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Abstract false alerts); second, it generates a set of candidate poli-

Today’s large-scale IT service delivery systems encom-
pass multiple data centers, geographical locations, di-
verse hardware and software platforms. Services are
no longer confined to racks within a single data center
— they may often be deployed and served from multi-
ple locations. Further, with the increasing adoption of
virtualization and cloud computing, the management of
large-scale IT infrastructure is increasingly the focus for
data center optimization and innovation. Of the various
service management tasks such as incidents, problems,
changes, and patches, handling of incidents is often a
major portion of the work performed by the system ad-
ministrators managing the system components. In this
paper, we focus our attention to monitoring alerts which
are triggered by agents monitoring the health of the sys-
tem components based on pre-set thresholds. A fraction
of these alerts get converted into service tickets that must
be investigated and resolved within a specified time du-
ration. Our data, collected from a very large IT service
environment, as well as previous studies indicate that a
significant portion of these incidents can be false, of-
ten as high as half the total volume of alerts, resulting
in wasted work investigating them.

In this paper, we describe Polygraph, a system for re-
ducing false alerts and incidents. Polygraph works by
mining historical incidents and alerts, and by correlat-
ing them with other historical data such as system health
time-series data, server similarities, operational context
of servers and other sources. The resulting output is a
set of monitoring policies with projected accuracies and
rates of false alert reduction if deployed in the environ-
ment. Polygraph is unique in that it uses an active learn-
ing approach with these outputs. It presents policies with
projected low scores to system administrators for verifi-
cation instead of automatically deploying them. Poly-
graph uses a four-step process: In the first step, it at-
tempts to detect alerts that can safely be removed (i.e.

cies to achieve this purpose by estimating new thresh-
olds; next, it calculates, via simulation, a projected sav-
ings in terms of false alerts that would be removed from
the environment while ensuring that true incidents are
not missed; and finally, upon verification by system ad-
ministrators, these new policies are dispatched to moni-
toring servers that further push them to individual com-
ponents. We evaluate Polygraph with a real-life trace of
around 60K incidents collected over 30 days from a por-
tion of a large IT service delivery infrastructure. We di-
vide the older traces for learning purpose, and use the
more recent traces for testing the effectiveness of the
new policies generated by Polygraph. Our results indi-
cate significant reduction of false alerts while keeping
the number of missing true events (i.e. false negatives)
to a minimum. We also discuss several ways Polygraph
can be extended to increase its false alert detection rates
and overall effectiveness.

1 Introduction

Efficient management of IT operations and facilities is
a major competitive advantage for service providers,
given the massive scale and costs involved with to-
day’s IT Service Delivery Infrastructures. In these en-
vironments, massive physical infrastructures (network-
ing, power, cooling, security) exist to deploy and man-
age server farms, as well as run applications for differ-
ent clients. System and application incidents and failures
occur almost 24x7 and an incident management frame-
work must be in place to respond to them in a timely
manner and in accordance with customer Service Level
Agreements (SLAs) and delivery Service Level Objec-
tives (SLOs). Proactive prevention and in-time response
to failures with minimal operational costs is a major tar-
get for service providers. Substantial resources are re-
quired for monitoring systems and managing incidents.
Depending on the size and complexity, managing the IT



infrastructure’s operations can cost companies billions of
dollars.

This paper addresses the problem of effective response
to incidents with an automated approach that dynami-
cally customizes the failure and incident detection mech-
anisms. It does so by integrating inputs of diverse types
(incident reports, monitoring alerts and policies, sys-
tem vitals, system configuration, service level objectives)
from diverse operational domains (e.g., customers, clus-
ters) and by applying machine-learning algorithms. This
integrated approach allows our system to effectively re-
duce the number of alerts that can be safely ignored, also
called false alerts, thereby reducing the need for human
action.

1.1 Background

Incident management systems such as IBM Tivoli 7 [8]
and HP ServiceCenter 7 [7] are examples of conventional
approaches to handling the logging of monitoring alerts
and incidents, dispatching them to appropriate system
operators, and tracking their resolution. Furthermore,
the timeliness in resolving these issues is critical, as IT
service providers and clients have Service Level Agree-
ments that specifies the maximum time-to-resolve for is-
sues with different severity levels. In addition to SLAs,
Service Level Objectives are attached to specific system
components. SLOs specify specific targets, e.g. 99.99%
availability for a group of mail servers. Failure to meet
SLAs and SLOs results in financial penalties and dam-
ages the relationship with the clients.

