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Abstract

On the Semantic Web, decision makers (humans or software agents alike) are
faced with the challenge of examining large volumes of information originat-
ing from heterogeneous sources with the goal of ascertaining trust in various
pieces of information. While previous work has focused on simple models for
review and rating systems, we introduce a new trust model for rich, complex
and uncertain information. We present the challenges raised by the new model,
and solutions to support scalable trust-based query answering over uncertain
information. An evaluation of the first prototype implementation under a vari-
ety of scenarios shows the robustness of our trust model, and the scalability of
trust-based query answering over uncertain information.

1. Introduction

Decision makers (humans or software agents alike) relying on information
available on the web are increasingly faced with the challenge of examining
large volumes of information originating from heterogeneous sources with the
goal of ascertaining trust in various pieces of information. Several authors have
explored various trust computation models (e.g., eBay recommendation system
[20], NetFlix movie ratings [18], EigenTrust [12], PeerTrust [21], etc.) to as-
sess trust in various entities. A common data model subsumed by several trust
computation models (as succinctly captured in Kuter and Golbeck [15]) is the
ability of an entity to assign a numeric trust score to another entity (e.g., eBay
recommendation, Netflix movie ratings, etc.). Such pair-wise numeric ratings
contribute to a (dis)similarity score (e.g., based on L1 norm, L2 norm, co-
sine distance, etc.) which is used to compute personalized trust scores (as in
PeerTrust) or recursively propagated throughout the network to compute global
trust scores (as in EigenTrust).

A pair-wise numeric score based data model may impose severe limitations
in several real-world applications. For example, let us suppose that information
sources {S1, S2, S3} assert axioms φ1 = all men are mortal, φ2 = Socrates is
a man and φ3 = Socrates is not mortal respectively. While there is an obvious
conflict when all the three axioms are put together, we note that: (i) there is no
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pair-wise conflict, and (ii) there is no obvious numeric measure that captures
(dis)similarity between two information sources.

This problem becomes even more challenging because of uncertainty associ-
ated with real-world data and applications. Uncertainty manifests itself in sev-
eral diverse forms: from measurement errors (e.g., sensor readings) and stochas-
ticity in physical processes (e.g., weather conditions) to reliability/trustworthiness
of data sources; regardless of its nature, it is common to adopt a probabilistic
measure for uncertainty. Reusing the Socrates example above, each informa-
tion source Si may assert the axiom φi with a certain probability pi = 0.6.
Further, probabilities associated with various axioms need not be (statistically)
independent. In such situations, the key challenge is develop trust computation
models for rich (beyond pair-wise numeric ratings) and uncertain (probabilistic)
information.

The contributions of this paper are three fold. First, our approach offers
a rich data model for trust. We allow information items to be encoded in
inconsistency-tolerant extension of Bayesian Description Logics [2] (BDL) − a
probabilistic extension of Description Logics, the foundation of OWL DL. The
key idea behind trust inference is to leverage justifications of inconsistencies
to compute trust scores for information sources; intuitively, an inconsistency
corresponds to conflicts in information items reported by different information
sources and the justification for an inconsistency traces back an inconsistency to
a minimal set of information sources that are responsible for the conflict. This
contribution builds on our previous work [7].

Second, our approach supports trust-based query answering over uncertain
information. The key idea is to leverage inferred trust scores to refine a proba-
bilistic database and support semantic query answering over the refined knowl-
edge base. We show that past work on query answering on BDL [2] may some-
times result in counter-intuitive results; we extend past work by providing an
intuitive query answering semantics for BDL and supporting inconsistency tol-
erant reasoning over a probabilistic knowledge base. To avoid the worst case
exponential blow up typically associated with reasoning in most probabilistic
extension of OWL DL, including BDL, we propose an error-bounded approxima-
tion algorithm for scalable probabilistic reasoning over large and very expressive
knowledgebases.

Third, we have developed a prototype of our trust assessment and trust-
based query answering system by implementing a probabilistic extension, PSHER,
to our publicly available highly scalable DL reasoner SHER [6]. We empirically
evaluate the efficacy of our scheme (on a publicly available UOBM dataset)
when malicious sources use an oscillating behavior to milk the trust computa-
tion model and when honest sources are faced with measurement errors (high
uncertainty) or commit honest mistakes. We also evaluate the scalability of
query answering over large, expressive and probabilistic knowledge bases.

Figure 1 describes our architecture for trust inference and query answering
over uncertain information. The remainder of the paper is organized as follows:
After a brief introduction of Bayesian Description Logics (BDL) in Section 2,
Section 3 describes an inconsistency-tolerant extension of BDL and presents
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Figure 1: Trust Inference and Query Answering over Uncertain Information

solutions to effectively compute justifications (a proxy for (dis)similarity scores
in our trust computation model). Section 4 describes our solutions for trust-
based query answering. Section 5 presents an experimental evaluation of our
system. We finally conclude in Section 7.

2. Background

In this section, we briefly describe our data model for uncertain information.

2.1. Bayesian Network Notation
A Bayesian Network [19] is a well-known probabilistic graphic model that

encodes in a directed acyclic graph probabilistic dependencies between random
variables. We briefly recall notations for a Bayesian Network, used in the re-
mainder of the paper.

V : set of all random variables in a Bayesian network (e.g., V = {V1, V2}).
D(Vi) (for some variable Vi ∈ V ): set of values that Vi can take (e.g., D(V1) =
{0, 1} and D(V2) = {0, 1}). v: assignment of all random variables to a possible
value (e.g., v = {V1 = 0, V2 = 1}). v|X (for some X ⊆ V ): projection of v that
only includes the random variables in X (e.g., v|{V2} = {V2 = 1}). D(X) (for
some X ⊆ V ): Cartesian product of the domains D(Xi) for all Xi ∈ X.

2.2. Bayesian Description Logics
Bayesian Description Logics [2] is a class of probabilistic description logic

wherein each logical axiom is annotated with an event which is associated with
a probability value via a Bayesian Network. In this section, we describe Bayesian
DL at a syntactic level followed by a detailed example.

A probabilistic axiom over a Bayesian Network BN over a set of variables
V is of the form φ : e, where φ is a classical DL axiom, and the probabilistic
annotation e is an expression of one of the following forms: X = x or X 6=
x where X ⊆ V and x ∈ D(X). Intuitively, every probabilistic annotation
represents a scenario (or an event) which is associated with the set of all value
assignments V = v with v ∈ D(V ) that are compatible with X = x (resp. X 6=
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x) (that is, v|X = x, resp. v|X 6= x), and their probability value PrBN (V = v)
in the Bayesian network BN over V . Simply put, the semantics of a probabilistic
axiom φ : X = x is as follows: when event X = x occurs then φ holds. φ : p,
where p ∈ [0, 1], is often used to directly assign a probability value to an classical
axiom φ. This is an abbreviation for φ : X0 = true, where X0 is a boolean
random variable which is independent from all other variables and such that
PrBN (X0 = true) = p. We abbreviate the probabilistic axiom of the form > : e
(resp. φ : >) as e (resp. φ).

A probabilistic knowledge base (KB) K = (A, T , BN) consists of : 1) a
Bayesian Network BN over a set of random variables V , 2) a set of probabilistic
Abox axioms A of the form φ : e, where φ is a classical Abox axiom, and 3) a
set of probabilistic Tbox axioms T of the form φ : e, where φ is a classical Tbox
axiom.

The following example illustrates how this formalism can be used to describe
road conditions influenced by probabilistic events such as weather conditions:

T = {
SlipperyRoad uOpenedRoad v HazardousCondition,

Road v SlipperyRoad : Rain = true}
A = {Road(route9A),

OpenedRoad(route9A) : TrustSource = true}

In this example, the Bayesian network BN consists of three variables: Rain,
a boolean variable which is true when it rains; TrustSource, a boolean vari-
able which is true when the source of the axiom OpenedRoad(route9A) can be
trusted; and Source, a variable which indicates the provenance of the axiom
OpenedRoad(route9A). The probabilities specified by BN are as follows:

PrBN (TrustSource = true|Source = ‘Mary′) = 0.8

PrBN (Rain = true) = 0.7

PrBN (TrustSource = true|Source = ‘John′) = 0.5

PrBN (Source = ‘John′) = 1

The first Tbox axiom asserts that a opened road that is slippery is a haz-
ardous condition. The second Tbox axiom indicates that when it rains, roads
are slippery. The Abox axioms assert that route9A is a road and, assuming
that the source of the statement OpenedRoad(route9A) is trusted, route9A is
opened.

Informally, probability values computed through the Bayesian network ‘prop-
agate’ to the ‘DL side’ as follows. Each assignment v of all random variables
in BN (e.g.,v = {Rain = true, TrustSource = false, Source= ‘John’}) corre-
sponds to a primitive event ev (or a scenario). A primitive event ev is associ-
ated, through BN , to a probability value pev and a classical DL KB Kev which
consists of all classical axioms annotated with a compatible probabilistic an-
notation (e.g., SlipperyRoad uOpenedRoad v HazardousCondition,Road v
SlipperyRoad,Road(route9A) ). The probability value associated with the
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statement φ (e.g., φ = HazardousCondition(route9A)) is obtained by sum-
ming pev for all ev such that the classical KB Kev entails φ
(e.g., Pr(HazardousCondition(route9A)) = 0.35).

3. Trust Inference

In this section we describe trust inference over uncertain information (en-
coded as BDL axioms).

