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Abstract—In this work we are concerned with the cost asso-
ciated with replicating intermediate data for dataflows in Cloud
environments. This cost is attributed to the extra resources
required to create and maintain the additional replicas for a
given data set. Existing data-analytic platforms such as Hadoop
provide for fault-tolerance guarantee by relying on aggressive
replication of intermediate data. We argue that the decision to
replicate along with the number of replicas should be a function
of the resource usage and utility of the data in order to minimize
the cost of reliability. Furthermore, the utility of the data is
determined by the structure of the dataflow and the reliability of
the system. We propose a replication technique, which takes into
account resource usage, system reliability and the characteristic
of the dataflow to decide what data to replicate and when
to replicate. The replication decision is obtained by solving a
constrained integer programming problem given information
about the dataflow up to a decision point. In addition, we built
a working prototype, CARDIO of our technique which shows
through experimental evaluation using a real testbed that finds
an optimal solution.

Index Terms—replication, dataflows, map-reduce, Hadoop,
data-availability, fault-tolerance

I. INTRODUCTION

The landscape of data intensive processing has evolved
significantly in the last few years. Such processing has now
become much more pervasive and is accessible to a broader
user population. Several factors are responsible for this devel-
opment. First, there is tremendous growth in the volume of
available data resulting from the proliferation of devices [1].
Second, the data storage costs have reduced dramatically mak-
ing it cost-effective for institutions and individuals to retain
large volumes of data. Third, new programming paradigms,
such as Map-Reduce [2] and Pig [3], have recently emerged
that enable efficient processing of large data sets on clusters of
commodity hardware. Open-source implementations of these
paradigms such as Hadoop [4] have further promoted the
democratization of data-analytics.

Commodity computing is a key enabler in the the devel-
opment and success of large-scale data analytics in a Cloud
environment. This paradigm enables “scaling out” by adding
inexpensive computing nodes as a solution to the scalability
problem. This has resulted in frequent failures that have
became a rule rather than an exception in typical Cloud
environments. For example, in the context of data analytics,
Google has reported 5 average worker deaths per Map-Reduce
job [2], and at least one disk failure in every run of a 6-
hour Map-Reduce job on a cluster of 4,000 machines [5]. Not

surprisingly, fault tolerance is considered a primary goal in
the design and development of middleware and application
software that processes data on such a large scale. The
performance degradation resulting from failures as well as the
cost for handling such failures depends on the nature of the
application and its corresponding requirements.

In this work we are concerned with failures that result
in unavailability of intermediate data in the execution of
dataflows. The availability of intermediate data is crucial
to the performance of dataflows since lost intermediate has
to be regenerated for the dataflow to advance. Therefore, in
order to recover from a single failure, multiple stages that
were previously executed in the dataflow may have to be re-
executed again. This cascaded re-execution effect has shown
to be responsible for significant degradation in the end-to-end
performance of Map-Reduce jobs in production systems [6].
This problem exacerbates for dataflows with large number of
stages [7] since it increases the probability of failure per job
and the corresponding failure recovery time.

Replication is one mechanism that has been widely used
to improve data availability in data-intensive applications. To-
gether with scheduling and placement strategies this technique
has proven successful in Grid environments [8]–[11]. Cloud
environments, however, follow a consumption-based business
model [12]. Hence, replication techniques that have proven
successful for Grid environments in the past may not be
cost-effective for data-analytics in Cloud environments. As a
matter of fact, paid Cloud replication services already exist for
traditional applications [13], [14]. We expect the emergence of
similar services for data analytic applications.

We argue that the cost paid to provide for reliability in large-
scale data analytic environments may be excessive if this cost
is not well understood. This is crucial as system providers seek
to reduce cost by relying on commodity hardware to build
their infrastructures. The key question we seek to answer in
this work is: given a dataflow with a set of stages when is
cost-effective to replicate its corresponding intermediate data?

To address this question, we introduce a metric to capture
reliability cost. This metric represents the price paid by either
the infrastructure or the user to handle failures that results
in unavailable input data of a given stage. This cost is
effectively comprised of two costs: Regeneration cost, which
is the price paid for re-executing a task for which output data
has been lost and re-execution is needed to advance in the
dataflow.replication cost, which represents the price paid for



creating replicas of the data in order to reduce the likeliness of
losing data in the presence of failures. In the former, the price
is a measure of the amount of resources needed to re-execute
stages. In the latter, the price is a measure of the resources
needed to store and maintain replicas in the system. In practice,
it is challenging to understand the cost of regeneration for
a given dataflow in the presence of failure due to the data
and temporal dependencies between stages. Therefore, to
provide for data availability, existing data analytic platforms
implement replication techniques that may not be appropriate
to users. Furthermore, such techniques usually assume over-
provisioning of storage resources and tend to over-replicated.
For instance, in a typical Hadoop cluster intermediate data
of a dataflow is replicated thrice by default. We expect
the cost of replication to increase drastically with the high
projected growth in data volumes [15] and with the growing
trend towards shared data analytic environments [16]–[18].

In this work we propose CARDIO a technique and a
system which minimize the reliability cost. We formulate
the minimum reliability cost problem as an as an integer
programming optimization problem with nonlinear convex ob-
jective functions. The optimal solution to this problem dictates
the replication factor of intermediate data upon completion
of its corresponding stage without a priori knowledge of
future (downstream) stages. To find such a solution, CARDIO
takes into account the probability of loosing data, the cost
of replication, the storage capacity available for replication
and potentially the current resource utilization in the system.
More importantly, upon completion of a stage in the dataflow,
CARDIO reconsiders the replication decisions made at the
previous stages to ensure that it achieves a local optima at
each stage while satisfying the storage constraint.

We implemented CARDIO as a decision layer on top of
Hadoop that makes intelligent replication decisions as the
dataflow advances towards completion. In summary, this work
makes the following major contributions:

• We introduce a formulation of the minimum reliability
cost problem as an optimization problem for dataflows.

• Provide key insights into the cost of reliability of
dataflows from a resource perspective.

