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Abstract. Social influence between users (e.g., collaborating on a project)
creates bursty behavior in the underlying high performance comput-
ing (HPC) workloads. Using representative HPC and cluster workloads,
this paper identifies, analyzes, and quantifies the level of social influ-
ence across HPC users. We show the existence of a social graph that is
characterized by a pattern of dominant users and followers. This pat-
tern also follows a power-law distribution, which is consistent with those
observed in mainstream social networks. Given its potential impact on
HPC workload prediction and scheduling, we propose a fast-converging,
computationally-efficient online learning algorithm for identifying social
groups. Extensive evaluation show that our online algorithm can identify
stable social groups after observing only 1% of workload arrivals.

1 Introduction

Wide-use and expansion of collaboration technologies (e.g., social networking)
is influencing user behavior across all aspects of his/her day-to-day activities.
Almost completely overlooked, this paper analyzes the effects of social influence

on high-performance computing (HPC) workloads. The intuition is that user
collaboration affects the underlying job submission characteristics. For exam-
ple, students in a class will likely exhibit correlated workload characteristics,
especially considering project deadlines, homework, etc.

Discovering the underlying social patterns and dependencies within groups
of correlated users—or communities, for short—will help improve workload pre-
diction and job scheduling. Our work is akin to those in community centric

web search, and more recently, to Lin et al. [7] which discovers the communities
based on mutual awareness from observable blogger actions. Unlike existing stud-
ies, this paper—to the best of our knowledge—is the first attempt to propose
a social-influence-aware method for discovering correlated users and modeling
their corresponding workload in HPC environments.

In an HPC environment, community discovery has several challenges. First,
not all the users are regular users of HPC/clusters. Ephemeral users need to be
identified and discarded. Second, computing similarities between users is difficult.
Since each user submits a different number of jobs to HPC/clusters, measuring
the pairwise similarity of users based on their submitted jobs is both complex



and unreliable, especially when the jobs are described by a complex structured
language, e.g., Job Description Language (JDL) [10]. Finally, the community
discovery process must be computationally efficient—especially for large-scale
workloads—so that it can be used to improve the underlying job scheduling.

The challenges outlined above limit the applicability of standard clustering
techniques (e.g., double-clustering approach in [12]). In this paper, an efficient
method is proposed to identify the correlated users from HPC/Cluster workload.
Depending on a user’s activeness, we characterize his/her as either a dominant

user or a follower to a dominant user.
Following similar analysis of social networks [4], we show that our discovered

communities also exhibit power-law characteristics. This has profound impli-
cations on the importance of accounting for dominant users in job scheduling.
Basically, identifying dominant users and their followers allows job schedulers
to better predict change in future resource demands. To enable effective usage
of this new insight, we propose an online learning algorithm that dynamically
learns the social characteristics of a given workload. Experimental results show
that our online algorithm can efficiently identify stable social groups by observ-
ing only a small portion—about 1%—of workload arrivals.

The remainder of this paper is organized as follows. Section 2 introduces
the data sources we used. We describe our proposed method in Section 3. We
then characterize various aspects of the discovered communities in Section 4.
Section 5 describes the online learning mechanism. We discuss the related work
in Section 6 and conclude the paper in Section 7.

2 Data Sources

The first dataset we used is the Grid 5000 traces [2]—a popular HPC workload
testbed. Grid 5000 is an experimental grid platform consisting of nine geographi-
cally distributed sites across France. Each site comprises of one or more clusters,
for a total of 15 clusters. We use the traces recorded by the individual Grid 5000
clusters from the beginning of the Grid 5000 project (during the first half of
2005) to November 10th, 2006.

While they are many useful parameters for each job record in the trace: we
extract only UserID, GroupID, and SubmittedTime for our study here. Every
group has thousands of jobs, and the groups are classified by the site location.
In the Grid 5000 trace, there are a total of 10 groups, more than 600 users, and
more than 100,000 jobs.

The second dataset that we used is the job trace (i.e., the Logging and
Bookkeeping (L&B) files) from the Enabling Grid for ESciencE1 (EGEE) grid.
EGEE currently supports up to 300,000 jobs per day on a 24x7 basis. Similar to
Grid 5000, we extract the submission timestamp and userID as job parameters.
We use two sets of EGEE L&B files. One contains 229,340 jobs submitted by 53
users in 2005. The other has 347,775 jobs submitted by 74 users in 2007.