3.1. Overview
A key element in our approach to inference trust in uncertain information

is the ability to handle inconsistencies that often naturally arise when informa-
tion from multiple sources is aggregated. Intuitively, our approach allows us
to compute a degree of consistency (0 ≤ d ≤ 1) over an uncertain (probabilis-
tic) knowledge base. We note that inconsistencies correspond to conflicts in
information items reported by one or more information sources. Our approach
assigns numeric weights to the degree of inconsistency using the possible world
semantics. Revisiting the Socrates example (from Section 1), three probabilis-
tic axioms φi : pi correspond to eight possible worlds (the power set of the
set of axioms without annotations), namely, {{φ1, φ2, φ3}, {φ1, φ2}, · · · , ∅}.
For instance, the possible world {φ1, φ2} corresponds to a world wherein all
men are mortal, and Socrates is a man. Each possible world has probability
measure that can be derived from pi (in general the probability measure can
be computed as joint probability distributions over the random variables in the
Bayesian Network). For instance, the probability of a possible world {φ1, φ2}
is given by p1 ∗ p2 ∗ (1− p3) = 0.6 ∗ 0.6 ∗ (1− 0.6) = 0.144. Indeed, we observe
that the world {φ1, φ2, φ3} is inconsistent, while the remaining seven possible
worlds are consistent. This allows us to compute the degree of inconsistency of
a knowledge base as the sum of the probabilities associated with possible worlds
that are inconsistent.

In the presence of inconsistencies, our approach extracts justifications −
minimal sets of axioms that together imply an inconsistency [11]. Our trust
computation model essentially propagates the degree of inconsistency as blames
(or penalties) to the axioms contributing to the inconsistency via justifications.
This approach essentially allows us to compute trust in information at the gran-
ularity of an axiom. Indeed one may aggregate trust scores at different levels
of granularity; e.g., axioms about a specific topic (e.g., birds), one information
source (e.g., John), groups of information sources (e.g., all members affiliated
with ACM), etc.

Intuitively, our trust computation model works as follows. First, we com-
pute a probability measure for each justification as the sum of the probabilities
associated with possible worlds in which the justification holds (namely, all the
axioms in the justification are present). Justifications play the critical role of
a proxy to the measure of dissimilarity between information sources, which is,
as mentioned in section 1, a key element of most trust computation models.
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Second, we partition the degree of inconsistency across all justifications; for
instance, if a justification J1 holds in 80% of the possible worlds then it is as-
signed four times the blame as a justification J2 that holds in 20% of the possible
worlds. Third, we partition the penalty associated with a justification across
all axioms in the justification using a biased (on prior trust assessments) or an
unbiased partitioning scheme. We note that there may be alternate approaches
to derive trust scores from inconsistency measures and justifications; indeed,
our approach is flexible and extensible to such trust computation models.

A naive implementation of our trust computation model requires all jus-
tifications. While computing a justification is an easy problem, exhaustively
enumerating all possible justifications is known to be hard problem [11]. We
formulate exhaustive enumeration of justifications as a tree traversal problem
and develop an importance sampling approach to uniformly and randomly sam-
ple justifications without completely enumerating them. Unbiased sampling of
justifications ensures that the malicious entities cannot game the trust com-
putation model; say, selectively hide justifications that include axioms from
malicious entities (and thus evade penalties) from the sampling process. For
scalability reasons, our trust computation model operates on a random sample
of justifications. A malicious entity may escape penalties due to incompleteness
of justifications; however, across multiple inconsistency checks a malicious entity
is likely to incur higher penalties (and thus lower trust score) than the honest
entities.

In the following portions of this section we describe each of these steps:
quantifying inconsistencies, extracting justifications and the trust computation
model in detail.

3.2. Inconsistency and Justification
The ability to detect contradicting statements and measure the relative im-

portance of the resulting conflict is a key prerequisite to estimate the (dis)similarity
between information sources providing rich, complex and probabilistic assertions
expressed as BDL axioms. Unfortunately, in the traditional BDL semantics [2],
consistency is still categorically defined, i.e., a probabilistic KB is either com-
pletely satisfied or completely unsatisfied. In this section, we address this signif-
icant shortcoming by using a refined semantics which introduces the notion of
degree of inconsistency. We start by presenting the traditional BDL semantics,
which does not tolerate inconsistency.

Recall that BDL axioms (φ : e) are extensions of classical axioms (φ) with a
probabilistic annotation (e). BDL semantics defines an annotated interpretation
as an extension of a first-order interpretation by assigning a value v ∈ D(V )
to V . An annotated interpretation I = (∆I , .I) is defined in a similar way
as a first-order interpretation except that the interpretation function .I also
maps the set of variables V in the Bayesian Network to a value v ∈ D(V ).
An annotated interpretation I satisfies a probabilistic axiom φ : e, denoted
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I |= φ : e, iff V I |= e⇒ I |= φ 1. Now, a probabilistic interpretation is defined
as a probabilistic distribution over annotated interpretations.

Definition 1. (From [2]) A probabilistic interpretation Pr is a probability
function over the set of all annotated interpretations that associates only a finite
number of annotated interpretations with a positive probability. The probability
of a probabilistic axiom φ : e in Pr, denoted Pr(φ : e), is the sum of all Pr(I)
such that I is an annotated interpretation that satisfies φ : e. A probabilis-
tic interpretation Pr satisfies (or is a model of) a probabilistic axiom φ : e iff
Pr(φ : e) = 1. We say Pr satisfies (or is a model of) a set of probabilistic
axioms F iff Pr satisfies all f ∈ F .

Finally, we define the notion of consistency of a probabilistic knowledge base.

Definition 2. (From [2]) The probabilistic interpretation Pr satisfies (or is a
model of) a probabilistic knowledge base K = (T ,A, BN) iff (i) Pr is a model
of T ∪ A and (ii) PrBN (V = v) =

∑
I s.t. V I=v Pr(I) for all v ∈ D(V ). We

say KB is consistent iff it has a model Pr.

We note that condition (ii) in the previous definition ensures that the sum
of probability values for annotated interpretations mapping V to v ∈ D(V ) is
the same probability value assigned to V = v by the Bayesian Network.

3.2.1. Degree of Inconsistency
In the previously presented traditional BDL semantics, consistency is still

categorically defined. We now address this significant shortcoming for our trust
application using a refined semantics which introduces the notion of degree of
inconsistency.

First, we illustrate using a simple example the intuition behind the notion
of degree of inconsistency for a KB. Let K be the probabilistic KB defined
as follows: K = (T ,A ∪ {> v ⊥ : X = true}, BN) where T is a classical
Tbox and A is a classical Abox such that the classical KB cK = (T ,A) is
consistent; BN is a Bayesian Network over a single boolean random variable X,
and the probability PrBN (X = true) = 10−6 that X is true is extremely low.
Under past probabilistic extensions to DL, the K is completely inconsistent,
and nothing meaningful can be inferred from it. This stems from the fact that
when X is true, the set of classical axioms that must hold (i.e., T ∪ A ∪ {> v
⊥}) is inconsistent. However, the event X = true is extremely unlikely, and,
therefore, it is unreasonable to consider the whole probabilistic KB inconsistent.
Intuitively, the likelihood of events, whose set of associated classical axioms is
inconsistent, represents the degree of inconsistency of a probabilistic KB.

We now formally define a degree of inconsistency and present an inconsistency-
tolerant refinement of the semantics of a Bayesian DL.

1This more expressive implication semantics differs from the equivalence semantics of [2]
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Definition 3. An annotated interpretation I is an annotated model of a prob-
abilistic KB K = (T ,A, BN) where BN is a Bayesian Network over a set of
variables V iff for each probabilistic axiom φ : e, I satisfies φ : e.

In order, to measure the degree of inconsistency, we first need to find all
primitive events v (i.e., elements of the domain D(V ) of the set of variables V )
for which there are no annotated models I such that V I = v.

Definition 4. For a probabilistic KB K = (T ,A, BN) where BN is a Bayesian
Network over a set of variables V , the set of inconsistent primitive events, de-
noted U(K), is the subset of D(V ), the domain of V , such that v ∈ U(K) iff
there is no annotated model I of K such that V I = v

Finally, the degree of inconsistency of a probabilistic knowledge base is de-
fined as the probability of occurrence of an inconsistent primitive event.

Definition 5. Let K = (T ,A, BN) be a probabilistic KB such that BN is a
Bayesian Network over a set of variables V . The degree of inconsistency of K,
denoted DU(K), is a real number between 0 and 1 defined as follows:

DU(K) =
∑

v∈U(K)

PrBN (V = v)

A probabilistic interpretation Pr (as per Definition 1) satisfies (or is a model
of) a probabilistic KB K = (T ,A, BN) to a degree d, 0 < d ≤ 1 iff.:
• (i) Pr is a model as T ∪ A (same as in Definition 2)

• (ii) for v ∈ V ,

∑
I s.t. V I=v

Pr(I) =

{
0 if v ∈ U(K)
PrBN (V=v)

d
if v /∈ U(K)

• (iii) d = 1−DU(K)

A probabilistic knowledge base K = (T ,A, BN) is consistent to the degree d,
with 0 < d ≤ 1, iff there is a probabilistic interpretation that satisfies K to
the degree d. It is completely inconsistent (or satisfiable to the degree 0), iff
DU(K) = 1.

Informally, by assigning a zero probability value to all annotated interpreta-
tions corresponding to inconsistent primitive events, (ii) in Definition 5 removes
them from consideration, and it requires that the sum of the probability value
assigned to interpretations mapping V to v for v /∈ U(K) is the same as the
joint probability distribution PrBN defined by BN with a normalization factor
d.

