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ABSTRACT
This paper describes the statistical analytics tech-
nology being developed to help K-12 public
schools in New York City reduce the energy con-
sumption. A multi-step statistical analysis pro-
cedure is proposed, to assess energy consump-
tion and to identify energy saving opportunities
for large portfolios of buildings such as the NYC
K-12 public school buildings. The method bor-
rows strength from and makes integrated use of
the Variable Base Degree Day (VBDD) regres-
sion model, multivariate regression model and
the Auto Regressive Integrated Moving Average
(ARIMA) model. In the first step, we build
a regression model which correlates the energy
consumption with building characteristics for the
whole portfolio of buildings. The energy re-
lated building characteristics are then identified
through the stepwise variable selection technique.
The results are valuable in providing building en-
ergy performance scores for the whole portfolio
and benchmarking. Additionally, it offers insights
for the energy consumption level of new build-
ings. In the second step, to accommodate build-
ing heterogeneity, we build the VBDD regression
models separately for each building in the portfo-
lio. These models are used to separate the base
load energy consumption from the weather de-
pendent usage. The results in this step consist
of the base temperature estimates, as well as the
estimated coefficients for the weather dependent
variables, i.e., Heating Degree Days (HDD) and
Cooling Degree Days (CDD) for all buildings. In
the third step, we further conduct root cause anal-
ysis, by building the multivariate regression mod-
els for the base load and coefficient for HDD and
CDD resulting from VBDD model, from which the
performance scores can be derived for base load,
heating, and cooling. Finally, in the last step, we
model the dependent error structure through the
ARIMA model. We also include seasonal factors in
the model. The analytical method provides use-
ful information to track and forecast the energy
consumptions of the building portfolio, which will
help facility staff and property managers achieve
significant energy savings, greenhouse gas emis-
sion reductions and cost savings.

INTRODUCTION
Saving energy, improving efficiency of energy con-
sumption, lowering energy cost, and reducing
greenhouse gas emissions are key initiatives in
many cities, municipalities and for building own-
ers and operators. According to the World Busi-
ness Council for Sustainable Development, build-
ings account for 40% of the worlds total energy
consumption and, in 2005, nine gigatons of global
carbon dioxide (CO2) emissions, well ahead of
transportation and industry (WBCDS, 2009; DOE,
2008a). In the United States alone, commercial
and residential buildings account for 38% of all
CO2 emissions and 72% of electricity consump-
tion according to the U. S. Department of En-
ergy (DOE, 2008b,c). Furthermore, buildings use
13.6% of all potable water, or 15 trillion gallons
per year, and 40% of raw materials globally (3 bil-
lion tons annually) (USGS, 2000; Roodman and
Lenssen, 1995). Much of the energy consump-
tion by commercial buildings is spent on light-
ing (twenty-six percent), followed by heating and
cooling (thirteen percent and fourteen percent,
respectively) (DOE, 2007).
With the U. S. building sector’s energy consump-
tion expected to increase by 35% between now
and 2025 and commercial energy demand pro-
jected to grow at an average annual rate of 1.6%
reaching 25.3 quads 1, or equivalently 25.3 ×
1015 British thermal units (Btu), in 2025, a crit-
ical need exists to develop and deploy emerg-
ing energy-efficient technologies that can deliver
reliable energy demand reductions throughout a
building’s lifespan while simultaneously satisfy-
ing the building occupants comfort, satisfaction
and productivity (LBNL, 2009). Investing in en-
ergy efficient light bulbs and insulation materi-
als and in automated shading has proven to re-
duce the energy demands on cooling and lighting
(Lee et al., 2007). However, incremental improve-
ments achieved by implementing individual en-
ergy efficient technologies alone are not sufficient
to the successful achievement of the challeng-