1 http:// www.eu-egee.org/



Fig. 1. An example of socially influenced jobs. User B has 3/4 = 75% of jobs that can
find a submission of A within Cjob before/after their submission time.

3 Social Influence Model

In this section, we define social influence matrix between users. We focus on
studying social relationships based on the submission time of jobs. As an ex-
ample, consider two users working on a project, which consists of many of jobs.
If the two users are working closely on the project (e.g., paper deadline), their
job submission times will be close. We refer to the two users and their jobs as
being socially influenced. In this paper, we use two key features, UserID and
SubmittedTime, to analyze the social influence between users. We do not con-
sider the duration time of jobs.

Take Group 1 in the Grid 5000 dataset as an example. In total, we have
38 different users, each submitting hundreds of jobs. Furthermore, consider two
users: User A (submitted 1000 jobs) and User B (submitted 800 jobs). Social
influence between these two users are captured by two factors:

– Socially-connected jobs: for a job of User B, if the minimum time between
the submission time of this job and at least one of the 1000 jobs of User A is
small enough (e.g., less than half-hour before/after submission time), then
we say this job is socially connected to User A. We refer to this minimum
time threshold between jobs as Cjob.

– Socially-connected users: for the entire 800 jobs of User B, if more than
x% (e.g., x = 50% or 80%) of the jobs are socially connected jobs to User
A, then we say User B is socially connected to User A. We refer to the x%
threshold as Cuser . Furthermore, we define User A as a dominant user,
and User B as a follower of User A.

It should be noted that the social connections are directed relationships. The
fact that User A is socially connected to User B does not mean that User B is
also socially connected to User A.

The social influence between User A and User B are depicted in Figure 1. In
this example, three out of User B’s four jobs can find at least one submission
from User A within the time interval Cjob. We can say that User B has 75% of



Algorithm 1 Algorithm of Calculating the Social Influence Matrix

Input: Data set of jobs D = {UserID, JobT ime},
including the UserID and submitted time of a job

U = unique(UserID)
Criterion Cjob = 0.5 hour, 1 hour, 6 hours
Criterion Cuser = 50%, 80%

Output: Social Influence Matrix M
for j = 1 to |U | do

Y = {JobT ime(q)|UserID(q) = Uj}
(all jobs submitted by Uj)

for i = 1 to |U | do

X = {JobT ime(q)|UserID(q) = Ui}
(all jobs submitted by Ui)

for k = 1 to |X| do

d(k) = min(|X(k) − Y (q)|), q = 1, ..., |Y |
end for

M(i, j) =
∑|X|

k=1
(d(k) < Cjob) /|X|

if M(i, j) > Cuser then

user Ui is socially connected to user Uj , and
user Ui is a follower to the dominant user Uj

end if

end for

end for

jobs socially connected with User A, and he/she will be a follower to User A if
Cuser is set to a value less than 75%.

Next, we turn our attention to building the social influence matrix. For ease
of processing, we sort the 38 users in Group 1 of the Grid 5000 according to
their UserID. The social influence matrix is a 38 by 38 matrix, noted as M .
The element M(i, j) of i-th row and j-th column denotes the corresponding
percentage of the jobs of user i that are socially connected to user j. We propose
Algorithm 1 to calculate the social influence matrix.

Table 1 shows the social influence matrix of Group 1 when Cjob is one hour.
We give influence matrix of the first five users. In the first column, the first
element is 1, which means that 100% of User 1’s jobs are socially connected
to each other. Obviously, all diagonal values of the matrix are 1. The second
element in the first column is 0, which means that none of the jobs of second
user are socially connected to the first user.

As described earlier, social connectedness between users is influenced by the
threshold value Cuser—the minimum percentage of socially-connected jobs. If
we set the criterion Cuser to 80%, the followers to User i are the ones who have
values larger than 0.8 in i-th column. We show the number of followers in Table
2 for Cuser=80% and Cuser=50%. As expected, as Cuser is decreased, we have
an increase in the number of followers. For example, User 2 has 5 followers when
Cuser is reduced to 50% from 80%.