In practice, computing the degree of inconsistency of a Bayesian DL KB
can be reduced to classical description logics consistency check as illustrated by
Theorem 1. First we introduce an important notation used in the remainder of
the paper:
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Notation 1. Let K = (T ,A, BN) be a probabilistic KB. For every v ∈ D(V ),
let Tv (resp., Av) be the set of all axioms φ for which there exists a probabilistic
axiom φ : e in T (resp., A), such that v |= e. Kv denotes the classical KB
(Tv,Av). Informally, Kv represents the classical KB that must hold when the
primitive event v occurs. K> denotes the classical KB obtained from K after
removing all probabilistic annotations: K> = (∪v∈D(V )Tv. ∪v∈D(V ) Av).

Theorem 1. A probabilistic KB K = (T ,A, BN) is consistent to the degree d
iff.

d = 1−
∑

v s.t. Kv inconsistent

PrBN (V = v)

The proof of Theorem 1 is a consequence of Lemma 1 (detailed proofs for the
Lemma and the Theorem are in Appendix A and Appendix B).

Lemma 1. Let K be a probabilistic KB. v ∈ U(K) iff Kv is inconsistent.

3.2.2. Inconsistency Justification
A conflict or contradiction is formally captured by the notion of an incon-

sistency justification − minimal inconsistency preserving subset of the KB.

Definition 6. Let K = (T ,A, BN) be a probabilistic KB consistent to the de-
gree d such that BN is a Bayesian Network over a set of variables V . J is
an inconsistency justification iff. 1) J ⊆ (T ,A), 2) (J , BN) is probabilis-
tic KB consistent to the degree d′ such that d′ < 1, and 3) for all J ′ ⊂ J ,
(J ′, BN) is probabilistic KB consistent to the degree 1 (i.e. (J ′, BN) is com-
pletely consistent). The degree DU(J ) of an inconsistency justification J is
defined as the degree of inconsistency of the probabilistic KB made of its ax-
ioms: DU(J ) = DU((J , BN))

Justification computation in a probabilistic KB reduces to justification com-
putation in classical KBs as shown by the following theorem, which is a direct
consequence of Theorem 1 and Definition 6:

Theorem 2. Let K = (T ,A, BN) be a probabilistic KB, where BN is a Bayesian
network over a set V of random variables. J is an inconsistency justification of
K iff. there exists v ∈ D(V ) such that PrBN (V = v) > 0 and J>, the classical
KB obtained from J by removing all probabilistic annotations, is an inconsis-
tency justification of Kv. Furthermore, the degree, DU(J ), of an inconsistency
justification J is as follows:

DU(J ) =
∑

v s.t. J>⊆Kv

PrBN (V = v)

Thus, once we have found a classical justification in a classical KB Kv for
v ∈ D(V ) using, for example, the scalable approach described in our previous
work [4], the degree of the corresponding probabilistic justification can be
obtained through simple set inclusion tests.
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Theorems 1 and 2 provide a concrete mechanism to compute degree of incon-
sistency of a probabilistic KB, and a degree of inconsistency of a justification.
However, they are highly intractable since they require an exponential number,
in the number of variables in BN, of corresponding classical tasks. We will
address this issue in the next section.

3.2.3. Error-Bounded Approximate Reasoning
A Bayesian network based approach lends itself to fast Monte Carlo sampling

algorithms for scalable partial consistency checks and query answering over a
large probabilistic KB. In particular, we use a forward sampling approach de-
scribed in [1] to estimate pr =

∑
v∈Π PrBN (V = v) (recall theorem 1 and 2).

The forward sampling approach generates a set of samples v1, · · · , vn from BN
(each sample is generated in time that is linear in the size of BN) such that the
probability pr can be estimated as p̂rn = 1

n*
∑n
i=1I(vi ∈ Π), where I(z) = 1 if z

is true; 0 otherwise. One can show that p̂rn is an unbiased estimator of pr such
that limn→∞

√
n ∗ (p̂rn − pr) → N (0, σ2

z), where N (µ, σ2) denotes a normal
distribution with mean µ and variance σ2 and σ2

z denotes the variance of I(z)
for a boolean variable z. Hence, the sample size n which guarantees an absolute
error of ε or less with a confidence level η is given by the following formula:

n =
2∗(erf−1(η))2∗σ2

zmax

ε2 , where erf−1 denotes the inverse Gauss error function
(σ2
zmax

= 0.25 for a boolean random variable). For example, to compute the
degree of consistency of a probabilistic KB within ±5% error margin with a 95%
confidence, the sample size n = 396 is necessary.

3.2.4. Sampling Justifications in a Classical KB
Ideally, it is desirable to find all classical justifications. Computing a sin-

gle justification can be done fairly efficiently by 1) using tracing technique to
obtain a significantly small set S of axioms that is responsible for an inconsis-
tency discovered by a single consistency test, and 2) performing additional |S|
consistency check on KBs of size at most |S| − 1 to remove extraneous elements
from S. In our previous work [4], we presented a scalable approach to efficiently
compute a large number of − but not all − justifications in large and expressive
KBs through the technique of summarization and refinement [5]. The idea con-
sists in looking for patterns of justifications in a dramatically reduced summary
of the KB, and retrieve concrete instances of these patterns in the real KB.

Unfortunately, computing all justifications is well known to be intractable
even for small and medium size expressive KBs [11]. [11] establishes a connection
between the problem of finding all justifications and the hitting set problem
(i.e., given n sets Si, find sets that intersect each Si). The intuition behind
this result is the fact that in order to make an inconsistent KB consistent at
least one axiom from each justification must be removed. Therefore, starting
from a single justification a Reiter’s Hitting Tree can be constructed in order
to get all justifications as illustrated in Figure 2 from [11]: Starting from the
first justification J = {2, 3, 4} computed in the KB K (J is set to be the root
v0 of the tree), the algorithm arbitrary selects an axiom in J , say 2, and creates

10



Figure 2: Computing all justifications using Reiter’s Hitting Set Tree Algorithm from [11]

a new node w with an empty label in the tree and a new edge < v0, w > with
axiom 2 in its label. The algorithm then tests the consistency of the K−{2}. If
it is inconsistent, as in this case, a justification J ′ is obtained for K − {2}, say
{1, 5}, and it is inserted in the label of the new node w. This process is repeated
until the consistency test is positive in which case the new node is marked with
a check mark. As an important optimization, we stop exploring super set of
path discovered earlier and marked the node with ’X’.

In order to avoid the high cost associated with exploring the whole Hitting
Set Tree to find all conflicts. One can find the first K conflicts by exploring the
Reiter’s Hitting Set Tree (HST) until K distinct justifications are found. The
problem with this approach is that nodes in the HST are not equally likely to
be selected with such a scheme: the probability π(vd) of a node vd in a path
< v0v1...vd > to be selected is π(vd) =

∏
0≤i<d(1/|vi|), where |vi| denotes the

number of axioms in the justification vi. As a result, a malicious source can use
the bias in the sampling to ‘hide’ its conflicts.

However, since the bias can be precisely quantified, one can obtain an unbi-
ased sample as follows. We select K nodes in the HST by exploring the HST in
the normal way, but each time a node vi is encountered, it is selected iff. a ran-
dom number r generated uniformly from [0,1] is such that r ≤ min(β/π(vi), 1),
where β is a strictly positive real number. The following Proposition shows
that, in this approach, for a sample of K HST nodes, if β is properly chosen,
then the expected number of time a node is selected is identical for all nodes.

Proposition 1. Let Nv denotes the random variable representing the number
of time the node v appears in a HST sample of size K. The expected value
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E(Nv) of Nv is:

E(Nv) =

{
K ∗ π(v) if β ≥ π(v)
K ∗ β if 0 < β < π(v)

Thus, if β is chosen such that 0 < β < minv∈HST (π(v)), then we obtain an
unbiased sample from the HST. Unfortunately, the minimum value of π(v) de-
pends on the tree structure (branching factor and maximum depth), and cannot
be computed precisely without exploring the whole HST. In practice, we use the
following sampling approach to select K nodes (the trade-off between computa-
tion cost and bias in the sample is controlled by a parameter of the algorithm,
α):

1. Let visited denote the set of visited nodes. Set visited to ∅,
2. Traverse the HST in any order, and add the first max(K − |visited|, 1) nodes

visited to visited

3. Let πmin be the minimum value of π(v) for v ∈ visited.

4. Set β = πmin/α, where α > 1 is a parameter of the sampling algorithm which
controls the trade-off between computation cost and biased in the sampling.
Higher values of α, while reducing the bias in our sampling, increase the compu-
tation cost by reducing the probability of a node selection − hence, increasing
the length of tree traversal.

5. For each v ∈ visited, add it to the result set RS with a probability of β/π(v)

6. If |RS| < K and the HST has not been completely explored, then set RS = ∅
and continue the exploration from step 2; otherwise return RS

3.3. Trust Computation Model
We now briefly formalize the problem of assessing trust in a set IS consist-

ing of n information sources. The trust value assumed or known prior to any
statement made by an information source i is specified by a probability distri-
bution PrTV (i) over the domain [0, 1]. For example, a uniform distribution is
often assumed for new information source for which we have no prior knowledge.
Statements made by each source i is specified in the form of a probabilistic KB
Ki = (T i,Ai, BN i). The knowledge function C maps an information source i to
the probabilistic KB Ki capturing all its statements. The trust update problem
is a triple (IS, PrTV,C) whose solution yields a posterior trust value function
PoTV . PoTV maps an information source i to a probability distribution over
the domain [0, 1], which represents our new belief in the trustworthiness of i
after processing statements in

⋃
j∈IS C(j).

In this paper, we only focus on trust computation based on direct observa-
tions, that is, on statements directly conveyed to us by the information sources.
Inferring trust from indirect observations (e.g., statements conveyed to us from
IS1 via IS2) is an orthogonal problem; one could leverage solutions proposed
in [12], [21], [15] to infer trust from indirect observations.