For effective system management, components are
configured with one or more performance monitoring
agents. The agents monitor a range of key performance
indicators (KPIs) to assess the health of the component.
They rely on pre-defined policies to trigger the creation
of alerts. These policies typically specify thresholds for
one or more KPI values, possibly combined with an ex-
ecution context. In most monitoring frameworks, the
higher level nodes may perform alert reduction and in-
cident ticket generation based on policies that aggregate
in time and space (i.e., across multiple systems). Even-
tually, System Administrators (SAs) receive the filtered
alerts and auto-generated incident tickets requesting ac-
tion.

The monitoring policies for the managed system com-
ponents have a significant impact on the scalability of
the monitoring infrastructure: the costs due to SA re-
sources spent on incident management, and the costs due
to SLA and SLO penalties. Policies may trigger alerts at
times when there is no actual critical situation. For in-
stance, this may happen when policies for KPIs such as
CPU, memory or file system utilization, are set at too low
thresholds or too short intervals for observation of out-

of-policy behavior. These false-positive signals repre-
sent non-value-added work for the SAs and in fact, from
our discussions with many of them, for some datacenters,
this represents a major portion of the total alert volume.

In order to balance scalability, costs and SLA/SLO
risks, monitoring policies must be defined based on a de-
tailed understanding of component behavior — the de-
fault policies and thresholds that come configured with
the component are not always optimal. This is in itself a
hard goal to achieve. First, as pointed out in [3], appro-
priate thresholds on operational parameters are seldom
known in advance; system behavior can change often,
as servers and applications/middleware can be dynam-
ically configured to serve different purpose/clients and
periodically re-imaged with different operating systems
and system configurations. Second, the operational costs
of modeling system behavior and composing new poli-
cies can be very high due to time and skill requirements.
Third, policies are limited by the capability of the moni-
toring agent to instrument and assess KPIs.

As aresult of these difficulties, the typical approach in
datacenters is to setup the vast majority of servers with
default policies that are far from optimal, yet serve well
the need to minimize SLA/SLO failures but at a higher
cost. Monitoring agents are setup with best-practice
packages of policies that are generally customized for the
system management services (such as security, recovery)
that are deployed throughout the infrastructure, and the
middleware installed on the system (e.g., databases, ap-
plication servers). As an initial assessment, we studied
the effectiveness of this approach for a large IT Service
Delivery organization and found significantly high per-
centage of false alerts !. Our study also revealed that the
lack of systematic approaches for tuning the policies, the
high variability of workloads and the absence of contin-
uous process improvement programs were key reasons
for such high percentage of false alerts in these environ-
ments.

We propose Polygraph, a system that helps reduce
false alerts by automating system behavior modeling, dy-
namic policy generation and dynamic deployment. Poly-
graph employs machine-learning techniques to model
system behavior and assess the effectiveness of policies.
The novelty of Polygraph draws from two principles:

e Learning from the SAs: Polygraph learns from the
resolutions of historical incident tickets handled by
SAs , and about the alert instances that could be
safely ignored. By temporal correlation with sys-
tem vitals (more generally, KPIs), configuration de-
tails, change management events, Polygraph creates
a profile of the managed component that is used for
automated refinement and deployment of monitor-

IThe exact numbers were omitted due to client confidentiality
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Figure 1: Polygraph System Architecture and Environment.

ing policies. This principle enables effective assess-
ment of policies without elaborate, resource con-
suming direct system analysis.

e Leverage Component Similarity in Large Scale
Environment: Polygraph exploits its assessment of
similar components to expand the input size for its
learning tasks for improved accuracy. Furthermore,
policy changes are deployed to groups of similar
components rather than individual components one-
at-a-time, thus increasing the likelihood of reducing
false alerts even for servers that have not experi-
enced them in the past.

Figure 1 illustrates the integration of Polygraph within
a typical service management infrastructure and its main
components. In addition to its close interaction with
the monitoring infrastructure, Polygraph leverages data
from several system management tools, including config-
uration management databases, repositories of historical
system vitals, incident management, and change man-
agement systems.