• A novel cost-aware replication system that incarnates an
efficient solution to the minimum reliability cost problem.

Structure of the Paper
We first start by providing background information use-

ful to understand our work in Section II. We then present
a quantitative analysis of the cost of replication for data-
intensive workflows in a real Hadoop-based environment in
Section III. In Section IV we formulate the minimum-cost
reliability problem for dataflows. In Section V we perform a
numerical analysis of CARDIO. In Section VI we describe the
architecture of the CARDIO system, a system that encapsu-
lates our solution and is based on a real Hadoop Cloud testbed.
In addition we perform an evaluation of our system on real
workloads. We then discuss the related work in Section VII.
In Section VIII we conclude the paper and present our future
plans in Section IX.

II. BACKGROUND

We chose Hadoop to drive our experimental work since it is
the de-facto data-analytic platform in use today by the industry
and the academic community. Within this framework we
consider a data-analytic platform in where dataflows consist of
compute stages where each stage is a Map-Reduce job (tuple).
Note, that our work applies to any data-analytic platform
which relies on replication to provide for data-availability of
dataflows. To help understand our work better we provide
some basic background on Hadoop.

A. Hadoop Map-Reduce

The Hadoop Map-Reduce engine is a Java-based platform
developed by Yahoo! that supports the Map-Reduce program-
ming model [2]. A Map-Reduce job specifies a map function,
which transforms a job input record into a set of key/value
pairs, and a reduce function, which transforms an intermediate
key and the set of all values associated with that key into the
job output record.

The Map-Reduce layer uses a cluster of nodes (machines)
to run Map-Reduce jobs. In Figure 9 we show the Hadoop
architecture with some additional components related to our
system. One special node runs the JobTracker, which
organizes the cluster’s activities. The other nodes each run a
TaskTracker, which organizes a worker node’s activities.
The TaskTracker is configured with a number of map and
reduce tasks to run concurrently, and pulls new tasks from the
JobTracker as old ones finish. Each task is run in a separate
process. A job is organized into two sequential tiers of map
tasks and reduce tasks. The Hadoop Map-Reduce layer stores
intermediate data produced by the map tasks and consume
reduce tasks in the local filesystems of the machines running
the map and reduce functions.

B. Hadoop Distributed File System (HDFS)

HDFS is a distributed filesystem developed by Yahoo!. It
is designed to provide high streaming throughput to large,
write-once-read-many-times files. A HDFS filesystem requires
one unique server, the Primary-Namenode and a Secondary-
Namenode as backup. The filesystem is built from a cluster of
DataNodes, each of which serves up blocks of data over the
network using a HTTP based protocol. These components are
shown in Figure 9. Note that DataNodes are denoted by DN.

HDFS is designed to run on a collection of commodity
machines, thus is designed with fault tolerance in mind. A
file is stored as a sequence of blocks; typical block sizes are
64 MB and 128MB. Each block is replicated across multiple
Datanodes. The default replication value is three (3). Replicas
are distributed so that one copy is local to the client and two
other copies are stored remotely.

Replication is performed in a pipelined fashion. Data is first
written to a local file. When the local file accumulates a full
block of user data, the client retrieves a list of DataNodes from
the NameNode. This list contains the DataNodes that will host
a replica of that block. The client then flushes the data block
to the first DataNode. The first DataNode starts receiving the
data in small portions (4 KB), writes each portion to its local
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Fig. 1: A dataflow consisting of four stages: Tagger, Join, Grep and
RecordCounter.

repository and transfers that portion to the second DataNode in
the list. This process repeats until the last replica is created.
Consequently, a file can not be accesses till all replicas are
done.

C. Testbed

We use a real testbed for our experiments consisting of
a Hadoop-0.20.2 cluster with 25 VMs hosted in an internal
Cloud-environment available to IBM Research. Each VM has
RHEL5.3, 4-2.9GHz CPUs and 350 GB of storage.

D. Workloads

To drive our experiments we use a real Map-Reduce
dataflow consisting of 4 stages: Tagger, Join, Grep and
RecordCounter. Figure 1 depicts these stages as S1, S2, S3

and S4, respectively.
• Tagger pre-processes by tagging an input data set con-

sisting of records. This is a IO intensive workload that
outputs 170GB of data as input to the second stage.

• Join consists of a standard table join operator that joins
the table output by Tagger with a dimensional table
previously stored in the HDFS. The fact and dimensional
table are 170GB and 115GB, respectively. Join is I/O
intensive but more CPU intensive as compared to Tagger.

• Grep is considered a representative workload for data
analytics and consists of a simple operation that look
for records that match a given regular expression in the
output of the Join stage. This stage generates 100GB.

• RecordCounter counts all records with a common field.
Its output is of 70GB.

III. COST-BENEFIT ANALYSIS OF REPLICATION IN
DATAFLOWS

We ground our work by first quantifying the cost resulting
from replication of intermediate data in dataflows. We consider
end-to-end completion time for this study. We recognize that
any measurement used in this evaluation depends on the
particular replication technique and various characteristics of
the system. Without any loss of generalization, the results can
be safely extrapolated to include other platforms. Note that in
this evaluation we do not seek at providing an study of the
impact of failures in dataflows. For such study in the context
of Map-Reduce tuples we refer the reader to the work [6].
Instead, we are interested in quantifying the price paid to
provide for data availability in dataflows or in other words:
the reliability cost.

The following discussion pertains to three types of perfor-
mance costs. (1) Replication cost, which represents the cost

RFM t1 t2 t3 t4 T
NR 1823 2759 4547 3759 12888

1100 4022 5097 5219 4346 18684
0101 1824 5703 5493 5465 18485

TABLE I: Completion time in seconds for individual MR stages and
end-to-end time of dataflow.

of replicating intermediate data in a dataflow expressed in
terms of resource usage, time or any other relevant metric;
(2) regeneration cost, which estimates the cost to regenerate
the intermediate data in case of failure; and (3) reliability cost,
which considers both the replication cost and the regeneration
cost in estimating the effective cost of handling failures in the
system. Note that we assume that data that has been lost is
regenerated upon it is needed as input to a stage. We formally
define these costs later in Section IV.