Table 1. One-Hour Social Influence Matrix

User 1 User 2 User 3 User 4 User 5 ...

User 1 1 0 0 0 0 ...
User 2 0 1 0 0.029 0.084 ...
User 3 0 0 1 0 0 ...
User 4 0 0.131 0 1 0.239 ...
User 5 0 0.048 0 0.056 1 ...
... ... ... ... ... ... ...

Table 2. Number of Followers. A value of 1 means that there is only one follower to
the corresponding user, or this user is only socially connected to himself/herself.

Cjob Cuser User 1 User 2 User 3 User 4 User 5 ...

1 hr 80% 1 3 1 2 1 ...
1 hr 50% 1 5 1 2 2 ...

4 Analysis of Social Influence

In this section, we analyze the Grid 5000 and the EGEE data to discover socially-
connected users. We are interested in studying the impact of the values for
Cjob and Cuser on social connectivity. Figure 2 is the Cumulative Distribution
Function (CDF) distribution of the jobs’ interarrival time for the four datasets.
We find that all four datasets have more than 95% of their jobs’ interarrival
times smaller than 0.5 hour. So, we choose Cjob = 0.5 hour in following sections.
The criterion Cjob is set to 6 hours, 1 hour, or 0.5 hour, while the criterion Cuser

is set to 50% or 80%.

4.1 Community Extraction from HPC Workloads

Figure 3 (a) shows the socially connected users (number of followers) for each
user identified from Group 1 of Grid 5000 trace with criterion Cuser = 50%.
When Cuser = 50% and Cjob = 6 hours, User 1 has 13 followers, User 2 has 11
followers, and User 3 has 10 followers. When Cuser = 50% and Cjob = 1 hour or
Cjob = 0.5 hour, the number of followers for every user decreases as expected.
In all figures of this paper, the users are ordered by the number of followers with
Cuser = 50% and Cjob = 6 hours.

Figure 3 (b) shows the number of followers for each user in Group 1 with
criterion Cuser = 80%. When Cuser = 80% and Cjob = 6 hours, User 5 has 6
followers, User 1, User 2, User 3 and User 4 have 5 followers. When Cuser = 80%
and Cjob = 1 hour or Cjob = 0.5 hour, the number of followers for every user
decreases. For comparison, Figure 3 (c) and Figure 3 (d) show the number of
followers for each user in Group 6 with different settings of Cuser and Cjob.
Similarly, the Figure 4 shows the number of followers distribution identified
from workloads of EGEE 2005 and EGEE 2007.
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Fig. 3. Social groups discovered in Group 1 and Group 6 of Grid 5000 traces showing
the number of followers to each dominant user with different criteria of Cuser = 50%,
80% and Cjob = 6 hours, 1 hour, 0.5 hour

4.2 Power-law Distribution of Discovered Communities

A common property of many large networks is that the vertex connectivities
follow a scale-free power-law distribution [4]. We would like to investigate if
such a power-law property exists among HPC users. In our study, each vertex is
a person. The connectivity between vertices can be used to describe if two users
interact with each other.

Let P (k) denote the probability that a user has a number of followers k, where
k is a positive integrate number. In order to show our discovered social group have
the same property as the common networks, we investigate whether the number
of followers k of each dominant user has the power-law distribution, P (k)=a∗kb.
Figure 5 shows the power-law distribution of the number of followers identified
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Fig. 4. Social groups discovered in EGEE 2005 and EGEE 2007 traces showing the
number of followers to each dominant user with different criteria of Cuser = 50%, 80%
and Cjob = 6 hours, 1 hour and 0.5 hour

from Group 1 and 6 of Grid 5000, as well as from EGEE 2005 and EGEE 2007.
The power-law distribution of other groups exhibit similar characteristics (unless
the group size was very small); they are not shown for space considerations. All
social followers are discovered with connected job criterion Cjob = 0.5 hour and
connected user criterion Cuser = 50%. From Figure 5 we can see that the number
of followers fits very well the power-law distribution with different parameter a

and b.

