
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Figure 19. Impact of DVFS on power consumption with
bloat reduction, at peak performance of Alloc More
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Figure 20. Impact of DVFS on power consumption with
bloat reduction, at peak performance of Alloc Orig

at identical performance levels. In Figure 19 the compari-
son point is at the peak performance (100% load level of
SPECpower ssj2008) of Alloc More. In Figure 20 it is at the
peak performance of Alloc Orig (Alloc More cannot achieve
that performance and so is not shown in this figure). From
these figures it is clear that there is a synergistic benefit to re-
ducing software bloat in the presence of DVFS - the power
reductions from bloat reduction are visibly greater when
DVFS is simultaneously being exploited for energy reduc-
tion (DVFS bars for Alloc Orig and Alloc Less are shorter
than the Fixed Freq bars).

While the focus of this section of our study is the in-
teraction between DVFS and software bloat, we also note
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Figure 21. Impact Summary for SPECpower ssj2008 on an
IBM x3650 M2 server

that usage of DVFS by itself brings significant improvement
to the energy-efficiency score with no performance loss.
For example with the original allocation approach we found
67% (fullcache with tuning), 77% (no tuning) and 89% (half
cache) improvements in score for DVFS over the fixed fre-
quency runs with the same performance.

4.3 Experiments on Intel Nehalem processor platform
The Nehalem processor used in our study is an Intel(R)
Xeon(R) X5570 in a dual-socket IBM x3650 M2 system -
each processor has 4 cores with two threads per core. Power
measurements on this system were done at the system-level
with periodic power samples obtained through IPMI com-
munications with the on-board service processor. System
was running Linux 2.6.33-rc8-mm1 with 64-bit IBM J9
JVM, Linux-based frequency scaling for energy savings was
enabled.

Figure 21 shows the impact for the three temporary object
allocation strategies. The results are quite similar to those on
the POWER7 platform (comparable result there is captured
in Figure 16). Software bloat has noticeable impact on the
energy-efficiency score for the benchmark primarily through
its influence on performance through cache pressure impact.

Figure 22 shows results for runs with a reduced heap size
- total heap size was reduced in the ratio of the object al-
location rates for Alloc Less and Alloc Orig (37.5%). The
statistics are normalized to Alloc Orig’s with full heap. As
expected the performance worsens with a reduced heap size.
The gap between the allocation strategies also widens in this
more resource-constrained environment. It is encouraging to
note that that with a smarter allocation strategy, like Alloc
Less, performance is still better than the original (105%)
even with significant heap size reduction. As noted before,
heap size reduction has the potential to generate greater ef-

76
%

76
%

10
0%

93
%

91
%

99
%

10
6%

10
5%

10
0%

0%

20%

40%

60%

80%

100%

120%

Norm Score Norm Performance Norm Power

Alloc_more_redheap Alloc_orig_redheap Alloc_less_redheap

Figure 22. Impact Summary for SPECpower ssj2008 on an
IBM x3650 M2 server with reduced heap size

ficiencies from better DRAM low-power mode exploitation,
enabling higher degrees of workload/virtual machine con-
solidation and reduction in physical memory used.

4.4 Summary
Following are the key observations from our experiments
with SPECpower ssj2008 on the three server platforms:

Runtime software bloat in the form of temporary object al-
location has significant energy-efficiency impact, primar-
ily through its impact on realizable peak performance.
Secondary impacts include higher memory traffic and
power consumption. The relative gains of addressing run-
time software bloat is most dramatic in the smaller mem-
ory capacity blade server system with about 65% im-
provement in performance with better object allocation
methods (Alloc Less) at peak load. Evaluations for the
larger servers were done with full benchmark runs with
the benchmark scores being 107% and 110% for the
POWER 750 and x3650 M2 servers.

The first order impact is through its impact on the memory
hierarchy usage - processor cache effectiveness and/or
dependance on off-chip memory latency and bandwidth.
Software bloat’s impact is more acute when the cache
resources are already strained with high multi-threading
or with relatively lower cache capacity.

Poorly tuned JVM executions appear to suffer dispropor-
tionately from the issue of software bloat. Reducing bloat
had bigger impact for out-of-the-box benchmark execu-
tion.