We define a replication factor map (RFM) as the sequence of
replication factors for all the stages in a dataflow. For example,
given a 4-stage dataflow, an RFM of 0011 corresponds to the
case in which only the third and fourth stages of the dataflow
(corresponding to D3 and D4 in Figure 1, respectively) were
replicated. We consider 0000 and 1111 two special cases of
RFM as they implement two extremes replication strategies:
no-replication (NR) and full-replication (FR), respectively.

A. Replication Cost and Benefit

We analyze the end-to-end performance of our 4-stage
dataflow described in Section II-D under various replication
strategies. To do this we execute our dataflow with a pre-
defined RFM and measure its end-to-end completion time.
Since our purpose is to quantify the cost of replication for
our dataflow we calculate the degradation resulting from
replicating using RFM=0000 (NR) as a baseline. We plot our
results of average of 3 rounds in Figure 2(a). In this Figure
x-axis depicts the RFM of choice.

As observed from Figure 2(a), data availability comes at a
cost to the end-to-end performance depending on the level of
replication considered. This degradation peaks at 0.53 when
the replication strategy is FR. This behaviour follows intuition
since intermediate data is replicated for all intermediate stages
for this case. For other RFM values such as 0001 and 0010,
the performance degradation is much lower, since these cases
result in the replication of a smaller amount of intermediate
data as compared to when the replication strategy is FR.
We can further observe that RFM values of 1100 and 0101
show approximately same degradation ratios. This result is
counter-intuitive since for RFM=1100 the intermediate data
replicated is about 1.58 times larger than for RFM=0101 (see
Section II-D).

To investigate the causes behind this observation we break-
down the completion time of the dataflow. Table I plots the
execution time for the four stages and the end-to-end job
completion time for the RFM values of NR, 1100 and 0101.
Figure 2(b) plots the fractional contribution of each stage to
the total increase in end-to-end job completion time. When
we compare the two cases of RFM=1100 and RFM=0101, we
observe that–as expected– the completion time of S1 increases
for the case RFM=1100 when compared to RFM=0101. It
is noticeable that although S1 only contributes 14% to the
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Fig. 2: (a) End-to-end performance degradation due to replication. (b) Data-locality achieved due to replication.

total time of the dataflow in the NR strategy (see Table I) its
completion time constitutes about 39% of the total degradation
of the dataflow when D1 is replicated for RFM=1100 (see
Table I). Different conclusions can be reached from these
observations depending on which cost metric is considered.
If the cost metric of interest is time –as it is in our case–
the re-execution cost outweighs the replication cost since it
takes longer to replicate D1 than to re-execute S1 later if a
failure cause D1 to be lost. If on the other hand, we consider
a case wherein there is a limited budget for a given resource,
e.g., CPU, associated with the dataflow, then it is plausible
that regeneration cost outweighs the replication cost and hence
replicating D1 is the right decision.

B. Summary

The conclusions that can be inferred from our motivational
exploration are multifold. First, the cost of providing reliability
for dataflows varies depending on the chosen replication
strategy. With de-facto full-replication available in standard
distributed file systems such as HDFS, costs as high as 50%
are possible when time us considered as metric of cost.
Second, that when making replication decision one should
carefully consider the trade off between the cost of replicating
intermediate data and the cost of regenerating that data in the
presence of failure. Third, that the choice of cost metric is
crucial in making replication decisions in dataflows.

With these observations, we investigate the cost of reliability
for dataflows. More specifically, we are interested in finding
for a given stage what is the replication decision that leads to a
minimum reliability cost for the dataflow with no-knowledge
of downstream stages. In the next section we formulate the
minimum reliability cost optimization problem to address this
question.

IV. PROBLEM DEFINITION AND ANALYSIS

A. Problem statement

Consider job J (also referred to as a dataflow) which
consists of n stages in sequence Si, i = 1, 2, · · · , n. Stage
Si uses data Di−1 generated from its predecessor stage Si−1

and generates data Di to be consumed by its successor stage

Si+1. (S0 and Sn+1 are not real stages, rather they refer to the
input and output processes of job J .) It is assumed that data
D0 is available as input to job J and Dn is its output. The
storage size of data Di is denoted by Yi storage units and the
time it takes to store Di is Ei = δYi, where δ is the speed of
storing a data unit. (We use time and cost interchangeably.)
At the conclusion of stage Si, data Di is stored as a copy
referred to as the original copy. Further, additional xi ≥ 0
copies of Di are stored as replicas of the original copy in case
the latter (or any of the replicas) is lost due to failure. Note
that D0 is assumed to be reliably stored. The processing time,
i.e. the time needed to process Di−1, perform any necessary
computation during Si, generate Di, and store an original copy
is denoted by Ai. Further, the replication time needed to store
the xi replicas is denoted by Ri, where

Ri = xiEi.

The storage devices where data (original or replica) is stored
are subject to failures. We assume the following failure model.
Consider a piece of data Di that is stored as bi ≥ 1 blocks.
The number of blocks bi is a function of the block size oi and
the size of teh file Yi. More specifically, bi = Yi

oi
. A single

block fails independently of other blocks with probability p.
A file is corrupted if at least one of its blocks fails. Given
xi ≥ 1 as the number of replicas, all replicas are corrupted,
hence Di is unavailable (failed), if at least all xi replicas of
a given block fail. Let fi(xi) denote the conditional failure
probability of Di. Then, we have

fi(xi) = 1− (1− pxi)bi .

As long as at least one copy (original or replica) of Di−1

is available, Stage Si proceeds in its processing unaffected.
However, if all copies of Di−1 are lost, stage Si−1 is reinvoked
in order to regenerate data Di−1 and its replicas. Denote by
Gi−1 the expected time to regenerate Di−1 and its replicas
(G0 = 0). Let the expected total stage time for Si be Ti. It is
given by

Ti = Ai +Ri +Gi−1.