We model prior and posterior trust of a source i (PrTV (i) and PoTV (i))
using a beta distribution B(α, β) as proposed in several other trust computation
models including [10]. Intuitively, the reward parameter α and the penalty
parameter β correspond to good (non-conflicting) and bad (conflicting) axioms
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contributed to an information source respectively. The trust assessment problem
now reduces to that of (periodically) updating the parameters α and β based
on the axioms contributed by the information sources. One may bootstrap the
model by setting PrTV (i) to B(1, 1) − a uniform and random distribution over
[0, 1], when we have no prior knowledge. In the rest of this section we focus on
computing the reward (α) and penalty (β) parameters.

We use a simple reward structure wherein an information source receives
unit reward for every axiom it contributes if the axiom is not in a justification
for inconsistency 2. We use a scaling parameter 4 to control the relative con-
tribution of reward and penalty to the overall trust assessment; we typically set
4 > 1, that is, penalty has higher impact on trust assessment than the reward.
The rest of this section focuses on computing penalties from justifications for
inconsistency.

Section 3.2.4 describes solutions to construct (a random sample of) justifica-
tions that explain inconsistencies in the KB; further, a justification J is associ-
ated with a weight DU(J) that corresponds to the possible worlds in which the
justification J holds (see section 3.2.2 for formal definition of DU(J) and an
algorithm to compute it). For each justification Ji we associate a penalty 4(Ji)
=4∗DU(Ji). The trust computation model traces a justification Ji, to conflict-
ing information sources S = {Si1 , · · · , Sin} (for some n ≥ 2) that contributed
to the axioms in Ji. In this paper we examine three solutions to partition 4(Ji)
units of penalty amongst the contributing information sources as shown below.
We use tij to denote the expectation of PrTV (ij) for an information source ij ,
that is, tij =

αij

αij
+βij

.

4(Sij ) =



4(Ji)
n

unbiased
4(Ji)
n−1

∗ (1−
tij∑n

k=1 tik
) biased

by trust in other sources

4(Ji) ∗
1

tij∑n
k=1

1
tik

biased

by inverse self trust

The unbiased version distributes penalty for a justification equally across all
conflicting information sources; the biased versions tend to penalize less trust-
worthy sources more. One possible approach is to weigh the penalty for a source
Sij by the sum of the expected prior trust values for all the other conflicting
sources, namely, S − {Sij}. For instance, if we have three information sources
Si1 , Si2 and Si3 with expected prior trust ti1 = 0.1 and ti2 = ti3 = 0.9 then the
penalty for source i1 must be weighted by 1

2* 0.9+0.9
0.1+0.9+0.9 = 0.47, while that of

sources i2 and i3 must be weighted by 0.265. Clearly, this approach penalizes
the less trustworthy source more than the trusted sources; however, we note
that even when the prior trust in i1 is arbitrarily close to zero, the penalty for
the honest source i2 and i2 is weighted by 0.25. A close observation reveals that

2A preprocessing step weeds out trivial axioms (e.g., sun rises in the east)
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a malicious source (with very low prior trust) may penalize honest nodes (with
high prior trust) by simply injecting conflicts that involve the honest nodes;
for instance, if sources i2 and i3 assert axioms φ2 and φ3 respectively, then
the malicious source i1 can assert an axiom φ1 = ¬φ2∨¬φ3 and introduce an
inconsistency whose justification spans all the three sources. To overcome this
problem, this paper uses a third scheme that weights penalties for justifications
by the inverse value of prior trust in the information source.

4. Trust-based Query Answering

In this paper we have so far described solutions to infer trust in uncertain
information. Now, we proceed towards leveraging the inferred trust scores to
refine the knowledge base and supporting trust-based query answering over the
refined knowledge base. In this paper we adopt a simple approach to refine the
knowledge base: first, for each information source s we add a random variable Ts
to the Bayesian network such that Ts is the expectation of the beta distribution
whose parameters α and β are inferred by the trust model (see Section 3);
for each axiom φ : X in the original knowledge base, we include an axiom
φ : X∧Tsource = true.

In the following portions of this section we focus on query answering over
the refined knowledge base (encoded as BDL axioms).

4.1. Query Answering Semantics
First, we briefly recall the query answering semantics defined in [2] and

explain its shortcomings:

Definition 7. (From [2]) An annotated interpretation I satisfies (or is a model
of) a ground query ψ : e, denoted I |= ψ : e, iff V I |= e and I |= ψ . The
probability of a ground query ψ : e in Pr, denoted Pr(ψ : e), is the sum of
all Pr(I) such that I is an annotated interpretation that satisfies ψ : e. An
answer for a probabilistic query Q = ψ : e to a probabilistic knowledge base
K = (T ,A, BN) is a pair (θ, pr) consisting of a ground substitution θ for the
variables in ψ and some pr ∈ [0, 1] such that Pr(ψθ : e) = pr for all models Pr
of K. An answer (θ, pr) for Q to K is positive iff pr > 0.

This definition, which requires all probabilistic models Pr of K to assign the
exact same probability Pr(ψθ : e) = pr to an answer (θ, pr), is counter-intuitive3

as illustrated in the following example.

Example 1. Let K = (A, T , BN) be probabilistic knowledge base defined as
follows:

A = {A(a) : X = true,D(a) : X = false}
T = {A v C : X = true}

3under both the implication and equivalence semantics
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and BN is a Bayesian Network over a single boolean variable X such that
PrBN (X = true) = PrBN (X = false) = 0.5. Consider the query C(y) asking
for all the instances y of C.

The classical knowledge base cK1 = (A = {A(a)}, T = {A v C}) associated
with the primitive event X = true entails C(a), and the classical knowledge
base cK2 = (A = {D(a)}, T = ∅) associated with the primitive event X = false
does not entail C(a). One would expect (y → a, 0.5) to be a solution to the
query. Unfortunately, according to the query answering semantics, a cannot be
a solution, because there exist two probabilistic models4 Pr and Pr′ of K such
that Pr(C(a)) 6= Pr′(C(a)):

• Pr assigns non-zero probability to only two annotated interpretations IT
and IF and Pr(IT ) = Pr(IF ) = 0.5. IT is defined as follows : its domain
∆IT = {α}, AIT = CIT = {α}, DIT = ∅, aIT = α, V IT = (X = true).
IF is defined as follows : its domain ∆IF = {α, β}, AIF = {β}, CIF =
{α}, DIF = {α}, aIF = α, V IF = (X = false).

• Pr′ assigns non-zero probability to only two annotated interpretations
I ′T and I ′F and Pr′(I ′T ) = Pr′(I ′F ) = 0.5 I ′T = IT . I ′T is the same as
IT previously defined. I ′F differs from IF only in that it maps C to an
empty set instead of {α}: ∆I

′
F = {α, β}, AI′F = {β}, CI′F = ∅, DI′F =

{α}, aI′F = α, V I
′
F = (X = false).

The annotated interpretation IT and I ′T obviously satisfies C(a) - they have
to otherwise Pr and Pr′ would not be models of K. One the other hand, an
annotated interpretation with non-zero probability and which maps X to false
does not have to satisfy C(a). IF does satisfy C(a), making Pr(C(a)) = 1,
while I ′F does not satisfy it, making Pr′(C(a)) = 0.5. So, we have two models
which disagree on the probability value to assign to (y → a) as an answer,
therefore according to the query answering semantics of Definition 7 (y → a)
cannot be an answer, which is counterintuitive.

Furthermore, this example also serves as a counter-example to the main
computational result of [2] 5.

4.1.1. Refined Query Answering Semantics
Requiring all probabilistic models of K to agree on the probability value

assigned to each ground query is too constraining. A more appropriate seman-
tics, which aligns better with our intuition, consists in defining the probability
value associated with an variable assignment θ answer to a query ψ : e as the
infimum of Pr(ψθ : e) for all models Pr of K. The following definition formally
introduces the notion of meaningful answers.

4These are models under both implication and equivalence semantics
5It shows that the simple computation of Theorem 6 in [2] is incompatible with their

semantics. In fact, for a query Q, their semantics requires to perform not only the classical
query Q answering against all classical KB Kv , but also classical query ¬Q. Our proposed
semantics avoids this issue (no ¬Q introduced) and is proven sound (see Appendix).
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Definition 8. An meaningful answer for a probabilistic query Q = ψ : e to
a probabilistic KB K = (T ,A, BN) satisfiable to a degree d (d 6= 0), is a
pair (θ, pr) consisting of a ground substitution θ for the variables in ψ and some
pr ∈ [0, 1] such that pr = inf{Pr(ψθ : e)|Pr is model of K}, where inf S denotes
the infimum of the set S .

For partially unsatisfiable probabilistic knowledge bases the meaningful
query answering semantics of Definition 8, considers only answers for satisfiable
primitive events v (i.e., v /∈ U(K)) since, by definition, for v ∈ U(K) and an
interpretation I s.t. V I = v, Pr(I) = 0. Intuitively, for a solution (θ, pr) to
a query ψ : e, pr represents the weighted fraction (weighted by PrBN (V = v))
of satisfiable primitive events v s.t. v |= e and θ is a solution to ψ in the
classical knowledge base that must hold given v. This intuition is confirmed by
Theorem 3 in the next section.

In this semantics, unsatisfiable primitive events do not contribute any solu-
tion. Consequently, it does not properly extend the query answering semantics
of classical description logics, where any substitution θ is a solution to any query
against any unsatisfiable classical knowledge base.