1A quad is a unit of energy equal to 1015 BTU
(British Thermal Units). The quad is commonly used
when describing national or global energy budgets.
A quad is approximately equal to 293, 071, 000, 000
kwh. http://www.aps.org/policy/reports/popa-
reports/energy/units.cfm



ing objectives set forth by the Intergovernmental
Panel on Climate Change (IPCC) and other direc-
tives issued by cities, for example PLANYC 2030
in New York City (NYC) (IPCC, 2007; PLANYC,
2007).
PLANYC aims to reduce the city government’s en-
ergy consumption and CO2 emissions by 30% by
2030 from 2005 levels. New York City’s govern-
ment spends over $1 billion a year on energy on
their approximately 4,000 buildings (e.g. pub-
lic schools, prisons, court houses, administrative
buildings, waste water treatment plants, etc.).
NYC plans to invest, each year, an amount equal
to 10% of its energy expenses in energy-saving
measures over the next 10 years. The largest seg-
ment of NYC government buildings are the 1,400
K-12 public schools, serving 1.1 million students
and covering about 150 million square feet. The
New York City Department of Education was inter-
ested in understanding how energy efficient their
buildings are, what factors contribute to ineffi-
ciencies, what are the opportunities for improve-
ment given budget constraints, and how and how
much can they contribute to saving energy and re-
ducing GHG emissions toward NYC’s PlaNYC ini-
tiative.
As an important component of the IBM smarter
planetTMinitiatives (IBM, 2010b), the focus area
of the smarter buildingsTMis the development of
new technologies that may help us to improve
building energy efficiency and reduce green-
house gas emissions. According to IBMs Smarter
PlanetTMPrimer (IBM, 2010a), “A smarter build-
ing integrates major building systems on a com-
mon network. Information and functionality be-
tween systems is shared to improve energy ef-
ficiency, operational effectiveness, and occupant
satisfaction.” A smarter building is a complex sys-
tem of systems that span heating and air condi-
tioning, lighting, security, access control, enter-
tainment, people movers, water, and monitoring
and control and maintenance systems. Together,
these systems have well managed and integrated
physical and digital infrastructures that make the
building safe, comfortable, and functional for its
occupants and sustainable for the environment. A
smarter building uses sensors, digital smart me-
ters, digital controls, and analytic tools to au-
tomatically monitor and control services for its
users. Thus, a smarter building is transforming
into an instrumented, interconnected, and intelli-
gent energy system which will help enable green-
house gas reductions and lower costs while em-
powering building users, facility managers and
building owner/operators. The advantages of in-
stalling smarter buildings on a massive scale are
tremendous given that buildings account for 40%
of the world’s total energy consumption.

Developed along this effort is the IBM Building En-
ergy and Emission analytics (i-BEETM) Toolset, a
new analytical tool which assesses, benchmarks,
diagnoses, tracks, forecasts, simulates and opti-
mizes energy consumption in building portfolios.
Our focus in this paper is the statistical methodol-
ogy in i-BEETM, which is developed for detecting
anomalies, forecasting and root cause analysis of
monthly electricity, gas and steam consumption.
The problem of analyzing and monitoring build-
ing energy performance is a key step to improve
energy efficiency and to reduce environmental im-
pact and cost. As an initial effort of this initiative,
IBM collaborates with the City University of New
York (IBM, 2011) to analyze the energy use in the
portfolio of K-12 public school buildings in New
York City. We use this building portfolio as our test
bed example in this paper. The building portfo-
lio consists of about 1400 public school buildings,
covering 150 million square feet. In addition, we
collect relevant information such as weather, en-
ergy and building characteristics. Our objective is
to develop a statistical methodology to help un-
derstand the energy use patterns throughout the
school portfolio.
We develop a multi-step statistical analysis proce-
dure, which combines the multivariate regression
model, the Variable Base Degree Day (VBDD) re-
gression model (Kissock et al., 2003) and the Auto
Regressive Integrated Moving Average (ARIMA)
model, to assess energy use and identify energy
saving opportunities for large portfolios of build-
ings. In the first step, we build a regression model
which correlates the energy consumption with
building characteristics. The energy related build-
ing characteristics are then identified through the
stepwise variable selection technique. The re-
sults are valuable in providing building energy
performance scores for the whole portfolio. Ad-
ditionally, it offers insights for the energy con-
sumption level of new buildings. In the second
step, to accommodate building heterogeneity, we
build VBDD regression models separately for each
building. These models are used to separate the
base load energy consumption from the weather
dependent usage. The results in this step con-
sist of the base temperature estimates, as well
as the estimated coefficients for HDD and CDD
for all buildings. In the third step, we further
conduct root cause analysis, by building the mul-
tivariate regression models for the results from
VBDD model, from which the performance scores
can be derived for base load, heating, and cool-
ing. The VBDD regression model is a popular ap-
proach to analyze energy consumption, which as-
sumes an independent error structure for the re-
gression model. The assumption may not be re-
alistic in practice because serial correlations exist