The expected regeneration time Gi is given by

Gi = fi(xi + 1)Ti

since fi(xi + 1) is the probability of losing all xi + 1 copies
of Di (replicas and original) and Ti is the expected time to
regenerate Di and store it along with xi replicas. Note that Ti
includes any potential loss of data of predecessor stages in a
recursive manner.

The total job execution time, denoted by T , is the sum of
all n stage times,

T =

n∑
i=1

Ti

which includes the total processing time, the total replication
time, and the total expected regeneration time due to failures
of all n stages, i.e.

T = A+R+G

where A is the job processing time, R is the job replication ad-
ditional cost (penalty), and G is the job expected regeneration
additional cost, each is given by

A =

n∑
i=1

Ai, R =

n∑
i=1

Ri, G =

n−1∑
i=1

Gi,

respectively. (Note that a variation of the above definition
of the regeneration cost G may include Gn in case the job
output Dn is also subject to failure which necessitates its
regeneration. In such a case we have G =

∑n
i=1Gi.) We

define the reliability cost, Z, as the additional cost due to
replication and regeneration,

Z = R+G. (1)

The total storage needed for all replicas is given by

Y =

n∑
i=1

xiYi.

Note that the choice of the replication vector X =
[x1x2 · · ·xn] impacts the values of the replication and re-
generation additional costs, R and G, respectively, as well
as the storage need, Y . Intuitively, the more replicas, the
higher the replication cost and storage need, and the lower the
regeneration cost. This gives rise to an optimization problem
in order to determine an optimal value of X . However, before
describing the optimization problem, we discuss the temporal
aspect of data replication.

B. Dynamic Replication
So far, we considered the replication factor, xi, for stage

Si as a static variable during the entire duration of the job. In
general, one might change the value of xi dynamically as the
job progresses through its various stages. For instance, reduc-
ing the replication factor of an earlier stage as higher stages
execute may make sense in order to allow more recent data to
be replicated. To allow for dynamic replication, we extend the
notation as follows. When the job finishes executing stage Sk,
we say that the job is in step k, k = 1, 2, · · · , n. The replica-
tion factors at step k are denoted by xi(k), i = 1, 2, · · · , k. In

other words, after stage Sk completes, data generated at stage
Si, i = 1, 2, · · · , k, is replicated with a factor xi(k), leading
to a lower triangular matrix of variables, denoted by X. Thus,
dynamic replication gives rise to n(n+1)/2 replication factor
variables.

An increase from xi(k) to xi(k + 1) means that data Di

needs more replicas. Whereas, a decrease means giving up
storage space taken by Di, potentially in favor of replicating
more ”valuable” data. The replication cost at step k is given
by

R(k) = xk(k) Ek +

k−1∑
j=1

(xj(k)− xj(k − 1))+ Ej ,

where the first term is the replication cost of stage Sk and
the second term is the additional replication cost from step
k − 1 to step k due to any increase in the replication factors
of stages Sj , j = 1, 2, · · · , k − 1. We assume that removing
(demoting) replicas does not incur any significant cost. (Note
that the second term is zero for k = 1 and xj(0) = 0.)

The expected regeneration cost at step k involves the han-
dling of potential failures of data Dk−1 during the execution
of stage Sk, i.e.

G(k) = fk−1(xk−1(k − 1) + 1) Tk−1(k − 1),

where
Ti(k) = Ai +Ri(k) +Gi−1(k),

Ri(k) = (xi(k)− xi(k − 1))+ Ei,

and

Gi−1(k) = fi−1(xi−1(k − 1) + 1) Ti−1(k − 1).

Let Z(k) = R(k) +G(k). The total replication and regenera-
tion costs are given by

R =

n∑
k=1

R(k), G =

n∑
k=2

G(k),

respectively, and their sum is Z as given in 1. At step k, the
storage constraint is given by

Y (k) =

k∑
i=1

xi(k) Yi ≤ C,

where C is the total available storage capacity for replication.

C. Optimization Problem
The assumption of whether the parameters (n,A, Y, · · · )

of job J are know a priori or only the parameters related
to each stage become known at (or about) the completion
of each stage is crucial in determining the nature of the
optimization problem. Accordingly, we differentiate between
two optimization criteria: job optimality and stage optimality.

1) Job optimality (JO): In job optimality we assume the
knowledge of all job parameters before the job starts. In such
a case, the objective would be to choose the replication matrix
X so as to minimize the total expected cost Z subject to
replication storage constraint. Thus, the problem is

min
X

Z s.t. Y (k) ≤ C, k = 1, 2, · · · , n.



2) Stage optimality (SO): In stage optimality we assume
that the parameters related to each stage become known at
(or about) the completion of each stage. In such a case, at
step k, which coincides with the completion of stage Sk, k =
1, 2, · · · , n, the decision variables X(k) = {xi(k), i =
1, 2, · · · , k} are determined. Note that, at step k, one may alter
earlier choices of replication given the current conditions and
available storage. The criterion is to minimize the incremental
replication cost and the regeneration cost in case a failure
occurs to Dk. Thus, the problem at step k is

min
X(k)

Z(k) s.t. Y (k) ≤ C.

Given the equations above, we note that both the job and
stage optimality problems are integer programming problems
with nonlinear convex objective functions. In the subsequent
sections we obtain the optimal solution numerically.

D. Minimizing resource utilization
The above problem formulation is stated with time (pro-

cessing time, replication time, regeneration time, etc.) as the
measure of concern. More generally, each stage of the job
involves usage of various resources. For instance, the execution
of a stage consumes CPU (user as well as system cycles),
disk (read and write operations), network (transmit and receive
packets), and storage of produced data and its replicas. The
usage of each of these resources may incur costs that differ
from stage to stage during the job execution. Hence, we may
be concerned with minimizing cost rather than time. The
problem formulation remains the same, though.