Power management in the form of processor DVFS has very
complementary impact with addressing software bloat.
On the one hand DVFS slightly reduced the energy-



efficiency degradation caused by software bloat, on the
other it also significantly improves the energy-efficiency
improvements brought about by reduction in bloat. At
the equivalent performance level of Alloc More at 100%
load level, the better allocation strategies of Alloc Orig
and Alloc Less consume 58% and 56% lower energy, re-
spectively, with DVFS and 97% and 95% lower energy,
respectively, at a peak fixed frequency operation.

Suitably addressing runtime software bloat was found to
signficantly aid heap size reductions. The better alloca-
tion strategy, Alloc Less, obtained improvements over the
original allocation even with significantly reduced heap
sizes (30.5% performance improvement for Alloc Less
with a heap size of 25% for the HS21 blade server and a
6% improvement in energy-efficiency score with a heap
size of 37% for the x3650 M2 server).

5. Discussion: Towards (semi) automated
solutions

Our analysis of power-performance implications of reducing
object churn has relevance for both manual code refactoring
and automated solutions. Offline analysis techniques (com-
bining static and dynamic analysis for example) have been
proposed for aiding detection and refactoring of code to re-
duce object creation, [3, 9]. Dynamic runtime optimizations
are most convenient but incur a power-performance cost,
which affects evaluation of cost-benefit tradeoffs.

We were curious to understand what would it take to
automate the kind of changes that we made to SPECpower
to reduce object churn at runtime. A significant proportion
of the churn was attributable to a specific allocation site
which we were able to hand optimize with ease (even as non-
experts). Therefore, we were initially surprised to find that
sophisticated production JITs were not already exploiting
this opportunity for optimization.

We created a testcase with a few simplified variations of
the same code pattern to study the factors limiting the extent
of optimization possible. One of the commonly cited rea-
sons for limited effectiveness of runtime escape analysis for
component based applications is the cost and scale of (in-
terprocedural) analysis and challenge with inlining calls to
sufficient levels required. We experimented with specifying
options to the JIT for targeted inlining and hot method as-
sumptions, but observed that the compiler still did not detect
the opportunity even with several levels of simplification of
the code example.

This could have been merely an artifact of the particular
JVM implementation that we chose for our experimentation.
However, a closer analysis reveals a few reasons why gener-
alizing this could be non-trivial for runtime optimizers.

5.1 Potential Difficulties:
Globally escaping root scope The strings are referenced
through several nested field levels off the transaction object

on heap, which in turn is accessed via several levels of
nesting (including a runnable class) from an anscestor class
that is reachable from a different thread.

Cross transaction escape-capture The clear() routine which
dereferences the strings is invoked inside the next transac-
tion, hence the strings escape the transaction boundary. [The
loop that iterates over transactions is the nearest common
ancestor that spans the lifetime of the strings]

Field re-assignment does not ensure Bypass The clear()
routine effects a dereference of the allocated strings by it-
erating over the line elements in the XML document object
and resetting the value fields to ””, but the analysis cannot
perform a ”kill” (”bypass” in [6]) as it cannot ensure that all
previous references are killed.

5.2 Exploiting high level insight
Is there some generally applicable higher level semantic
insight that could be passed to the runtime optimizer to
enable it to exploit such opportunities more effectively ?
This is an interesting question with relevance beyond narrow
optimizations for this specific code snippet. Many cases of
runtime bloat and their specific solutions are only apparent
in the context of higher level knowledge and assumptions
that are not explicitly available to the underlying optimizers.

In this particular case, we used the following high level
insights for creating the variation with reduced bloat:

1. A transaction processing object instance executes one
transaction at a time and is not concurrently accessed by
any other thread, even though it may be reachable glob-
ally through the transaction managers list maintained for
overall coordination. Hence no other thread can cause a
reference to the strings to escape globally between a pop-
ulate() and the subsequent clear(). Further no synchro-
nization is required for the object pool of string lines.

2. A transaction processing object has two kinds of state,
(i) state that is referred/reused/cached across transactions
and (ii) state that is limited to the lifetime of a transaction.
The latter kind of state can be captured at a subsequent
invokation of the transaction processing method which
corresponds to the next iteration/request using the same
transaction object. Observing cross-transaction escape-
capture relationships reveals this distinction.

3. There is an escape-capture or escape-reuse relationship
for data referenced by the the populate() & clear() meth-
ods of the transaction log object. In that sense these are
complementary methods: anything allocated in populate
is reusable after a clear if not already being reused (e.g.
the line cache is already reused, while the strings are cap-
tured and hence candidates for reuse).