for building energy time series data, especially for
our application with a large portfolio of buildings.
To overcome this shortcoming, in the last step, we
model the dependent error structure through the
ARIMA model. We also include seasonal factors
in the model. From our experience, the VBDD
model, combined with the ARIMA model for the
error structure, typically provides improved statis-
tical performance compared to using VBDD alone.
The results are used for detecting abnormal en-
ergy use and forecasting energy consumption for
a portfolio of buildings.
The proposed technique provides an integrated
analysis for building heterogeneity, the weather
dependent patterns and the temporal dependent
patterns. It has wide applicability in anomaly de-
tection, forecasting and root cause analysis for
building energy portfolios. In the remainder of
this paper, we will first describe the general mod-
eling framework, followed by the application of
using the test bed example of the NYC school
building portfolio.

DEVELOPING THE STATISTICAL TOOLKIT
To motivate the approach we take to model en-
ergy use of building portfolios, it is useful to be-
gin at the end, and consider the type of outputs
that will result from the methodology. From the
statistical toolset to be developed, we wanted to
be able to answer the following questions:

1. Which building parametric data (e.g., build-
ing characteristics, operational activities and
occupant behavior) is the most useful for pre-
dicting building energy use?

2. How can we benchmark the relative building
energy performance within the portfolio?

3. What percentages of the total energy use are
due to base load, heating use and cooling use,
respectively?

4. What are the potential improvement oppor-
tunities / root causes for less efficient build-
ings?

5. How can we offset the weather dependent
factors, and perform improvement tracking
and energy savings from retrofit activities?

6. How can we detect abnormal energy use in
the historical energy use data?

7. How much energy do we expect to use in the
future?

To address these questions, we develop a multi-
step statistical modeling strategy. The statisti-
cal models utilize typical data collected about the
building energy portfolio, such as
• energy use data for each building;
• building characteristics such as the gross

floor area (GFA), age of the building, occu-
pant density, and number of each equipment

type (e.g., refrigerator, freezers, etc);
• building operation and activity;
• weather data such as outside temperature

and relative humidity.
The statistical modeling strategy we developed
consists of the following three major modules
• Variable Based Degree Day (VBDD) model

with building effect for each building;
• Multivariate regression models (Multi-

regress): one for the overall energy use of
the whole portfolio, and ones for base load,
heating, cooling which utilize the outputs
from VBDD of each building;

• Time series models (TS-model), which utilize
the outputs from VBDD.

The system is best described by the schematic
given in Figure 1. We will discuss the modeling
details in the rest of this section. We note that
these three modules can be integrated, in order to
answer the aforementioned questions, as follows.
• Multi-regress module is used to answer ques-

tions 1, 2.
• VBDD module is used to answer questions 3,

5.
• VBDD module and Multi-regress module are

combined together to answer question 4.
• VBDD module and TS-model module are com-

bined together to answer questions 6 and 7.