Let K be the number of resources used during the execution
of a stage. (In the above example we have K = 4, since we
considered CPU, disk, network, and storage resources.) Denote
by ui,k, k = 1, 2, · · · ,K, the usage of resource k during stage
Si in units of that resource. In order to make usage uniform
among the resources, we normalize usage by defining ρi,k as

ρi,k =
ui,k∑n
j=1 uj,k

, k = 1, 2, · · · ,K,

so that
∑n

i=1 ρi,k = 1 for all resources. The relative costs
of resources is represented by weights ωk, k = 1, 2, · · · ,K,
in such a way that one resource (say k = 1, without loss
of generality) has a standardized unit weight. Thus, the unit
cost is the total job usage of that resource. The weights of the
other resources are expressed in terms of their relative costs
to the cost of the standardized resource. Thus, Ai in the above
problem formulation is given by

Ai =

K∑
k=1

ωk ρi,k.

Similarly, Ri may be expressed as the cost of replication.
Hence, we would be minimizing total job cost, replication cost,
and regeneration cost, instead of total job time, replication
time, and regeneration time. In either case, the variables are the
same, namely the number of replicas taken at the conclusion
of each stage of the job.

To summarize, in this section we have provided a formula-
tion to the minimum reliability cost for dataflows that motivate

this work. In particular, we are interested in the SO formulation
since it assumes no a priori knowledge of the dataflow and
hence, it is more suited to realistic settings.

V. ANALYSIS

In this section we perform a parametric analysis to evaluate
the optimal solution to the SO problem as it compares to
standard replication strategies adopted in practice such as full-
replication FR. We consider various parameters of interest in
real systems and investigate their trade-offs.
Performance metric We use replication cost (R), regeneration
cost (G) and reliability cost (Z), as defined in Section IV,
as the comparative cost metrics. Recall that R represents the
cost of generating the initial replicas and does not include
the cost involved in creating new replicas when intermediate
data is re-generated in the presence of failure. G involves
the cost of re-execution of stages due to failures and their
corresponding replication decisions. Z is the sum of R and G
and corresponds to the overall cost of providing reliability in
the system. In many of our experiments we only plot G and R
since Z alone does not suffice to differentiate the strategies in
terms of performance. While two strategies may have similar
values for Z, they might differ significantly in their value of
R and G. In other words, the cost of reliability may come at
different replication and regeneration cost.

Recall that the input to the problem is a dataflow consisting
of multiple stages in sequence. For the ease of analysis and
with no loss of generalization, we use 4 stages represented
as S1, S2 , S3 and S4. Note that experiments with larger
number of stages show similar results. Similar to Section IV,
we use time as the cost metric for our evaluation. A stage
Si is represented by the tuple < Di, Ci > where Di and Ci

corresponds to output data size and computing resources of the
stage, respectively. In our analysis we assume that one unit of
computing resources requires one unit of time. The system is
represented by the tuple < δ, p > where δ corresponds to the
time required by the system to replicate one data unit and p
is the probability of a replica being unavailable due to failure
as described in Section IV.

We compare CARDIO with two baseline strategies of full-
replication(FR) and no-replication(NR). Recall that FR cor-
responds to the default replication technique used in existing
Hadoop-based platforms, in which intermediate data is repli-
cated thrice for every stage. NR corresponds to the strategy
in a Hadoop cluster where replication is disabled.

In our analysis–unless stated differently–we consider a
typical scenario with the following configuration: p = 0.2,
C =∞ and δ = 0.2. The value of δ was chosen so that R does
not outweigh G. p = 0.2 characterize a reasonable reliable
system. Later in this section we investigate the impact of each
individual parameter on the performance of the replication
strategies. Our reasoning for choosing C is that by relaxing
the storage constraint for replication we aim at reproducing
typical Hadoop clusters that are over-provisioned in terms of
storage. For each stage Si, Ci is obtained from an uniform
distribution U(1, CMax) where CMax = 100 unless specified
otherwise. Similarly, Di is also obtained from a uniform
distribution U(1, DMax) where DMax may vary within the
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Fig. 3: Impact of DMax on the performance of replication strategies.

range [1, CMax] in order to control the ratio between storage
and computing resources required for a dataflow.

Effect of DMax We first investigate the impact of varying
the ratio between storage and computing resources on the
performance of the replication strategies. Figure 3 plots the
varying costs for FR, NR and CARDIO as we vary DMax for
various values of δ. For example, ”CD-0.2” in the key refers

to the CARDIO strategy with δ = 0.2. Multiple observations
can be drawn from these results. First, Figure 3(a) shows that
as the amount of intermediate data increases, the reliability
cost (Z) increases steadily for both FR and CARDIO . This
result is expected since a larger amount of intermediate data
yields higher replication costs, which in turns increases G and
R. For NR, on the other hand, there is no replication cost
involved, and therefore R = 0 while G and Z increase as
the probability of failure of the dataset increases due to the
larger value of DMax. Second, for small values of δ (0.2),
both CARDIO and FR perform similarly as shown by the
complete overlap of their corresponding Z curves. As observed
in Figures 3(b) and 3(c), CARDIO achieves smaller R as
compared to FR, while FR outperforms CARDIO in terms
of regeneration cost G. Such behaviour is a side-effect of
the higher failure probability resulting from larger values of
DMax. That is, as the failure probability increases, CARDIO
sees diminishing returns of replication since replicas are likely
to be lost due to failures. As a result, CARDIO replicates more
lazily under such conditions. This, in turn, results in higher
values of G as observed in Figure 3(c).