5 Design of Online Learning Mechanism

Our earlier analysis used an offline mechanism to identify social influence in
HPC workloads. For our analysis to be consumable by HPC job schedulers and
resource managers, a real-time (online) mechanism is needed. Algorithm 2 shows
the proposed mechanism for computing the social influence matrix on the fly
while jobs are arriving. Suppose that at time JobT imet a user UserID submits
a job, we have (UserIDt, JobT imet) as a sample in our streaming workload,
where time step t ≥ 1. Given the threshold Cjob of socially connected jobs, we
maintain a Unt × Unt matrix M t, where Unt is the number of unique users
until t. Each element of M t is a 2-tuple object M t

ij = {Rt
ij , C

t
i }, where Ct

i is the
number of jobs submitted by user UserID = U(i) until time t, and Rt

ij is the
number of jobs of UserID = U(i) that are socially connected to UserID = U(j)
until t.

We use MATLAB to implement and simulate Algorithm 2. Unlike Algorithm
1, we use a sliding time window along the workload flow. This window only
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Fig. 5. The power-law distribution of the number of users k following each dominant
user identified in Group 1 and Group 6 of Grid 5000, EGEE 2005 and EGEE 2007

includes past job submissions within the interval of Cjob. Note, this is different
to the method described in Algorithm 1 for checking the socially connected jobs.
In Algorithm 1, we consider the absolute value of the time difference, which
includes both sides of the current time point on the time axis (as shown in
Figure 1).

Algorithm 2 allows us to track the socially connected status of the users on
the fly. The number of socially connected jobs between users and the number of
followers to a given user are updated in real-time as the jobs flow in.

We use cosine similarity [13] to measure the difference between the distribu-
tion of followers as obtained by Algorithms 1 and 2. We set Cjob = 0.5 hour and
Cuser = 50%. After observing x% of the whole streaming jobs (x-axis), Figure
6 shows the cosine similarity (y-axis) of online results compared to the offline
results using all data. The cosine similarity keeps increasing to value 1 by ob-
serving additional jobs. When x% increase to 100% (all jobs have been studied),
the online results are same to the offline results (cosine similarity = 1).

A very promising characteristic of the online algorithm is its ability to track
group evolution over time. For example, Figure 6 shows how Group 6 and EGEE
2005 have sudden increase in the number of discovered social groups after pro-
cessing 50% and 80% of all job flows, respectively. In contrast, Group 1 and
EGEE 2007 have stable social groups after processing 5% of all jobs, with little
change beyond that point.

The changes of social groups discovered online reflect the variation of usage
of HPC system committed by the users. In order to verify the online changes
of social relationship shown in Figure 6, we investigate the number of distinct
users (y-axis) appearing in x% of all jobs since start (x-axis) in Figure 7 for the
4 data sets. With the increase of x% toward 100%, we can see the change of the



Algorithm 2 Online Algorithm of Calculating the Socially Influence Matrix

Input: Streaming jobs S = {UserIDt, JobT imet},
the UserIDt submitted a job at time JobT imet

Criterion Cjob = 0.5 hour
Criterion Cuser = 50%

Output: Socially Influence Matrix M t, M t
ij = {Rt

ij , C
t
i}

where Rt
ij is the number of U(i)’s jobs socially connected to U(j) until t, and Ct

i is
the number of jobs of user i until t
Initial: the number of distinct users Unt = 0,

set of distinct users U = {},
M t

ij = {Rt
ij = 0, Ct

i = 0}

Maintain M t

for t=1 to ... do

if UserIDt /∈ U then

U = U ∪ UserIDt

Unt = Unt−1 + 1
end if

i← UserIDt = U(i)
Ct

i = Ct−1

i + 1
X = {UserIDq |q : JobT imeq >= JobT imet − Cjob}

the UserID of streaming jobs arrived within a time-window Cjob

for j=1 to Unt do

if U(j) ∈ X then

Rt
ij = Rt−1

ij + 1

Rt
ji = Rt−1

ji + |Xj,t′ |

where |Xj,t′ | is the number of U(j) in time window of
[max{t−Cjob, t

′ + Cjob}, t] and t′ is the last time when U(i) appeared
end if

end for

Socially connected users
for j=1 to Unt do

if Rt
ij/Ct

i > Cuser in M t
ij then

user U(i) is socially connected to user U(j), and
user U(i) is a follower to the dominant user U(j)

end if

end for

end for

number of users appeared in the system along with time. Comparing Figure 7
and Figure 6, we find that the curves coincide along x for all 4 data sets. For
example, Group 6 and EGEE 2005 have more new users after 50% and 80% of
all job flows. The number of users in Group 1 and EGEE 2007 grow slowly after
5% of all jobs.