BUILDING EFFECTS VBDD MODEL

To better manage the energy portfolio of the New
York public school buildings, it is very important
to first understand the energy usage patterns for
all buildings. The overall energy consumption for
commercial buildings like the NYC public school
buildings can typically be divided into the follow-
ing three categories of usage: base load, heating
and cooling. Here, the base load refers to the en-
ergy consumption that does not depend on out-
side temperature. Typical usage that falls into this
category includes cooking, lighting and hot wa-
ter usage, and plug loads such as computers. In
contrast, the heating and cooling usage depend
on the outside temperature. Specifically, there ex-
ists some balance-point temperature such that the
space-heating energy usage increases as the out-
door temperature decreases below the balance-
point temperature, whereas the space-cooling en-
ergy use increases as the outdoor temperature in-
creases above the balance-point temperature. We
use the following notations to describe the model
development. Denote the total number of build-
ings in the portfolio by n, the total number of
months of the billing cycle by m, and the number
of days in month t by dt, respectively. Let Titd be
the average outdoor temperature for building i on
day d of month t, i ∈ {1, . . . , n}, t ∈ {1, . . . ,m},
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Figure 1: Building energy portfolio analysis system

d ∈ {1, . . . , dt}. Denote the balance-point tem-
perature for building i by T

(b)
i . Since only the

total monthly energy usage data is available, fol-
lowing Kissock et al. (2003), we define the heat-
ing degree day (HDD) and the cooling degree day
(CDD) for building i in month t as

HDDt(T
(b)
i ) =

dt∑
d=1

(T (b)
i − Titd)+ ,

and

CDDt(T
(b)
i ) =

dt∑
d=1

(Titd − T (b)
i )+ .

Here, HDDt(T
(b)
i ) and CDDt(T

(b)
i ) are the cumula-

tive heating and cooling energy usage for month t
when the balance point temperature is set to be
T

(b)
i . The total monthly energy usage data for

building i, yit, can be further modeled as

yit = bi +ciCDDt(T
(b)
i )+hiHDDt(T

(b)
i )+εit , (1)

where bi is the base load usage, ci is the cool-
ing coefficient, hi is the heating coefficient, and
εit are the error terms reflecting the month-to-
month variations that can not be explained by
base, heating or cooling usage. We further restrict
that bi > 0, ci > 0 and hi > 0.
The model in (1) is also known as the “four-
parameter change point model” and is proposed
in Kissock et al. (2003) to measure retrofit sav-
ings. As noted by Kissock et al. (2003), this model
is particular appropriate for modeling the heat-
ing and cooling energy use in buildings with high
latent loads (energy usage that cannot be cali-
brated) like the NYC public school buildings. De-
spite the same modeling strategy, we utilize the

results from model (1) in broader ways compared
to Kissock et al. (2003). In addition to the quan-
tification of retrofitting savings as in Kissock et al.
(2003), we can further conduct peer comparison
on the base loads, heating coefficients and cool-
ing coefficients. To be specific, we develop multi-
variate regression models on the estimated base
loads, heating and cooling coefficients with re-
spect to the school characteristics, the result of
which can be utilized for root cause analysis, pro-
viding insights for root cause of energy consump-
tion and energy savings from retrofit. The model
in (1) also serves as our first attempt to remove
the energy use trend that is dependent of the out-
door temperature. As we shall see, after removing
such trend, we can further model the error terms
εit by more sophisticated statistical models such
as the auto-regressive integrated moving average
models (ARIMA), which allows for more flexible
data structures.
To fit model (1), we first select a set of possible
values for the balance point temperature through
the whole portfolio, denoted by T = {T1, . . . , Tq}.
For the NYC school building portfolio, we find that
T = {55, 56, . . . , 70} is a reasonable range for the
balance point temperatures (measured in Fahren-
heit) throughout the portfolio. For each building,
we then iterate through T ∈ T , and estimate the
parameters by the ordinary least squares (OLS)
estimate, subject to the constraint bi ≥ 0, ci ≥ 0,
hi ≥ 0, as follows. For a given Tk ∈ T , we can fur-
ther represent model (1) in matrix-vector form,

Y i = Xikβi + εi ,

where Y i = (yi1, . . . , yim)
′
, βi = (bi, ci, hi)

′
, εi =



(εi1, . . . , εim)
′
, and

Xik =


1 CDD1(Tk) HDD1(Tk)
1 CDD2(Tk) HDD2(Tk)
...

...
...

1 CDDm(Tk) HDDm(Tk)

 .