Effect of failure probability Figure 4 evaluates the impact
of p on CARDIO’s performance as compared to FR and
NR, by presenting G and Z for the three strategies and
various values of δ. It can be observed that R increases as δ
increases. This fact is a consequence of the higher cost paid for
replication. Furthermore, for FR the curve for Z lays above
the corresponding curves for NR and CARDIO for all values
of p. The adoption of FR has the potential of being very costly
under conditions where the cost of replicating data is high.
Figure 4 (a) shows that when replicating data is inexpensive,
e.g., δ = 0.2, however, FR and CARDIO performs similarly
for p < 0.5 (observe the full overlap of both curves) and
CARDIO outperforms FR for p ≥ 0.5. This fact is supported
by the same argument presented for the previous experiment.
That is, as p increases CARDIO sees diminishing results from
replicating and replicates more conservatively. In a nutshell,
CARDIO effectively emulates FR (NR, respectively) under
conditions where replication is inexpensive and (expensive,
respectively) and various levels of reliability of the storage
system. To gain a better insight of how these parameters relate
in Figure 5 we plot a 3-dimensional plot with p and δ in the x-
axis and y-axis, respectively. δ is presented in the z-axis. The
plot shows that for low values of p and δ CARDIO offers its
best performance since R and G both remains low. When p is
high and δ is low, Z is dominated by a high regeneration
cost (G). Thus, the cost of computation A determines the
behaviour and performance of CARDIO. It follows intuition
that there is a configuration for δ and p for which both G
and R have equal values. This point determines the flipping
point at which CARDIO switch modes and either replicate
aggressively (FR) or avoid replication (NR) and it can be
observed δ = 1 and p = 0.25 in Figure 5. CARDIO is able to
varies its performance between the performance achieved by
NR and FR by intelligently adapting to the conditions of the
system while minimizing the reliability cost (Z).

Effect of storage constraints We evaluate the performance
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Fig. 4: Impact of failure probability (p) on the performance of replication strategies.

of CARDIO under various storage constraints, i.e., for varying
values of C. For this purpose, we introduce a new parameter σ
such that C = σ ×

∑N
i Yi × xi, where N = 4 corresponding

to the 4 stages in our example and xi = 3 representing FR.
σ represents the fraction of the maximum capacity needed for
CARDIO to fully replicate, i.e, emulate FR. Figure 6 plots
R and G as a function of σ for various values of δ. Note that
for the sake of clarity we only show the results for CARDIO.
From Figure 6 (a), it is observed that R increases with σ,
i.e., increases with larger C value. This follows intuition since
CARDIO can replicate more data with increase in storage.
Nevertheless, as the cost of replication increases (δ > 0.4) R
flatten out. This result shows that CARDIO uses the storage
capacity available for replication efficiently while trying to
minimize the overall reliability cost. It is also noticeable that
for δ = 0.8 CARDIO is insensitive to σ. This is expected since
CARDIO avoids replicating if R is too high. In Figure 6 (b)
we observe that this fact results in a expensive G.

Effect of block size Figure 7 plots the performance of
CARDIO and FR as a function of block size o for various
values of δ (0.1, 0.3 and 0.5). For a given Di as oi increases,
the number of blocks (bi) –across which the intermediate data
set is stored– decreases and therefore the probability of loosing
an intermediate data set (f(xi)) due to failure also decreases.
Refer to Section IV for a description of the failure model.
As explained earlier, CARDIO replicates more lazily under
such conditions since it does not achieve much gain from
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replicating data in a fairly reliable system. This observation
is supported by the steady decrease in value of R observed in
the plot presenting R (not included due to space constraints).
On the other hand, FR is oblivious to varying block size
and/or probability of failure. Due to space constraints we only
plot Z in Figure 7 for this evaluation. We observe that Z
remains relatively constant for FR in Figure 7 while CARDIO
outperforms FR consistently across the spectrum of b except
when δ is very small (δ = 0.3). These results are consistent
with our observations in Figure 5.

Finally, recall that CARDIO demotes upstream replicas in
order to accommodate for downstream replicas and to maintain
a minimum value of Z as the dataflow advances. This metric
does not represent a deficiency of Cardio. Instead it depicts
mechanisms by which Cardio is able to adapt to the storage
constraint while optimizing for Z. Figure 8 plots the average
number of demoted replicas as we relax the storage constraint,
i.e., by increasing σ. We observe that the number of demoted
replicas increases as σ increases and peaks when σ < 0.4 for
all values of δ. This behavior can be explained as follows. For
smaller values of σ, CARDIO has limited storage available for
replication and hence it is forced to demote a larger number
of replicas in order to minimize Z as a dataflow advances.
Additionally, note that as δ increases the average number of
demoted replicas start peaking at smaller values of σ. This is a
consequence of the lower replication factor of CARDIO when
the replication cost (δ) is high.

VI. CARDIO SYSTEM

We have implemented a full working system named CAR-
DIO which incarnates the technique presented in the previous
section. More specifically, CARDIO is a decision making
framework that makes intelligent decisions regarding the repli-
cation of intermediate data for dataflows with the objective of
minimizing the cost of reliability. In this section we describe
the CARDIO architecture and implementation. Our prototype
is implemented over the experimental testbed described in
Section II-C. Nevertheless, the underlying principles behind
it apply equally to any dataflow engine.
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Figure 9 shows a high-level design of our CARDIO
framework. CARDIO is a feedback control-loop system that
is composed of three major components: a set of sensors
(CardioSense), a controller (CardioSolve) and an actuator
(CardioAct). Following we describe each component in detail.

CardioSense One of the driving motivations behind CAR-
DIO is to enable resource aware replication, i.e., cost metric
captures resource consumption due to reliability. CardioSense
component is responsible for collecting resource usage statis-
tics for running stages in the cluster and for the cluster
itself. To collect such statistics, CardioSense relies on mon-
itoring processes (HMon) hosted in each individual worker
node. HMon continuously monitors Map-Reduce tasks. These
statistics are accumulated and served to CardioSense upon
request. HMon is a Python-coded tool based on Atop [19]
with negligible overhead (< 2% CPU utilization).

CardioSense periodically contacts the JobTracker to obtain
the current progress of stages that are active or running in
the cluster (step 1 in Figure 9). When a stage has made
enough progress and reaches a pre-configured threshold value,
CardioSense contacts all the HMon processes in the cluster
(step 2 in Figure 9) and aggregates the received accounting

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
um

be
r 

of
 d

em
ot

ed
 r

ep
lic

as

σ

CD-0.2
CD-0.4
CD-0.6

Fig. 8: Average number of replicas demoted in CARDIO.

information for the given job. This is done via a SOAP client.