Polygraph comprises of the following main function-
alities: 1) analysis of alert effectiveness and identifica-
tion of false alerts, 2) generation and evaluation of new

monitoring policies, and 3) deployment of new policies
by interacting with monitoring system management. The
Polygraph prototype described and evaluated in this pa-
per is focused on the analysis of events and generation
of new policy. The implementation uses the IBM Tivoli
policy specification language.

The evaluation is based on a large set of monitoring
events, incident tickets, and system vitals from a large
IT service provider organization. The evaluation com-
pares several approaches for generation of new monitor-
ing policies.

Prior research in the area of incident management has
focused primarily on anomaly detection [12, 4, 3] and
patch management [13, 10]. Anomaly detectors can
help automate the identification of problem areas (e.g.,
unexpected bursts in network traffic from an infected
or ill-written application). The published studies sug-
gest a very similar situation in that many of these inci-
dents/alerts are often false positives. Most of the previ-
ous works have provided valuable insights into the man-
agement of expected and unexpected behaviors for spe-
cific domains (e.g., enterprise applications, databases,
or networks). They aimed at differentiating abnormal-
ities from baseline or historical behavior by employing



sophisticated algorithms to mine these patterns. Our
focus on understanding system behavior overlaps with
anomaly detection, but we are interested in detecting is-
sues that occur from normal day-to-day operations in a
data center, for example, the need for additional storage
for a server. Patch management associates system con-
figuration changes with problems, in an attempt to au-
tomate the problem resolution process. Such techniques
are also effective in reducing the costs in managing data
centers and are orthogonal to our work.
Overall, the main contributions of our work are:

1. Design system architecture that can support the con-
tinual refinement and assessment of policies based
on effective exploitation of diverse types service
management data,

2. Propose techniques for identification of false alerts
by mining historical incident resolutions,

3. Propose techniques for generation of new monitor-
ing policies that can significantly reduce the volume
of false alerts and evaluate the effectiveness with a
large sample of data.

The paper is organized as follows. In the next section,
we discuss related work and contrast them with our ap-
proach. Section 3 describes Polygraph architecture and
Section 4 provides implementation details. Evaluations
of the Polygraph prototype are presented in Section 5
with a follow-on discussion in Section 6. Finally, we
summarize key findings and discuss future work in Sec-
tion 7.

2 Related Work

The relevant literature for enterprise alert management
can be grouped into three major areas: infrastructure
monitoring (including security), data mining and anal-
ysis of monitoring alerts and finally, techniques targeting
false alert reduction.

There are several well-known commercial and
community-supported platforms for monitoring datacen-
ter and IT infrastructure components. For example, IBM
Tivoli Monitoring [9], Nagios [15], HP OpenView [7] are
used by thousands of enterprises to monitor critical IT
infrastructure components, such as servers (CPUs, Fans,
Disk Drives, Memory), OS, rack- and cluster-level net-
work infrastructure, service protocols, applications and
middleware. As described earlier, monitoring agents are
configured with policies for generating alerts based on
observed KPI levels on monitored components. Most of
the monitoring products support alert-suppression based
on a statically specified policy. Our work is different in
its use of dynamically generated policies based on min-
ing the alert streams and other service management data.

With the increasing adoption of virtualization and cloud
computing in datacenters, major vendors have recently
added agents for monitoring virtual machines and cloud
infrastructure. Many well-known cloud service providers
have developed and deployed custom monitoring and
alert-response systems as part of their unique infrastruc-
tures. Our work does not depend on a specific monitor-
ing system or technology, and the ideas presented can be
extended to any IT Service Delivery environment.

An apparatus for alert prioritization on high-value end
points such as automobiles and appliances is described
in [1]. An aggregator agent is employed to receive mon-
itoring events from end point agents and processes them
locally to determine the priorities based on the rules and
the associated environment information known to the lo-
cal aggregation agent. The aggregator agent communi-
cates the prioritized events to a central system to reduce
false alerts and improve efficiency. The work focused
on the functionality of the aggregator agent and did not
address dynamic policy settings from data mining of his-
toric event data.

[3] is the closest to the present study and describes
an algorithm for automated and adaptive threshold set-
ting based on Service Level Objectives (SLOs) of appli-
cations. The basic idea is modeling of SLO violations
for applications dependent on a set of components us-
ing logistic regression and subsequent retrospective ad-
justment of the alert thresholds for these components.
However, the complexity of the approach increases sig-
nificantly with multiple applications, components, SLOs,
and their combinations. Also, for an infrastructure with
large footprints and heterogeneous systems, it is still
difficult to find repositories of application-component
dependency graphs and SLOs specified at component
levels, despite the progress made by many IT service
providers in this area.