We can then obtain the OLS estimate for βi under
T

(b)
i = Tk as

β̂
(k)

i = (X
′

ikXik)−1X
′

ikY i ,

and we set the final estimates to be equal to 0 if
the OLS estimate is negative. We then calculate
the R2 under T (b)

i = Tk as

R2
ik = 1−

∑
t(yit − ŷ(k)

it )2∑
t(yit − ȳi)2

,

where ŷ(k)
it is the fitted value for the yit under Tk,

and ȳi is the sample mean of yit. We hence se-
lect the balance point temperature according to
the best fit to the data, i.e., the temperature which
is associated with the largest R2.
We summarize the algorithm for fitting model (1)
as follows.

Algorithm: Fitting the VBDD model in (1)

• Input: monthly energy usage data yit, i = 1, . . . , n
and t ∈ {1, . . . ,m}, and outdoor temperature Titd,
d ∈ {1, . . . nt}.

• For i ∈ {1, . . . n} and Tk ∈ T ,
1. Calculate CDDt and HDDt.
2. Estimate bi, ci, hi by OLS, subject to bi > 0,

ci > 0 and hi > 0. Denote the resultant
estimates by b̂(k)

i , ĉ
(k)
i , ĥ

(k)
i .

3. Calculate R2
k.

4. Select k such that R2
k = maxl∈{1,...,q}R

2
l ,

and set T̂ (b)
i = Tk.

• Output: T̂ (b)
i , b̂(k)

i , ĉ
(k)
i , ĥ

(k)
i , ε̂

(k)
it , i = 1, . . . , n, t =

1, . . . ,m.

MULTIVARIATE REGRESSION MODELS

For large building portfolios like the NYC school
system, the amount of data is usually huge. With
the energy data being collected cumulatively over
time for each building, a quick overview of the en-
ergy performance throughout the portfolio is criti-
cal for successful management. The U.S. Environ-
mental Protection Agency (EPA) Energy Star Per-
formance Rating EPA (2009) provides a valuable
management tool to assess the building energy ef-
ficiency, relative to similar buildings and climate
zones nationwide. In addition to the nationwide
comparison, the assessment of energy efficiency,
relative to peer buildings within the portfolio,

which provides local and more detailed informa-
tion, is also of great value for the building man-
agers. This calls for the development of a “local”
performance indicator, solely based on the data
within the portfolio. In this section, we will de-
velop multivariate regression models, which lead
to a building performance indicator for local port-
folio assessment.
We first describe the general method utilized to
derive the building performance indicator. Let yi

be the quantity of our interest, typically referred
to as the response variable, and xi1, . . . , xip be the
p predictor variables. The multivariate regression
model takes the form

yi = xi1β1 + xi2β2 + . . .+ xipβp + εi , (2)

where β1, . . . βp are the regression coefficients and
εi is the error term. As in EPA (2009), we utilize
the multivariate regression model in (2) to nor-
malize the response variable according to the pre-
dictor variables.
In the building portfolio context, the predic-
tor variables consist of the building characteris-
tics and operational activities, for example, gross
square feet, number of windows and number of
operating hours. Some of the predictors are not
directly energy related. We thus perform a step-
wise variable selection procedure, to remove the
redundant variables from the model.
The multivariate regression model in (2) also
serves as a reference to the energy use for the gen-
eral population in the building portfolio. As a re-
sult, while fitting the model, we remove data that
cannot represent the general population (e.g.,
outliers). In practice, a data point is identified as
an outlier and be removed from the subsequent
analysis if its absolute value of the standardized
residual is larger than 2. After removing the out-
liers, we fit the model again and use the resultant
estimates for further analysis.
The expected value of the response variable, for a
specific building with given characteristics, can be
immediately calculated as

ŷi = E(yi | xi1, . . . , xip) = xi1β̂1+xi2β̂2+. . .+xipβ̂p .
(3)

The standardized residual, ẑi, can be then calcu-
lated as

ẑi =
yi − ŷi

σ̂
,

where σ̂ is the standard error. We note that for
a portfolio with many buildings, the ẑi approxi-
mately follows the standard normal distribution.
Matching zi to the standard normal curve, we can
calculate the probability that buildings with the
same characteristics consume more energy than
building i as

P(Z > ẑi) = 1− Φ(ẑi) ,



where Z is a standard normal random variable
and Φ(·) is the cumulative distribution function
for the standard normal distribution. We further
define the performance indicator for building i as

PIi = 100× P(Z > ẑi) = 100− 100Φ(ẑi) .