CardioSolve CardioSolve is the heart of the CARDIO sys-
tem. It implements the solver for the SO problem introduced in
Section IV. CardioSolve receives as input resource usage data
from from CardioSense. Upon completion of a stage, CARDIO
uses this data to arrive at an optimal solution consisting of
a replication factor vector to include the recently completed
stage as well as all previous stages upstream (step 3 in
Figure 9. In other words, CARDIO reconsiders decisions made
in the past for previous stages (step 4 in Figure 9) effectively
demoting or promoting replicas when needed.

CardioAct Once CardioSolve arrives to an optimal so-
lution, the replication factors of all the completed stages
have to be updated to reflect the RFM in the solution. To
facilitate these modifications CardioAct must implement a
client of the storage layer to handle modification requests. In
our prototype, CardioAct implements the HDFS Java client
and uses the API call setReplication(Path file,
short newReplicationFactor) at the time of its in-
vocation (step 5 in Figure 9) to modify the replication factor
for each data set as needed(step 6 in Figure 9).
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Resource/Stage S1 S2 S3 S4

CPUS (cycles) 98764200 1661784 327588400 2272171
CPUU (cycles) 16801600 197759 73120700 709814
NETR (bytes) 499482639 148368227457 482358793261 290260079138
NETW (bytes) 129352834157 147517875661 55905501611 50007380711
DSKR (bytes) 104200 168192 7870811200 102824128
DSKW (bytes) 12744 16264 1018375200 123496648
STG (bytes) 170G 170G 100G 70G

TABLE II: Resource usage for dataflow. CPUS and CPUU stand for system and user CPU utilization, respectively. NETR and NETW

represent the number of bytes received and sent over the network. DSKR and DSKW correspond to the number of bytes read from and
written to disk, respectively. STG refers to the storage requirement of intermediate data output for a given stage and is known once the
primary copy of the intermediate data has been stored.

A. Experimentation

In this section we show the results of preliminary evaluation
of the CARDIO system. Due to space constraints we focus
only on two main aspects in our evaluation. First, we want to
examine with the applicability and usefulness of CARDIO in
the context of Cloud analytic providers. Therefore, we eval-
uate CARDIO’s ability to utilize resources efficiently under
resource-constrained conditions. Second, we are interested in
examining the performance benefit perceived by the user when
replication is done conservatively only if needed. This benefit
depends on the replication technique used since the overhead
incurred by replication varies according to the technology. We
quantify this overhead in Section III.

We drive our experiments using the Map-Reduce dataflow
described in Section II-D. To compute Ai for every stage
we use the resource usage information obtained from HMon
under the NR strategy. Table II presents the resource usage
information for each stage of the dataflow. We develop a
simple common resource usage metric to use in CARDIO
to solve the SO problem. We normalize the usage for each
resource by dividing each column in Table II by the sum of its
corresponding row. This process is explained in Section IV-D.

In our experiments we want to evaluate CARDIO’s ability to
consider resource usage information available from the system
while making replication decisions. Intuitively, re-executing
stages that stress an already over-loaded resource can poten-
tially hinder the performance of the system. This negative
effect can be effectively prevented in CARDIO by attaching
weights to the actual computing cost of stages equivalent to
factors that reflect the utilization of resources in the system.
If we consider an example scenario of CPU constrained
conditions, the CPU cost associated with each stage of a
dataflow can be scaled up by a factor to reflect the higher
importance of this resource. In response to this, CARDIO
will tend to replicate intermediate data corresponding to such
stages to minimize the regeneration cost (G).

We do not create resource constrained conditions in the
system. Instead we add hooks to CardioSense that allow
it to report various resource constrained conditions. When
CardioSense reports a resource bottleneck, CardioSolve uses
weights to increase the importance of that particular re-
source for the job (Section IV-D). We use CPU++, NET++,
DSK++ and STG++ to represent a scenario where CPU,
network, I/O and storage resource is over-utilized respectively
and hence should be treated as an expensive or scarce resource.
For our evaluation, we consider the following configuration:
p = 0.08, δ = 0.6 and C = 0.4 (204GB). Note that
δ represents the replication cost and it depends on various
system characteristics that include replication technology and
storage. The value of δ is fixed in our prototype. Nevertheless,
for a production system we expect this value to be obtained
from profiling and historical information from the the system.

Figure 10 plots the results of this evaluation. Note that
x- and y-axis represent specific scenarios and the end-to-
end completion time, respectively. Table III also shows the
optimal solutions provided by CARDIO upon completion of
each stage in the dataflow. As observed from Figure 10, the
end-to-end completion time of the dataflow under NR strategy
is the smallest. However, the end-to-end completion time for
FR strategy ramps up by a factor of 1.62. These results are
consistent with the results presented in Section III.
CPU++ scenario. When CardioSolve reports CPU as a
constrained resource, CARDIO only replicates the third stage
(Table III). This follows intuition since S3 is the stage with the
highest CPU consumption (by an order of magnitude more).
NET++/DSK++ scenario. When the network is constrained
after completion of S2 CARDIO decides to replicate to later
revert its replication decision (demote replica) to accommodate
for S3 and S4. Recall that DSK follows a usage similar to
NET because of the presence of intermediate data between
the map and the reduce phase. Thus, the solution of CARDIO
for NET++ and DSK++ are similar.
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Fig. 10: CARDIO vs NR/FR under various workloads.

STG++ scenario. We consider the case where storage is
expensive in this scenario. In this case, CARDIO behaves
similar to FR, i.e., it replicates after completion of every
stage. However, due to the storage constraint imposed in
the configuration (C=240GB) CARDIO demotes every replica
(Table III). The reasoning behind this observation is that when
storage is expensive, stages with large intermediate data sets
have high regeneration cost. However, replication of their
corresponding intermediate data sets will quickly exhaust the
storage allocated for replication (C). As a result, such replicas
are likely to be demoted as the dataflow progresses down-
stream while CARDIO seeks to satisfy the storage constraint.