4.1.2. Extended Classical DL Semantics
To properly extend the classical query answering semantics, for a query

Q = ψ : e against a probabilistic knowledge base K s.t. DU(K) 6= 1, we need
to:

• factor in the contribution of all unsatisfiable primitive events by consid-
ering that any substitution θ is a solution to a KB K associated with the
unsatisfiable event. This contribution is as follows:∑

v∈U(K) and v|=e

PrBN (V = v)

• properly weight the contribution of satisfiable primitive event v to a sub-
stitution θ by denormalizing Pr(ψθ : e). The modified weight is (1 −
DU(K))Pr(ψθ : e)

Definition 9. A classically extended answer for a probabilistic query Q = ψ : e
to a probabilistic knowledge base K = (T ,A, BN) is a pair (θ, pr) consisting of
a ground substitution θ for the variables in Q and some pr ∈ [0, 1] such that (we
set inf ∅ = 0)

pr =

(1−DU(K))× inf{Pr(ψθ : e)|Pr is model of K}

+
∑

v∈U(K) and v|=e

PrBN (V = v)
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Intuitively, in Definition 9, the probability pr associated with an answer θ
to a query Q represents the likelihood that, if an primitive event e is selected
randomly according to the probability distribution specified by the BN, θ will
be a solution of Q over the classical set of axioms that must hold when e occurs
(with the understanding that any substitution is a solution for any query against
any unsatisfiable classical knowledge base). In the next section, Theorem 3
formalizes this intuition.

In the rest of the paper we consider only the classically extended answer
semantics.

4.2. Computational Properties
In this section, we introduce key theorems that demonstrate how reasoning

tasks can be carried out on partially consistent knowledge bases by reducing
them to reasoning over classical knowledge bases. All detailed proofs are pre-
sented in the appendix.

A key aspect of the query answering semantics presented in Definition 9 is
the ability to compute the infimum of the probability of a grounded query over
the set of all probabilistic models. The following critical lemma shows how such
infimum can be computed precisely:

Lemma 2. Let K = (T ,A, BN) be a probabilistic knowledge base satisfiable to
the degree d (d 6= 0). Let Qg = ψ : e be a grounded query.

inf{Pr(ψ : e)|Pr is a probabilistic model of K}

=
1
d

∑
v∈Ω

PrBN (v)

with Ω = {v|Kv is satisfiable and Kv |= ψ and v |= e}

The following theorem, which is a direct consequence of Lemma 2, shows
how query answering against a partially satisfiable probabilistic knowledge base
can be reduced to query answering against classical knowledge bases.

Theorem 3. Let K = (T ,A, BN) be a probabilistic knowledge base satisfiable
to the degree d, and let Q = ψ : e be a probabilistic query against K. Let θ
be a ground substitution for the variables in Q and let pr ∈ [0, 1]. (θ, pr) is an
answer to Q iff

pr =
∑
v∈Γ

PrBN (V = v)

with Γ = {v|Kv |= ψθ and v |= e} (Note that any substitution θ is a answer to
any query against an unsatisfiable classical KB).

Theorems 1 and 3 provide a concrete mechanism to check for partial satisfi-
ability and perform query answering against a partially satisfiable probabilistic
KB. However, they are highly intractable since they require an exponential num-
ber, in the number of variables in BN , of classical query answering tasks. We
will address this issue in the next section.
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4.3. Error-Bounded Approximate Reasoning
The structure of pr from Theorem 3 is identical to that of d (degree of

inconsistency) in Theorem 1. Hence, scalable solutions to compute d described
in Section 3.2.3 are applicable here.

In addition, for some applications it may be sufficient to return ground
substitutions θ whose probability pr exceeds a threshold thr. In this case,
we argue that it is easier to decide if pr exceeds a threshold thr, rather than
accurately estimate the true value of pr itself. With slight abuse of notation, we
overload pr to denote a random variable that represents our belief in the true
probability associated with a ground substitution θ. Hence, our goal is to select
answers (θ, pr) such that Pr(pr > thr) > η (where η is the confidence level);
symmetrically, one can also discard answers (θ, pr) such that Pr(pr < thr) >

η. We note that since p̂rn = pr + X, where X ≈ N (0,
σ2

zmax

n ), Pr(pr > thr)

= Pr(X < p̂rn − thr) = 1
2

(
1 + erf

(√
n∗(p̂rn−thr)√

2∗σzmax

))
, where erf denotes the

Gaussian error function. Setting ∆nmin = erf−1(2η− 1)*
√

2∗σzmax√
n

, θ is a valid
(resp. invalid) substitution if p̂rn − thr > ∆nmin (resp. p̂rn − thr < −∆nmin).

Using η = 95% and n = 25 (resp. n = 100), we require ∆nmin = 0.17 (resp.
∆nmin

= 0.085). For instance, let thr= 0.75 and consider an answer θ whose
true probability pr > 0.92; while it requires n = 396 samples to estimate the
true probability pr with 95% confidence and under 5% error, one can conclude
that the true probability exceeds thr = 0.75 with 95% confidence using only n
= 25 samples. Similarly, one can eliminate answers whose true probability is
below 0.57 using only n = 25 samples. Hence, one can initially accept (resp.
reject) answers whose probability significantly exceeds (resp. falls below) the
threshold thr; only answers whose probability is in the neighborhood of the
threshold thr requires more samples to validate them. One can also show that
the expected value of n in order to attain the desired confidence level η is given

by n̂ =
2∗σ2

zmax
∗(erf−1(2η−1))2

(pr−thr)2 . For example, setting η = 95%, thr = 0.75, a
substitution θ with pr = 0.85 may be adjudged as a valid answer using sample
size n = 60.

5. Experimental Evaluation

To evaluate our approach, we have developed a prototype implementation,
PSHER, that extends SHER reasoner [6] to support Bayesian SHIN (the core
of OWL 1.0 DL) reasoning. SHER was chosen for its unique ability to scale
reasoning to very large and expressive KBs [5], and to efficiently detect large
number of inconsistency justifications in a scalable way [4]. PSHER uses the
results of sections 3.2.1, 3.2.2 and 3.2.3 to reduce the problem of computing
justifications on a probabilistic KB to detecting those justifications on classical
KBs using SHER.

Axioms asserted by various information sources in our experiments were
taken from the UOBM benchmark [17] which was modified to SHIN expres-
sivity, and its Abox was modified by randomly annotating half of the axioms
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Figure 3: Trust under single PuMS attack
(No duplication)

Figure 4: Trust under 50% PuMS attack (No
duplication)

Figure 5: Trust under 90% PuMS attack (No
duplication)

Figure 6: Trust under single PuMS attack
(25% duplication)
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Figure 7: Trust under single PuMS attack
(50% duplication)

Figure 8: Trust under single PuMS attack
(100% duplication)

Figure 9: Trust under 50% PuMS attack
(25% duplication)

Figure 10: Trust under 50% PuMS attack
(50% duplication)

with probability values. Furthermore, we inserted additional Abox assertions
in order to create inconsistencies involving axioms in the original UOBM KB.
Note that not all axioms in the original UOBM KB end up being part of an
inconsistency, which introduces an asymmetry in information source’s knowl-
edge (e.g., a malicious source is not assumed to have complete knowledge of all
axioms asserted by other sources).

5.1. Trust Inference
We evaluate the robustness of our trust model under various attack scenarios.

In our experiments, we considered 4 types of information sources:

• Perfect honest sources (PHS) whose axioms are taken from the UOBM
KB before the introduction of inconsistencies.

• Purely malicious sources (PuMS) whose axioms are selected from the ones
added to UOBM KB in order to create inconsistencies.

• Imperfect honest sources (IHS) have the majority of their axioms (more
than 90%) from the UOBM KB before the introduction of inconsisten-
cies. They allow us to simulate the behavior of our approach when honest
sources are faced with measurement errors or commit honest mistakes.
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• Partially malicious sources (PaMS) are such that between 10% to 90% of
their axioms are selected from the axioms added to UOBM KB to create
inconsistency. They are primarily used to simulate the behavior of our
approach when malicious sources use an oscillating behavior to milk our
trust computation scheme.

Axioms were randomly assigned to various sources without violating the pro-
portion of conflicting vs. non-conflicting axioms for each type of source.

Our first experiment (Figure 3) measures the impact of a single purely mali-
cious source (PuMS) on the trust values of 9 perfect honest sources. The PuMS
asserts more and more incorrect axioms contradicting PHS’s axioms (at each
steps, each source asserts about 100 additional statements until all their axioms
have been asserted) while the PHSs continue to assert more of what we con-
sider as correct axioms. Axioms asserted by the PuMS do not necessarily yield
an inconsistency in the same step in which they are asserted, but, by the end
of the simulation, they are guaranteed to generate an inconsistency. For this
experiment, there is no duplication of axioms across sources, and we do not as-
sume any prior knowledge about the trustworthiness of the sources. Since each
justification creates by the malicious source also involves at least one PuMS,
initially, it manages to drop significantly the absolute trust value of some PHSs
(up to 50% for PHS-3). However, a PuMS hurts its trust value significantly more
than he hurts those of other sources. As a result of the fact that our scheme
is such that less trustworthy sources get assigned a large portion of the penalty
for a justification, the single PuMS eventually ends up receiving almost all the
penalty for its inconsistencies, which allows the trust values of honest sources to
recover. Due to information asymmetry (malicious sources do no have complete
knowledge of informations in other sources and thus cannot contradict all the
statements of an PHS), our scheme remains robust, in the sense that honest
sources would recover, even when the proportion of PuMS increases (see Fig. 4
where 50% of the sources are PuMS and Fig. 5 where 90% of sources are PuMS).