The resulting performance indicator is a number
between 0 and 100, with larger values indicating
better efficiency. In addition, the interpretation
of the performance indicator is very intuitive. By
definition, the performance indicator is the per-
centage of similar buildings that consume more
energy than building i in the portfolio. We illus-
trate this calculation in Figure 2.

Figure 2: An illustration of the performance indi-
cator. The bell curve is the density function for the
standard normal distribution. The corresponding
value at the boundary between the red area and
the green area is the standardized residual for
the specific building. The green region represents
buildings that consume more energy than the spe-
cific building. The red region represents buildings
that consume less energy than the specific build-
ing. The performance indicator is defined as the
area of the green region multiplied by 100, which
is 10 for this example.

To assess the overall energy use efficiency, we can
build a multivariate regression model for the av-
erage energy use for each building in the portfo-
lio. In addition, we use the multivariate regres-
sion models in conjunction with the building ef-
fects VBDD models described in the previous Sec-
tion. Indeed, by using b̂i, ĉi, ĥi obtained from
the building effects VBDD models as the response
variables, we obtain three additional performance
indicators, which reflect the energy efficiency of
the base load, heating use and cooling use. These
three additional performance indicators provide
valuable insights for root cause analysis of build-
ing energy performance.
Finally, we note that the multivariate regression
model not only provides a valuable normalization
tool, but also serves as an energy use evaluator
in the stage of budget planning and operational
scheduling for a new building.

TIME SERIES MODELS

Recall that ε̂it, t = 1, . . . ,m, are the estimated er-
ror terms from the VBDD models. In the context
of building energy analysis, these error terms typ-
ically exhibit marked seasonal and dynamic pat-
terns, which may be human behavior related and
cannot be explained solely by the weather. In the
NYC school system, for example, the error terms
typically have drops in summer and holiday sea-
sons, due to less energy demand during those
periods. In addition, the data are also dynami-
cally structured, with potential auto-correlations
between the errors at consecutive time points. In
this section, we develop time series models to fur-
ther investigate the underlying temporal depen-
dent structures.
The time series modeling, which consists of two
major steps, is conducted for each individual
building independently. In this first step, we re-
move the seasonal patterns by using a regression
model, with ε̂it being the response variable and
the 12 monthly seasonal factors being the pre-
dictor variables. To avoid the collinearity issue,
we set the monthly seasonal factor for December
equal to 0. We denote the error terms after remov-
ing the seasonal patterns by ε̃it.
In the second step, we model the dynamic struc-
ture of ε̃it by the autoregressive integrated mov-
ing average (ARIMA) model. The ARIMA model
is developed to model time series data, for bet-
ter understanding of the present data and accu-
rately forecasting future data points. See Brock-
well and Davis (2006) for a complete view of
the statistical developments on an ARIMA model.
Despite its popularity in statistical literature, the
ARIMA model has been rarely used in the con-
text of building energy, partly because of its com-
plex modeling schemes. Nevertheless, the ARIMA
model provides a more flexible, possibly non-
stationary structure to model building energy pat-
terns, which is essential for simultaneously mod-
eling of a large number of buildings.
Let p, d, q be non-negative integers. {ε̃it, t =
1, . . . ,m} is said to follow an ARIMA(p, d, q), if