We showed in Section V that adopting CARDIO in a highly
unreliable environment is equivalent to adopting the NR
strategy, i.e, very limited benefit is attained from replication.
Our current virtual cluster consists of relatively new hardware
making it impossible to evaluate the performance of CARDIO
in the presence of failure under realistic conditions. There-
fore, we reproduce the probability model introduced earlier
in Section IV. We modified HDFS so that it successfully
retrieves each block with some probability p upon reading
an input data set. p is an input parameter to the system. As
a reminder, when an HDFS client fails to retrieve a block,
it attempts to find a replica for the given block in a remote
rack. If no replica is available, the file read operation fails
and the HDFS client is informed by means of an exception. A
compute stage that receives such an exception when reading
its corresponding input data set triggers the execution of the
upstream stage in order to re-generate the input intermediate
data. Figure 11 plots the end-to-end completion time for our
experiment for traditional Hadoop with 3 replicas per file
(denoted by Hadoop-FR3) and for CARDIO when CPU is the
resource bottleneck. Each data point corresponds to an average
of three experimental runs. Our results show that CARDIO is
able to reduce the end-to-end completion time by up to 70%
for p = 0.1. A closer look at our data traces shows that various
stages were re-executed due to the injected failures through
out the execution of the dataflow. Stage S2 re-executed more
frequently due to its large input data set. Also, our traces show
that S1 for p = 0.06, p = 0.08 and p = 0.1 was re-executed
3, 1 and 21 times, respectively. Note that CARDIO achieves
its performance gain from replicating only S3 with x3 = 1 as

CPU++ NET++ DSK++ STG++
0 0 0 1

00 01 00 01
001 001 001 001

0010 0011 0011 0011

TABLE III: Decision vectors for CARDIO under various resource
usage configurations.
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shown in Table III. The results were found to be similar under
any other resource contention scenario.

VII. RELATED WORK

Data availability for intermediate data of dataflows has
received much attention recently due to great interest around
data analytics . In [6] the authors look at the problem of data
availability for intermediate data of workflows. In particular,
an Intermediate Storage System is proposed that seeks at
minimizing the impact of server failures on the availability of
intermediate data. In this work this is achieved by proposing
improved replication techniques that minimize the interference
resulting from replication. This is in contrast to our work
which aims at making better replication decision. In fact,
both contributions complement each other in that one aims
at replicating only when it is entirely necessary and the other
one improves the efficiency of the replication mechanism.

Replication as a mechanism for reducing access latency
and bandwidth consumption for files in Grid environments
has been studied in the past [20]. This work focuses on
replicating files based on their access patterns and placement.
Much research has been done on the replication of files for
improving access time. For instance, in [21] a simulation
framework is used to investigate replication strategies based on
a cost model that evaluates data access costs and performance
gains of creating each replica. In a similar direction, in [22]
a collection of strategies is proposed to reduce access time.
Similar to CARDIO, in this work the authors propose an
algorithm to decide on when to replicate a file. This decision,
however, is based on whether the replication will result in a
reduced expected access time in the future. One work that
resembles in goal to CARDIO is [23] in that it investigates
various techniques to maintain data availability of files in a
peer-to-peer system above a threshold by pro actively creating



replicas in a decentralized fashion. Note that all aforemen-
tioned works in Grid consider the problem of file replication.
This is in contrast to CARDIO which addresses the problem
of minimizing reliability cost for dataflows where there are
strict dependencies in between datasets. This difference clearly
distinguishes CARDIO from the aforementioned works.

The problem of cost replication has been widely studied
in the context of replica placement in WAN settings for Web
proxies and caches [24]–[26]. CARDIO addresses the problem
of when to replicate.

VIII. CONCLUSIONS

In this work we have considered the problem of minimizing
the cost of reliability for dataflows by balancing the cost
of replication and regeneration of stages in the presence of
failure. We formulated this problem as an integer program-
ming optimization problem with non-linear convex objective
function. We used standard solving techniques to solve this
problem and analyze its performance against standard replica-
tion techniques used in state-of-the art data analytic platforms.

We realized our approach into a real system called CAR-
DIO. CARDIO is a novel replication system for dataflows that
incarnates the aforementioned ideas and has been prototyped
in a real data-analytic testbed with real workloads. CARDIO
departs from traditional replication frameworks in that it
weighs the regeneration cost against the replication cost in
order to decide if intermediate data needs to be replicated. Our
results show that CARDIO is effective in finding an optimal
solution to the minimum reliability cost problem.

IX. DISCUSSION

CARDIO is the materialization of our initial exploration on
the problem of minimizing the cost of reliability for dataflows.
Our solution is unique in that it introduces the minimum
reliability cost optimization problem for dataflows. CARDIO
is our first step towards building a robust decision making
system for efficient and effective replication for dataflows.

To simplify the understanding of our analysis we consider
dataflows with a maximum fan-in degree of 1. This config-
uration is not uncommon in existing MapReduce production
systems [7]. As a matter of fact, a common structure for data-
analytic programs is to subject data to a series of filtering
operations [3]. We plan on extending our current solution to
tackle more general cases.

One additional benefit of replication in data analytic plat-
forms is data locality. We touched upon this scenario using a
running example in Section III. Optimizing the placement of
replicas is crucial to fully leverage this benefit. There is a clear
trade-off between the cost of replication and data-locality in
terms of the end-to-end performance of dataflows. We plan
on investigating extensions to the CARDIO architecture to
accommodate effective data locality.

In our current setup, we assume that the cost involved in
demoting and maintaining replicas is negligible. We believe
that these costs will become important in due to the Cloud
business model. In the same path, a recurrent question to
us is which entity is responsible for paying the price of
handling reliability in such environments. The service provider

or the client. This quest opens the door to interesting resource
management problems in the context of this work. We will
explore some of these issues as part of our future work.

CARDIO is reactive in that replication is driven by the com-
pletion of data stages. We plan to investigate more proactive
approaches to replication. Finally, we would like to investigate
the performance of CARDIO under various failure models.
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