6. Discussion: Other workloads
The detailed experiments with SpecPower ssj2008 enabled
us to isolate the effects of a single category of bloat using



well-understood natural control points in a non-trivial ap-
plication context of an established server side Java power-
performance benchmark.

The degree of impact of temporary objects reduction on
performance is workload dependent, as has been established
from results on object churn reduction in prior work [24,
32]. [32] defined a simple allocation microbenchmark, called
”AllocMark” to study the costs of pure allocation. We ex-
tended this to create a microbenchmark called ”AllocRe-
useMark” which incorporates object reuse for a percentage
of the allocations. Power and allocation rate measurements
were collected on the Intel Nehalem system running an in-
stance of this benchmark on each processor/hardware thread
for different levels of object reuse Table reftable:allocreuse.
The reused bytes are always cache resident, hence 50% reuse
doubles the effective performance. This improvement is as-
sociated with a increase in power consumption, but it is rel-
atively smaller than the performance gain, resulting in a net
gain in energy efficiency (similar to the DVFS results with
reducing SpecPower bloat).

Reuse KB/sec Power KB/watt
(% of (% of) (% of
base) base) base)

0% 100 100 100
25% 133 102.6 128
50% 199 105.3 190
75% 387 119 328

Table 3. AllocReuseMark comparisons on Intel Nehalem

It is important to note that excess temporaries is usually
only a symptom of bloat. For example, it may be indica-
tive of excess transformations and layering inefficiencies.
Addressing the underlying causes rather than the symptom
is therefore expected to result in much bigger gains in effi-
ciency.

To gain an assessment of potential power-performance
implications of such compounded patterns of bloat arising
out of layering and transformation costs for a more com-
plex server workload, we ran comparisons of the DaCapo
[26] tradesoap and tradebeans benchmark. These application
server benchmarks have been included in the recent release
of DaCapo version 9.12 (December 23, 2009). These are
based on the Apache DayTrader J2EE workload and are ex-
ecuted within the Geronimo application server utilizing the
Derby in-memory database. Both tradebeans and tradesoap
execute the same underlying workload, except that tradesoap
uses indirect calls through SOAP from the client (like many
real workloads do) while tradebeans executes direct calls on
the server. Thus comparing these two configurations is use-
ful for studying the costs of fine grained messaging, layering
and transformation. Excesses of such costs are typical in pat-
terns of software bloat observed in real applications.

Our preliminary observations indicated a 15% increase
in power consumption, with close to 2X slowdown in per-

formance in tradesoap vs tradebeans, resulting in an over-
all 2.27X degradation in power efficiency. We noticed that
tradesoap generated almost 10x higher footprint of tempo-
rary objects and caused a significant increase in CPU uti-
lization. This shows that fine grain messaging and associated
transformations can have a significant power efficiency cost,
especially for short high volume transactions and so abuse
of it for scenarios where significant levels of dynamism are
not needed should be avoided.

7. Related work
Analysis and measurement of software bloat Mitchell,
Sevitsky and Srinivasan [19] define metrics based on mod-
eling runtime information flow to classify and characterize
the nature and volume of data transformations executed, but
these measures have not been automated till date. The no-
tion of data structure health signatures proposed by Mitchell
and Sevitsky [18] has been used very effectively in charac-
terization and automated measurement [20] of Java memory
bloat in long lived heap objects. This is a relative measure of
total memory bytes consumed by actual data vs associated
representational memory overhead.

For some categories of bloat, including the problem of
temporary objects bloat which we observe in our case study,
where an explicit model may not be available for distinguish-
ing overhead from necessary data or activity, researchers
have used different measures of excesses like excessive vol-
umes of temporary objects and excessive data copies to rec-
ognize the presence of bloat. For example, Xu et al [31] use
an instrumented JVM to profile and summarize chains of
runtime data copies, while Dufour et al [9] apply blended
static and dynamic analysis techniques to runtime traces for
characterizing the usage of temporaries.

Java energy characterization Most prior work on energy
(and power) characterization of the Java runtime and appli-
cations [4, 10, 15, 27] have been simulator based studies or
primarily conducted on embedded platforms. Contreras and
Martonosi [7] used real system power measurements (like
we do) to obtain a component-wise comparisons of power
and energy of the Jikes RVM and the Kaffe virtual machine
when running client workloads on a Pentium M vs an em-
bedded Intel XScale platform. Their results show that a sig-
nificant proportion of energy is consumed by the JVM, par-
ticularly components like the classloader, JIT and garbage
collector. Our work differs in its focus on the impact of a
specific category of bloat on power-performance for a given
workload. Further we study this impact on large server sys-
tems running a production JVM, where the extent of appli-
cability of many of the previous results is not clear.