We are still interested in how fast the similarity can reach a stable state.
Figure 6 shows that our online algorithm can converge and reach a stable state
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quickly by using a small number of jobs. For example in Group 1, we see that the
user population (number of distinct users as shown in Figure 7) is stable within
1% of job flows, while the cosine similarity (in Figure 6) reaches the stable state
within about 0.4% of all jobs. When the user population of Group 1 changes
dramatically from 1% to 7%, Figure 6 shows that the cosine similarity follows
the changes quickly and reaches a stable state closing to 1.

6 Related Work

Many generally available workload traces, such as [1–3], have been used to study
design alternatives for resource scheduling algorithms, resource capacity plan-
ning in both grid cluster and cloud environments, building performance model-
ing, etc. Most of these studies use—as input—the arrival pattern of individual
jobs and their resource requirements (e.g., [8]). Only recently, Iosup et al. [5] pre-
sented their first investigation of the grouping of jobs by look at their submission
patterns and their impact on computing resource consumption. More recently,
Ostermann et al. [9] studied job flows focusing on how sub-jobs are submitted in



parallel or in sequence [9]. Unlike existing work, we investigate job submission
patterns from the perspective of social connections (e.g., group association, vir-
tual organization, etc.). Especially in cloud environments, the ability to predict
future demands is critical to managing the underlying computing resources.

Community extraction has been commonly studied as a graph problem. A
graph is constructed by taking users/persons as nodes and connecting two nodes
if they are correlated in some activities. A community discovered in a graph is
a subgraph including a group of nodes and their edges, where the nodes have
high similarity with each other. Two approaches have been used to identify
the subgraphs. One is based on a clustering method, weighted kernel k-means,
that groups together the nodes that are similar to each other by measuring a
type of random walk distance [14]. The other approach uses graph partitioning
algorithm (or called spectral clustering) to cut the graph into a set of subgraphs
by optimizing the cost of cutting edges under the normalized cut criterion [11].

The most relevant work to our paper is the Mixed User Group Model (MUGM)
proposed by Song et al. [12]. MUGM forms the groups of users through charac-
terizing each user by job clusters, which were obtained by using CLARA (also
known as k-medoids) clustering method [6] on the whole jobs. There are two
difficulties for applying MUGM on analyzing HPC workloads. First, using clus-
tering method to group jobs requires the computation of job similarities, which
is difficult for jobs described by mixture of features. Second, representing users
based on job clusters cannot be easily adapted as an online technique, because
job clusters need to be computed on the whole data before analyzing the user
groups. Our approach identifies social groups by measuring their tasks’ submis-
sion behavior. Our approach does not need the computation of job similarities
and can be efficiently used in an online fashion.

7 Conclusions & Future work

This paper identifies and validates the existence of social influence on HPC
workloads. We suspect that this influence stems from how HPC applications are
developed and run. Given its potential importance on job scheduling and resource
management, we proposed a method to discover socially-connected users based
on measuring the proportion of socially-connected jobs they have. We show the
existence of a social graph that is characterized by a pattern of dominant users
and followers. We applied this proposed method to traces from Grid 5000 and
EGEE. In the Grid 5000 workload, we consistently found that around half of
the users have followers irrespective of how the thresholds Cjob and Cuser are
adapted. We develop both an offline and a fast-converging online algorithm to
implement our proposed method. The online version was shown to require a
small number of jobs (approximately, 1%) to discover the social groups.

Identifying dominant users and their followers may have profound implication
on the predication of workload and, consequently, on resource demand patterns.
Thus, our future work will focus on quantifying social characteristics of the dis-
covered user connections and using this quantitative information to improve the



prediction of workload arrival patterns and resource demands. The prediction
will enable the development of new algorithms in job scheduling, resource uti-
lization, and resource capacity planning.
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