In the previous experiments, although honest sources manage to recover from
the attack, they can still be severely hurt before the credibility of the malicious
sources decreased enough to enable a recovery for honest sources. This problem
can be addressed in two ways: 1) by increasing the degree of redundancy between
sources as illustrated in Figures 6, 7, 8, 9 and 10; and 2) by taking into account
a priori knowledge of each source as illustrated in Figure 11.

In case of moderate to high redundancy between sources (Figures 6, 7, 8, 9
and 10), a justification generated by a malicious source to compromise a honest
source is likely to hurt the malicious much more than the honest source because
the axioms in the justification coming from the honest source are likely to be
confirmed by (i.e. duplicated in) other honest sources. Therefore, the malicious
source will be involved in as many justifications as there are corroborating honest
sources, while each corroborating source will be involved in a single justification.

In Figure 11, we assume that we have a high a priori confidence in the
trustworthiness of the honest sources: the prior distribution of the trust value
of PHS in that experiment is a beta distribution with parameter α = 2000 and
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Figure 11: Trust under single PuMS attack:
No duplication - Prior = B(2000,1)

Figure 12: Oscillating experiment - 90% PHS
& 10% PaMS (No duplication)

β = 1. As expected, in Figure 11, the damage inflicted by the malicious source
is significantly reduced compared to Figure 3 where no prior knowledge about
the source trustworthiness was taken into account.

The next experiment evaluates the behavior of our scheme when partially
malicious sources use an oscillating behavior. They alternate periods where
they assert incorrect axioms, contradicting axioms asserted in the same period
by other sources, with periods in which they assert only correct axioms. As
opposed to previous experiments where malicious axioms asserted in a step
were not guaranteed to yield an inconsistency in the same step, in the oscilla-
tion experiments, the inconsistency is observed at the same step. As shown in
Figure 12 and 13, in absence of prior knowledge, the trust values of partially ma-
licious sources (PaMS) and honest sources drop significantly at the first period
in which incorrect axioms are stated. However, malicious sources, which due
to information asymmetry, can only contradict limited set of statements from
honest sources, never recover significantly, while honest sources quickly improve
their trust values by asserting more axioms not involved in conflicts. As in the
previous non-oscillating experiments, the negative impact on honest sources can
be reduced considerably through axiom duplication and prior strong confidence
in their trustworthiness.

The last experiment simulates an oscillating scenario where all four types of
sources are present: 30% PHS, 20% PuMS, 30% IHS and 20%PaMS. Figure 14
shows how our scheme correctly separates the 4 types of sources as expected.

5.2. Trust-based Query Answering
To illustrate the benefits of a trust-based query answering approach, we eval-

uate how query answering completeness, as measured by recall, and soundness,
as measured by precision, are affected by either the lack of trust inference or im-
precision in the trust inference computation. For that purpose, we assume that
only half of the axioms in UOBM-1 can be trusted, while the others are assumed
to be incorrect. A classical query answering against the classical knowledge base
Kg consisting of the randomly selected trustworthy axioms of UOBM-1 provides
the ground truth for our evaluation. Next, we define the following refinement
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Figure 13: Oscillating experiment - 50% PHS
& 50% PaMS (No duplication)

Figure 14: Oscillating experiment - 30%
PHS, 20% PuMS, 30% IHS & 20% PaMS

of UOBM-1 to reflect the absence of trust computation and varying levels of
precision in the trust computation module:

• (Kptc, BNptc) is a refinement of UOBM-1 where trusted axioms (i.e., ax-
ioms in Kg) are assigned a trust value of 1 and all other axioms have a
trust value of 0. (Kptc, BNptc) corresponds to the refinement performed
based on the results of a perfect trust computation. Formally,

Kptc = {φ : Tc = true|φ ∈ Kg}⋃
{φ : Tf = true|φ ∈ (UOBM1 −Kg)}

where the Bayesian Network BNptc consists of two independent boolean
variables Tc and Tf such that PrBN (Tc = true) = 1 and PrBN (Tf =
true) = 0

• (Kntc, BNntc) represents the knowledge base obtained when no trust com-
putation is performed. Basically all axioms are taken at face value. For-
mally, Kntc is exactly the same as Kptc defined previously, and BNntc
consists of the two independent boolean variables Tc and Tf such that
PrBN (Tc = true) = 1 and PrBN (Tf = true) = 1.

• (Ketc, BNe
tc) is a refinement of UOBM-1 performed based on the results of

a trust inference computation with a uniform error rate of e%, where e ∈
{10, 30, 50}. Formally, Ketc is exactly the same as Kptc defined previously,
and BNe

tc consists of the two independent boolean variables Tc and Tf
such that PrBN (Tc = true) = 1− e/100 and PrBN (Tf = true) = e/100.

Figures 15 and 16 show the weighted average 6 of precision and recall,
respectively, for membership query answering performed on 15 concepts 7 with
an absolute error +/-10% and a confidence of 90%. The results are grouped
by the threshold thr used in selecting answers, and all the previously defined
trust-based refinements of UOBM-1 are considered.

6each query contribution was weighted by the size of the expected number of answers
7Those concepts were chosen because of the complexity of the reasoning involved
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Figure 15: Precision

Figure 16: Recall
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Dataset type role avg stdev range
axioms axioms (mins) (mins) (mins)

UOBM-1 25,453 214,177 4 1 3-5
UOBM-10 224,879 1,816,153 22 10 14-34
UOBM-30 709,159 6,494,950 61 26 41-94

Table 1: PSHER on probabilistic UOBM KBs

In Figure 15, as expected, query answering precision decreases with the
error rate of the trust inference computation. However, except for the very high
threshold of 1, it is always better than query answering without trust inference,
which has a constant precision of about 50%, even in case of a high error rate
of 50%. For recall, taking every axiom at face value (i.e., in absence of trust
inference computation), already guarantees a recall of 100% at all thresholds.
Such recall can only be matched at all thresholds in the case of perfect trust
inference computation as illustrated in Figure 16. In practice, recall is more
sensitive (especially at high thresholds) to the error rate of the trust inference
computation (e.g. in Figure 16, at threshold 0.9, recall is almost equal to zero
for refinements based on trust inference computation with error rate greater
than or equal to 30%).

In terms of combined F-Score, for a trust inference computation with an
error rate of less than 10%, which is the typical range for our implementation,
trust-based query answering significantly outperforms query without trust for
all thresholds that are less than or equal to 0.8. At thresholds greater than
0.9, trust-based query answering with trust inference error rate of 10% becomes
inferior to query answering without trust because the threshold clearly falls into
the margin of error of both the trust inference module and, in our experiment,
the accuracy of our error-bounded probabilistic query answering module.

The main lesson from the results presented in this section is that, provided
that the query answering threshold is properly set with regards to the error rate
of the trust inference computation module and the query answering module,
trust-based query answering significantly outperforms in terms of F-Score query
answering without taking into account axiom trustworthiness.

5.3. Performance and Scalability
In this section we describe performance and scalability results on PSHER.

We issued instance retrieval queries for a subset of concepts8 in the ontology.
The results are reported for 1, 10, and 30 universities, which are referred to
as UOBM-1, UOBM-10 and UOBM-30. The runs were made on a 64 bit 2.4
GHz AMD 4-core processor 16G RAM Linux machine (only 2 cores were used:
one for the SHER process, and the other for the DB2 process). The Abox was
stored in DB2.

As expected, Table 1 shows that PSHER preserves SHER scalability char-
acteristics: it still scales sublinearly. For the experiments whose results are

8non-atomic complex concepts
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reported in Table 1, we computed the probability values for all answers, with-
out any threshold, with an absolute error of 0.1 and an confidence of 0.9. The
resulting large number of classical KBs (72) to consider for each query explains
the relatively high absolute runtime in Table 1.

As described in the previous section, one can enhance the performance of
PSHER using an application specified threshold (thr) for selecting answers.
In that scenario, for an instance retrieval query and a given confidence level
η, at every stage of the evaluation, each individual in the Abox is in one of
three states : rejected when its probability is already known to be below thr;
accepted when its probability is already known to be above thr; or unknown
when not enough samples have been processed to conclude with confidence η.
We conducted instance retrieval experiments with thresholds set at 0.6 and 0.8.
As shown in Figure 17, the overwhelming majority of individuals are quickly
in a known state (rejected or accepted). For example, for the concept ‘Chair’
with threshold 0.8, 99.95% of the individuals are in a known state in less than
3.3 mins. Most of the rest of the time is spent computing the status of a small
number of individuals whose probability is close to thr.

Figure 17: Query Answering with threshold on UOBM10

Scalability of PSHER is achieved through parallelism since each probabilis-
tic reasoning task performed by PSHER is reduced to n corresponding classical
tasks evaluated using SHER, where n depends on the desired precision as ex-
plained in Section 3.2.3.

6. Related Work

Our work advances the state-of-the-art in two different domains, namely,
trust inference and probabilistic extension of Description Logics.

Several authors have explored various trust computation models (e.g., eBay
recommendation system [20], NetFlix movie ratings [18], EigenTrust [12], PeerTrust
[21], etc.) to assess trust in various entities. A common data model subsumed
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by several trust computation models (as succinctly captured in Kuter and Gol-
beck [15]) is the ability of an entity to assign a numeric trust score to another
entity (e.g., eBay recommendation, Netflix movie ratings, etc.). Such pair-wise
numeric ratings contribute to a (dis)similarity score (e.g., based on L1 norm,
L2 norm, cosine distance, etc.) which is used to compute personalized trust
scores (as in PeerTrust) or recursively propagated throughout the network to
compute global trust scores (as in EigenTrust). The main differences between
our approach and prior work are twofold. First, our data model is far more
complex than the typical pairwise numeric scores. Second, our trust computa-
tion model directly takes into account uncertainty in information asserted by
various sources.