Object churn analysis, impact and solutions Compiler
and runtime optimizations like escape analysis [2, 6, 11, 29]
and improvements in memory management and garbage col-
lection techniques [1] have been developed to reduce the



overheads of allocating and reclaiming temporary objects.
However, Shankar et al [24] found that even a sophisticated
escape analysis implementation in high performance pro-
duction JVM typically eliminates less than 10% of alloca-
tions in component based applications, which matches our
observations. They experimented with the use of aggressive
guided inlining of regions with high object churn to enable
the JIT to detect more opportunities.

Performance understanding techniques have been pro-
posed [3, 9] for guiding programmers in eliminating ex-
cess temporaries that cannot be automatically detected by
runtime optimizers. For example Buytaert et al [3] identify
locations where code refactoring can be applied to reduce
object creations. Escape detection has been proposed as an
alternative to escape analysis when objects have a high like-
lihood of being captured, but a conservative analysis cannot
detect these with guaranteed correctness. Other alternatives
include advancements in memory management techniques
for ensuring faster reclamation or reuse of temporary ob-
jects, e.g taking better advantage of allocation phases in the
application [8, 30], or combining the benefits of explicit ob-
ject reuse [5, 14] with garbage collection or scoped batch
reclamation.

While these efforts are oriented towards fixing the prob-
lem, either through automated solutions or through analysis
techniques which help pinpoint the sources of the problem,
our work complements these efforts by studying the systems
level power-performance impact of reducing and increasing
object churn. We believe that we are the first to perform
such a study, particularly with real power measurements on
large scale server systems with dynamic power management
capabilities. This is particularly interesting because an im-
provement in performance need not necessarily translate to
an equivalent improvement in power efficiency on such sys-
tems, and power savings may occur without a corresponding
increase in performance.

Zhao et al [32] analysed the implications of object alloca-
tion on scalability and performance. We were able to repro-
duce similar results during our experimentation, particularly
on the Intel Harperton system which was appears to be clos-
est in configuration to their experimental setup. However,
power-efficiency was not a consideration in their work.

8. Conclusions and future work
The high degree of software modularization favored for
rapid development introduces software bloat of various
forms. On a different front, power consumption of servers
has emerged as the dominant hurdle to computing perfor-
mance growth both from approaching technological limits
to squeezing increasing performance from a given power
budget as well as the rapid growth in energy costs of servers
and datacenters. In this paper, we explored the intersection
of both these areas.

We presented, what is to the best of our knowledge, the
first experimental study of the power-performance implica-
tions of software bloat. We focused on one specific cate-
gory of runtime bloat in great detail, the creation of exces-
sive temporary objects and its impact on performance, power
and the energy-efficiency metrics for SPECpower ssj2008,
the first commercial power-performance benchmark requir-
ing energy efficiency reports across a full range of system
loads. We performed a detailed cross platform evaluation
of these implications on 3 different modern servers under
different configurations covering different processors, mul-
tiple levels of multithreading, cache sizes, power manage-
ment, JVM tuning and heap sizes. Our results show signifi-
cant benefits for software bloat reduction, ranging from 7%
to 59%. We find that workload tuning and system character-
istics such as SMT and cache size both are important factors
in the impact of bloat reduction, e.g. non-tuned (out of the
box) JVM configurations show more than 20% improvement
with lower bloat. Power management features were found to
have a synergistic relation with the benefits from bloat re-
duction, with DVFS achieving 42% power savings between
the highest bloat alternative and the original implementation
at equivalent performance, compared to 3% savings without
DVFS.

We consider this study to be an important first step in ex-
ploring the connection between software bloat and energy
efficiency. Interesting future directions include the exploita-
tion of higher level semantic insights (like we used in our
hand optimization efforts) for automated bloat reduction and
analysing the impact of multiple categories of bloat with re-
alistic workloads. Our preliminary experiments with the Da-
Capo tradesoap and tradebean benchmarks indicate the po-
tential for far more significant improvements in power effi-
ciency from widespread removal of software bloat.
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