(1−
p∑

`=1

φi`L`)(1− L)`ε̃it = (1 +
q∑

`=1

θi`L`)ηit ,

where L is the lag operator, Lε̃it = ε̃i,t−1; p, d,
q are the orders of auto-regressive, integrated,
and moving average parts of the model; {φi`, ` =
1, . . . , p} and {θi`, ` = 1, . . . , q} are the parame-
ters associated with the auto-regressive and mov-
ing average parts of the model; and ηit are mu-
tually independent standard normal random vari-
ables. The ARIMA models are the most general
class of models for forecasting a time series which
can be stationarized by transformations such as



differencing. In fact, the order of the integrated
part d reflects the trend of the data (e.g., d = 0
no trend, d = 1 linear trend, d = 2 quadratic
trend, etc), while p and q control how fast the
auto-correlation decays.
One practical issue in fitting ARIMA models for
building portfolio is the model choice, i.e., the
choice of p, d, q. With a large number of buildings
under consideration, detailed modeling for each
individual building is not feasible. To automati-
cally choose the appropriate order for each build-
ing, we utilize the Bayesian Information Criterion
(BIC) (Schwarz, 1978), which is defined as

BIC = −2 log(Maximum Likelihood) + k log(n) ,

where k is the number of parameters and n is the
number of observations. BIC is a criterion for se-
lecting the optimal model from a class of paramet-
ric models. It overcomes the overfitting problems
by regularizing the number of parameters. We se-
lect the optimal model for building i as the one
which results in the smallest BIC value.
The ARIMA models have two primary applications
in the building energy management: anomaly de-
tection and forecasting future energy use. To use
the ARIMA model to perform anomaly detection,
we first construct the 95% confidence bounds for
the energy use history. A data point, which falls
outside the confidence bounds, will be considered
as an abnormal consumption. An alert will fol-
low, requiring further investigation on the abnor-
mal usage. In terms of forecasting, we first calcu-
late the expected weather dependent energy use,
where the weather data is estimated as the aver-
age of weather trajectory. We then add the sea-
sonal factors, and the remaining terms forecast
by the ARIMA models to forecast the overall en-
ergy use. We illustrate the applications of ARIMA
model to detect anomaly and forecast in the con-
text of the test bed example in the section to fol-
low.

CASE STUDY
In this section, we demonstrate the method pro-
posed in the previous section using the NYC K-
12 public school building portfolio. The portfolio
consists of four types of energy use data, i.e., elec-
tricity, natural gas, fuel oil and steam, from July,
2005 to September, 2010. We perform the analy-
sis for all energy types, but here we focus on the
electricity data for demonstration purposes. For
building characteristics and operational activities,
the data consists of information such as whether a
building has cooking facilities, whether a building
has a swimming pool, whether a building has me-
chanical ventilation, number of floors, whether a
building is open during weekends, the number of
months a building is in operation, weekly operat-

ing hours, percentage of area air conditioned, per-
centage of area heated, number of personal com-
puters, number of students, student capacity, year
a building is built and the gross floor area. We
note that some characteristics are presently set
to the default values throughout the whole data
set and therefore are removed from consideration
while we build the models. In fact, collecting ac-
curate building characteristic information is still
an ongoing effort. Nevertheless, the general mod-
eling framework remains the same with the cur-
rently available data.
Exploratory analysis suggests we take the loga-
rithm transformations on the overall energy use
and the gross floor area while building the mul-
tivariate regression model for the overall energy
use. In addition, to include the building age ef-
fects in the model, we note that the building ages
are clustered, and we further define the following
four age factors according to these clusters: (1)
prior to 1915 (2) between 1916 and 1945 (3) be-
tween 1946 and 1985 (4) after 1986. The step-
wise variable selection procedure suggests that
the gross floor area, percentage of area air condi-
tioned, number of students, number of personal
computers, number of floors, whether a build-
ing has cooking facilities, whether a building was
built after 1986 are related to electricity use. We
thus include these variables in the final model. Ac-
cording to this model, we can further calculate the
overall energy use efficiency for all buildings in
the portfolio. In Figure 2, we show the building
performance indicator for the overall energy use
for a particular building. We refer to this building
as the demo building. In the rest of this section,
we will illustrate the rest results using the demo
building.
We further develop the VBDD models for all build-
ings, about 1, 400 buildings, in the portfolio. In
Table 1, we show the resultant estimates for bal-
ance temperature, base load (kBtu), cooling coef-
ficient and heating coefficient for the demo build-
ing. We further calculate the cooling energy and
the heating energy used for a particular year using
the results in this table. Based on these results, we
further divide the fiscal year energy use into base
load, heating energy use, cooling energy use, and
other use.