Various probabilistic extensions of Description Logics (DL), the theoretical
foundation of OWL, have been proposed to enable reasoning under uncertainty.
By and large, these approaches provide a tight integration of a particular DL (in
most cases, a inexpressive one: ALC in [8] and [9], Classic in [14], FL in [23],
etc.) with a given probabilistic reasoning formalism (e.g., Bayesian Network
in [14], cross entropy minimization in [9]). The tightness of integration often
imposes severe limitations on the underlying DL in order to assure decidability
or scalability, and makes it harder to extend the approach to new DLs. Also,
these approaches typically do not support uncertainty in the assertional part of
the knowledge base, or impose some important restrictions on it. Probabilis-
tic extensions of expressive DL formalisms often add an exponential overhead:
in [16], for example, a probabilistic reasoning task reduces to an exponential
number of corresponding classical reasoning tasks.

In the semantic web community, two of the most important threads of work
in representing and reasoning with uncertainty in OWL have relied on Bayesian
Networks [22] [3] or sophisticated lexicographic entailment from default rea-
soning [16] as their underlying probabilistic reasoning formalism. The first
approaches present a syntax for encoding prior and conditional probability val-
ues for various OWL constructs as well as a translation rules to generate a
Bayesian Network out of the annotations. One of their major shortcomings is
their lack of formal semantics. Furthermore, [22] also lacks a general approach
for query answering, whereas [3] is limited to taxonomical reasoning. On the
other hand, approaches such as [16] specify a well-founded semantics, but are
unfortunately highly intractable in practice and are less amenable to the form
of approximation presented in this paper. Pronto the [13], the only implemen-
tation of this approach, can barely scale to a couple of dozens of probabilistic
axioms.

Our work is influenced and closely aligned with [2] which introduces a
flexible, loosely coupled and orthogonal integration of Description Logics and
Bayesian Network formalisms without limiting, as previous integrations [23] [14]
did, the expressiveness of the underlying description logics. In particular, [2]
supports uncertainty in both terminological and assertional part of the knowl-
edge base, and can be extended without any fundamental change to any decided
subset of first order logic. Our approach differs from [2] in three important ways.
First, we use a more intuitive semantics for query answering which is better
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aligned with the spirit of the semantic web where complete information cannot
be assumed. The difference between our query answering semantics (based on
infimum probability value over all probabilistic models) and the previous seman-
tics, which requires all models to agree on a probability value for an answer,
is significant. As illustrated by Example 1 of section 4, the previous semantics
is not only counter-intuitive; it also does not produce the desirable computa-
tional properties claimed in [2]. This paper is the first to propose an intuitive
semantics for Bayesian DLs and to correctly establish the kinds of flexibility
and computational properties claimed in [2] accompanied by a detailed proof
of correctness in Appendix C and Appendix D. Second, we extended [2] to
better tolerate inconsistencies that could naturally arise from the aggregation of
uncertain information coming from different sources with a varying reliability.
Finally, while the approach outlined in [2] was tractable with respect to data
complexity, it still required, for each probabilistic reasoning task, an exponential
number, in the number of random variables in the Bayesian Network, of similar
classical reasoning tasks. This made the approach intractable in practice for
Bayesian Network with a medium to large number of variables. Our approach
addresses this issue by using a sampling technique to approximate as precisely
as needed the probability value associated with each answer to a query against
a probabilistic knowledge base.

7. Conclusion

In this paper, we have introduced a new trust framework for rich, complex
and uncertain information by leveraging the expressiveness of Bayesian Descrip-
tion Logics. We have demonstrated the robustness of the proposed framework
under a variety of scenarios, and shown how duplication of assertions across
different sources as well as prior knowledge of the trustworthiness of sources can
further enhance it. We have also shown techniques to enable scalable trust-based
query answering over uncertain knowledge base.
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Appendix A. Proof of Lemma 1

We prove that both directions of the equivalence in Lemma 1 hold.

Appendix A.1. v ∈ U(K)⇒ Kv is inconsistent
Let v ∈ U(K). Assuming Kv is consistent, it follows that it has a model Iv,

which we extend to be an annotated interpretation by setting V Iv = v.
Let φ : e ∈ K, we examine the following two cases:

• if v |= e, then, by definition of Kv, φ ∈ Kv. Since Iv is a model of Kv, it
follows that Iv |= φ. Therefore Iv is a model of the annotated axiom φ : e
of K

• if v |= e does not hold, then, by definition of the implication semantics, Iv
is a model of the annotated axiom φ : e of K.

So Iv is a model of every annotated axiom φ : e of K and V Iv = v, which, by
definition of U(K), implies v /∈ U(K). This contradicts our initial hypothesis.
Therefore, (v ∈ U(K)⇒ Kv is inconsistent) must hold

Appendix A.2. Kv is inconsistent ⇒ v ∈ U(K)
Let v be such that Kv is inconsistent. Assuming that v /∈ U(K), it follows

that there is an annotated model Iv of K such that V Iv = v.
Let φ ∈ Kv, by definition of Kv, there is at least one annotated axiom φ : e

in K s.t. v |= e. The fact that Iv is an annotated model of K s.t. V Iv = v
implies that Iv |= φ. So Iv is a model of every axiom φ ∈ Kv, which means that
Iv is a model of Kv and Kv is consistent. This contradicts our initial hypothesis.
Therefore (Kv is inconsistent ⇒ v ∈ U(K)) must hold.

Appendix B. Proof of Theorem 1

We start by introducing some important definitions needed for the proof.

Definition 10. Let K = (T ,A, BN) be a probabilistic knowledge base, where
BN is a Bayesian Network over a set of variables V . An annotated interpre-
tation mapping choice τ is a complete function from the set D(V ) − U(K) of
consistent primitive events to the set Î of all annotated interpretations of K
such that, for v ∈ D(V )− U(K):

• τ(v) is an annotated interpretation such that V τ(v) = v, and

• τ(v) is a model of Kv
9.

9More precisely, the classical interpretation which τ(v) extends by assigning V τ(v) to v is
a model of Kv .
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A direct consequence of Lemma 1 is that, if DU(K) 6= 1, at least one annotated
interpretation mapping choice exists. It can be constructed by mapping every
consistent primitive event v to an annotated interpretation Iv which extends a
model of Kv by a assigning V Iv to v. From the definition, it is obvious that an
annotated interpretation mapping choice is an injection.

Now, for a given annotated interpretation mapping choice τ , we introduce
the notion of canonical probabilistic interpretation of K:

Definition 11. Let K = (T ,A, BN) be a probabilistic knowledge base such
that its degree of inconsistency DU(K) 6= 1 and BN is a Bayesian Network
over a set of variables V . Let τ be an annotated interpretation mapping choice.
The canonical probabilistic interpretation of K given τ , denoted Prτ , is the
probabilistic interpretation defined as follows: for an annotated interpretation
I,

Prτ (I) =


PrBN (V=v)
1−DU(K) if I = τ(v)

0 if ∀v ∈ D(V )− U(V ),
τ(v) 6= I

Next, we present and prove an important Lemma needed to establish The-
orem 1:

Lemma 3. Let K = (T ,A, BN) be a probabilistic knowledge base such that
its degree of inconsistency DU(K) 6= 1. Let τ be an annotated interpretation
mapping choice. The canonical probabilistic interpretation Prτ of K given τ is
a model of K to the degree d = 1 − DU(K). We hereafter refer to it as the
canonical probabilistic model given τ .

Appendix B.1. Proof of Lemma 3
Condition (iii) of the definition of a probabilistic model (see Definition 5) is

obviously satisfied.
We now prove that condition (ii) of Definition 5 is satisfied. For v ∈ V , we

show that Pv =
∑
I s.t. V I=v Pr

τ (I) satisfies (ii). We conisder the following
two cases:

• Case 1: v ∈ U(K). Since, by definition of Prτ , Prτ (I) = 0 for any
annotated interpretation I such that V I = v with v ∈ U(K), it follows
that

∑
I s.t. V I=v Pr

τ (I) = 0.

• Case 2: v /∈ U(K). By definition of Prτ , for all I ∈ Î such that V I = v
and I 6= τ(v), Prτ (I) = 0. Therefore, Pv = Prτ (τ(v)), and, by definition
of Prτ , Prτ (τ(v)) = PrBN (V=v)

1−DU(K) , which establishes
∑
I s.t. V I=v Pr

τ (I) =
PrBN (V=v)
1−DU(K)

In both cases, condition (ii) is satisfied.
Finally, we prove that condition (i) of Definition 5 is satisfied. Let φ : e be

an axiom in K. We want to establish that Prτ (φ : e) = 1.
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By definition, Prτ (φ : e) =
∑
I s.t. I|=φ:e Pr(I). It follows that Prτ (φ : e) =

1 iff. for all I such that Prτ (I) > 0, I |= φ : e (i.e. ∀v ∈ D(V ) − U(K) s.t.
PrBN (V = v) > 0 , τ(v) |= φ : e).

We now prove that ∀v ∈ D(V )−U(K), τ(v) |= φ : e. Let v ∈ D(V )−U(K).
We consider the following two cases:

• Case 1: v |= e. In this case, by definition of Kv, φ must be an axiom of
Kv. Since, by definition of an annotated interpretation mapping choice,
τ(v) is a model of Kv, it follows that τ(v) |= φ. This establishes that
τ(v) |= φ : e

• Case 2: v |= e does not hold. In this case, by definition of the implication
semantics, τ(v) |= φ : e trivially holds.