Table 1: Estimated Base load, cooling coefficient
and heating coefficient from the VBDD model for
the demo building. The estimated balance tem-
perature is in Fahrenheit and the rest are in the
unit of kBtu.

Balance Temperature 60
Base Load 521216.90
Cooling Coef 153.01
Heating Coef 103.88



To conduct the root cause analysis, we build the
multivariate regression models for the estimated
base load, cooling coefficients and heating coeffi-
cients from the VBDD models. We can then further
rank the performance indicators from smallest to
the largest, which corresponds to the retrofit pri-
ority for this building. Table 2 shows the perfor-
mance indicators for the base load, the heating
use and the cooling use for the demo building. As
we can see from this table, the demo building has
average performance for heating (performance in-
dicator equals to 50), below average performance
for base load (performance indicator equals to
25), and below average performance for cooling
(performance indicator equals to 10). Since the
cooling performance is the worst among all three
perspectives, we assign the top priority to retrofit
the cooling system of the building.

Table 2: The performance indicators to analyze
the root cause for the demo building. First col-
umn: possible root cause. Second column: perfor-
mance indicators. Third column: retrofit priority.

Root Cause PI Priority
Base Load 25 2
Cooling 10 1
Heating 50 3

Finally, we fit the ARIMA models to the error
terms. For the demo building, the model that best
fits the data is an ARIMA(0, 0, 1). From this model,
we further derive the predicted values, along with
95% confidence intervals from the ARIMA model
for the error terms. Combining the predicted val-
ues and confidence intervals for the error terms
with the base load, heating use and cooling use,
we obtain the predicted values and 95% confi-
dence intervals for the original energy use data.
The 95% confidence intervals are defined as the
control limits. Any data points that fall outside the
control limits is defined as an anomaly. An alert
is issued to call for further investigation whenever
an anomaly occurs in the energy use history. i-
BEE also provides the next 12 month energy fore-
cast. To forecast future energy use, we first fore-
cast the error terms using the ARIMA model. We
then add the base load, heating use and cooling
use to forecast the overall energy use. In gen-
erating the forecast for heating and cooling use,
we use the average heating degree days and cool-
ing degree days in the weather history. Weather
forecast or user input can also be used in fore-
casting future energy use. We show a chart that
describes the anomaly detection and forecast for
the demo building in Figure 3. Two anomalies are
illustrated in the chart, calling for further investi-
gation.
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Outside Control Limits:  

Anomaly Usage 

Figure 3: Anomaly detection and energy forecast
for the demo building (x-axis: month, y-axis: site
energy use in kBtu). Anomaly detection period
starts from the beginning of the trajectory and
ends before the start of the green vertical bar.
Forecast period begins after the green vertical bar.
In the picture, the blue line represents the actual
energy use; dashed yellow lines represent the up-
per control limit (UCL) and lower control limit
(LCL); the red line represents the predicted val-
ues for the energy use.

CONCLUSION
In this paper, we propose a multi-step statistical
analysis toolkit to model and analyze the energy
use in large portfolios of buildings. We develop
and make integrated use of multivariate regres-
sion models, building effects VBDD models, and
the ARIMA models. The results obtained using the
proposed methodology provide valuable insights
for anomaly detection, energy forecast and root
cause analysis. We implemented our method for
the NYC K-12 public school building portfolio and
demonstrated its usefulness.
The research contents presented in this paper are
our initial efforts to develop a statistics based
toolkit for building energy portfolios. Another
thread of research activities at IBM is to develop
physics based models using inverse modeling and
parameter estimation techniques. Directly based
on heat and mass transport phenomena, these
models provide estimates for heat transfer param-
eters with real physical meanings, such as the R-
value for roof, R-value for wall, U-value for win-
dows, and infiltration coefficient. It would be
of interest to combine the strengths of statistical
methods with physics based models through in-
tegrated modeling, where information produced
from one type of modeling is used for the other
type of modeling. We plan to pursue this direc-
tion in our future research and development.
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