This complete the proof that condition (i) of Definition 5 is satisfied.
We have shown that the canonical interpretation Prτ satisfies all the condi-

tions of Definition 5. It is therefore a model of K to the degree d = 1−DU(K).
Now, we are ready to prove that both directions of the equivalence of The-

orem 1 hold.

Appendix B.2. Proof of Theorem 1: Necessary Condition
In this section, we establish the following: (K is consistent to the degree d)

⇒ (d = 1−
∑
v s.t. Kv inconsistent PrBN (V = v)).

Let K = (T ,A, BN) be a probabilistic knowledge base consistent to the
degree d. By condition (iii) of Definition 5, d = 1 −DU(K). Since DU(K) =∑
v s.t. Kv inconsistent PrBN (V = v), it follows that d = 1−

∑
v s.t. Kv inconsistent PrBN (V = v).

Appendix B.3. Proof of Theorem 1: Sufficient Condition
In this section, we establish the following: (d = 1−

∑
v s.t. Kv inconsistent PrBN (V = v))

⇒ (K is consistent to the degree d).
Let d be such that d = 1 −

∑
v s.t. Kv inconsistent PrBN (V = v). Then, it

follows that d = 1−DU(K) (or DU(K) = 1− d).
If DU(K) 6= 1, as already observed, a direct consequence of Lemma 1 is

that at least one annotated interpretation mapping choice exists. Let τ be an
annotated interpretation mapping choice for K. According to Lemma 3, the
canonical probabilistic interpretation Prτ of K given τ is a model of K to the
degree d = 1−DU(K), which establishes that K is consistent to the degree d.

If DU(K) = 1, by Definition 5, K is consistent to the degree d = 0 (i.e.
d = 1−DU(K)).

Appendix C. Proof of Lemma 2

Let K = (T ,A, BN) be a probabilistic knowledge base consistent to the de-
gree d (d 6= 0). LetQg = ψ : e be a grounded query. Let Ω = {v|Kv is consistent and Kv |=
ψ and v |= e}.

There are two important steps in the proof of Lemma 2:
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1. First, we need to show that for every probabilistic model Pr of K, Pr(ψ :
e) ≥ 1

d

∑
v∈Ω PrBN (v)

2. Next, we show that there exists a special probabilistic model Pr0 of K
such that Pr0(ψ : e) = 1

d

∑
v∈Ω PrBN (v)

Together, these two steps prove that Lemma 2 holds.

Appendix C.1. ∀Pr s.t. Pr |= K, Pr(ψ : e) ≥ 1
d

∑
v∈Ω PrBN (v)

Let Pr be a model of K. By Definition 9,

Pr(ψ : e) =
∑

I s.t. V I |=e and I|=ψ

Pr(I)

By reordering the terms of the sum by grouping together annotated interpreta-
tions assigning the same value to V , we have the following:

Pr(ψ : e) =
∑

(v s.t. v|=e)

∑
(I s.t. V I=v and I|=ψ)

Pr(I)

Adding the condition Pr(I) 6= 0 obviously does not change the previous
equality, which leads to the following equality, hereafter referred to as (I):

Pr(ψ : e) =∑
(v s.t. v|=e)

∑
(I s.t. V I=v and I|=ψ and Pr(I)6=0)

Pr(I)

We obtain the following inequality, hereafter referred to as (II), by restricting
the terms of the outer summation to v s.t. Kv is consistent and Kv |= ψ:

Pr(ψ : e) ≥∑
(v s.t. v|=e and Kv consistent and Kv|=ψ)

S(v, ψ)

where

S(v, ψ) =
∑

(I s.t. V I=v and I|=ψ and Pr(I)6=0)

Pr(I)

Next, we show that for v such that v |= e and Kv is consistent and Kv |= ψ,
the following holds: ∑

I s.t. V I=v

Pr(I) =

∑
(I s.t. V I=v and I|=ψ and Pr(I) 6=0)

Pr(I)

To simplify the notation, we define Pv as Pv =
∑
I s.t. V I=v Pr

τ (I)
We obviously have: Pv =

∑
I s.t. V I=v and Pr(I)6=0 Pr(I)
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Let v be such that v |= e and Kv is consistent and Kv |= ψ. Let I be
an annotated interpretation of K such that V I = v and Pr(I) 6= 0. Since
Pr(I) 6= 0 and Pr is a model, it follows that I is a model of all annotated
axioms (this is a direct consequence of Pr(φ : e′) = 1 for all φ : e′ axioms of K),
which means that I is a model of Kv. Since Kv |= ψ, it follows that I |= ψ.
This result demonstrates that adding the condition I |= ψ in the following
summation does not change it for v such that v |= e and Kv is consistent and
Kv |= ψ:

Pv =
∑

I s.t. V I=v and Pr(I)6=0

Pr(I)

Therefore, for v such that v |= e and Kv is consistent and Kv |= ψ,

Pv =
∑

(I s.t. V I=v and I|=ψ and Pr(I)6=0)

Pr(I)

The inequality (II) becomes:

Pr(ψ : e) ≥
∑

(v s.t. v|=e and Kv consistent and Kv|=ψ)

Pv

By definition of a model of Pr, for v /∈ U(K) (i.e. Kv is satifiable according
to Lemma 1), Pv = 1

dPrBN (V = v).
Hence,

Pr(ψ : e) ≥ 1
d

∑
v∈Ω

PrBN (v)

This complete the first step of proof of Lemma 2.

Appendix C.2. ∃Pr0 s.t. Pr0 |= K and Pr0(ψ : e) = 1
d

∑
v∈Ω PrBN (v)

Now, we show that there exists a special probabilistic model Pr0 of K such
that Pr0(ψ : e) = 1

d

∑
v∈Ω PrBN (v).

Let τ0 be an annotated interpretation mapping choice defined as follows:
For v ∈ D(V )− U(K),

• If v is such that Kv |= ψ, then, for τ0(v), we choose a classical model I of
Kv and extend it to become an annotated interpretation of K by assigning
V I = v. τ0(v) is set to the resulting extension. By definition of logical
entailment, τ0(v) |= ψ obviously holds.

• If v is such that Kv |= ψ does not hold, then, by definition of logical
entailment, there exists at least one classical model I of Kv such that I
does not satisfy ψ. We extend I to become an annotated interpretation
of K by assignining V I = v. τ0(v) is chosen to be the resulting extension.
So, τ0(v) does not satisfy ψ
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Now, we consider the canonical model Prτ
0

given τ0.
By equality (I) in section Appendix C.1,

Prτ
0
(ψ : e) =∑

(v s.t. v|=e)

∑
(I s.t. V I=v and I|=ψ and Pr(I) 6=0)

Prτ
0
(I)

By defintion of Prτ
0

and τ0,

Prτ
0
(ψ : e) =∑

(v s.t. v|=e and Kv consistent and Kv|=ψ)

Prτ
0
(τ0(v))

By definition of Prτ
0
:

Prτ
0
(ψ : e) =

1
d

∑
v∈Ω

PrBN (v)

So Prτ
0

is that special model we were looking for.

Appendix D. Proof of Theorem 3

Let K = (T ,A, BN) be a probabilistic knowledge base consistent to the
degree d, and let Q = ψ : e be a probabilistic query against K. Let θ be a
ground substitution for the variables in Q and let pr in[0, 1].

First, let us consider the case where d 6= 0.
By definition, (θ, pr) is a solution to Q in K iff.

pr =

(1−DU(K))× inf{Pr(ψθ : e)|Pr is model of K}

+
∑

v∈U(K) and v|=e

PrBN (V = v)

So, by Lemma 2, the following equivalence (hereafter referred to as (A)) must
hold: (θ, pr) is a solution to Q in K iff.

pr =

δ ×
∑

v s.t. Kv|=ψθ and v|=e and Kv consistent

PrBN (V = v)

+
∑

v∈U(K) and v|=e

PrBN (V = v)

where

δ =
(1−DU(K))

d

35



Since, by Lemma 1, v ∈ U(K)⇔ Kv is inconsistent, and an inconsistent classical
KB entails everything, the following equality, hereafter referred to as (B), holds:∑

v∈U(K) and v|=e

PrBN (V = v) =

∑
v∈U(K) and v|=e and Kv|=ψθ

PrBN (V = v)

Finally, by definition of partial consistency of K, d = 1−DU(K) (this equality
is hereafter referred to as (C))

From (A), (B) and (C), the following holds: (θ, pr) is a solution to Q in K
iff.

pr =∑
v s.t. Kv|=ψθ and v|=e and Kv consistent

PrBN (V = v)

+
∑

v∈U(K) and v|=e and Kv|=ψθ

PrBN (V = v)

Since, by Lemma 1, v /∈ U(K) ⇔ Kv is consistent, it follows that: (θ, pr) is a
solution to Q in K iff.

pr =∑
v s.t. Kv|=ψθ and v|=e and v/∈U(K)

PrBN (V = v)

+
∑

v∈U(K) and v|=e and Kv|=ψθ

PrBN (V = v)

which means that : (θ, pr) is a solution to Q in K iff.

pr =
∑

v|=e and Kv|=ψθ

PrBN (V = v)

Now, for the case where d = 0. By definition, (θ, pr) is a solution to Q in K
iff.

pr =
∑

v|=e and v∈U(K)

PrBN (V = v) + 0

Since v ∈ U(K) iff. Kv is inconsistent and an inconsistent KB entails every-
hting, (θ, pr) is a solution to Q in K iff.

pr =
∑

v s.t. v|=e and v∈U(K) and Kv|=ψθ

PrBN (V = v)

Since U(K) = D(V ) for d = 0, it follows that (θ, pr) is a solution to Q in K
iff.

pr =
∑

v s.t. v|=e and Kv|=ψθ

PrBN (V = v)
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