By far, the largest volume of published literature on
enterprise alarm management is on network monitoring,
and in particular, intrusion detection system (IDS) alerts.
We refer to [2] for a thorough review of IDS-related
work, and discuss a few studies relevant to our work. IDS
alert data mining, such as episode mining [17] and clus-
tering [12, 11], are used to analyze historical alarms, to
find alert root causes to help eliminate future redundant
alerts, and to identify false-positive alerts. In general,
IDS alerts contain only a real or false indication of at-
tack, which is a different model from the performance
monitoring alerts considered in this paper, that include
quantified resource usage levels such as percentages of
disk or CPU utilization. As a result, false-alert detec-
tion methods used for IDS alerts are not relevant for our
work. More relevant is the window-based state moni-
toring method in [16] that evaluates whether a state vi-
olation is continuous within a given time window, and



therefore gains immunity to short-term value bursts, e.g.
threshold violations and performance outliers. This can
reduce false alerts and the overall overhead associated
with alert counter-measures.

In [5], the authors describe an approach based on fre-
quent itemset detection [6] to identify false positives in
IDS alerts. They argue that the attributes of most fre-
quent itemsets represent 'normal’ data (i.e. common
configuration problems and not real attacks). Each IDS
alert is treated as a transaction, and each alert attribute is
treated as an item. The frequent item patterns are used to
extract the features of false positives, and these features
are to filter alerts. This approach can potentially be ap-
plied to resource monitoring alerts, as well, because on
only a small fraction of the alerts represent a true system
or resource utilization issue.

An IDS decision support system for construction of
an alert classification model for on-line network behavior
monitoring in IDS is proposed in [14]. The proposed sys-
tem architecture comprises a three-phase alert analysis
method - alert preprocessing phase for alerts sequencing
and correlation, model constructing phase for construc-
tion of rule classes used to classify and filter false alerts,
and, a rule refining phase for adaptive classification of
an alert sequences across different time intervals of an
alert sequence. This proposal is similar. The approach
of building classification models and rules using historic
data mining is also applicable to service delivery infras-
tructure addressed in our work. However, more diverse
data sources should be integrated in order to construct
meaningful and effective monitoring rules for server op-
eration alerts.

We conclude our review with an interesting viewpoint
on the difficulty in classifying rare events [4]. In the
present context, an example of a rare event can be a com-
bination of server and middleware alerts indicating a ser-
vice being unavailable on rare occasions. Such events are
difficult to classify with traditional learning classifiers,
which are often biased for the most common events. The
authors argue that if the events are rare and not too costly,
the learning algorithms can do little to improve. If the
events have a much higher cost, then a large number of
false alarms must be tolerated. This is exactly one of the
best-practices in IT Service Delivery for management of
high-risk SLO.

3 Polygraph System Architecture

In large-scale IT Service Delivery, the system monitor-
ing infrastructure [9, 15, 7] is vital for ensuring that all
IT components perform at levels that minimize the risks
of SLA and SLO failures, financial penalties and maxi-
mize client satisfaction. Monitoring agents are deployed
to monitor KPI values (e.g., CPU utilization, availability,

web application response time, number of DB connec-
tions) for each IT component and signal situations that
are relevant for the overall performance and SLO risk.
Such signals are identified based on monitoring policies
that include conditions related to KPI values, and time
and operational context (e.g., day of the week and time
in the day, active processes, and log entries). These sig-
nals are captured as monitoring events.

The system-wide monitoring infrastructure propagates
and aggregates monitoring events, and, eventually, pro-
vides input to SAs in the form of alerts or incident tick-
ets. SAs analyze the alerts/tickets and take corrective
action if necessary. However, often, no corrective ac-
tion is needed because the alert was a false-positive in
the identification of critical situations. Such alerts are
called ‘false alerts’ or ‘ignorable alerts’. False alerts oc-
cur when the monitoring policies fail to capture sufficient
detail on the parameters governing a critical situation or
when imprecise thresholds are set overly conservatively
in fear of missing high-risk SLA/SLO failures.

For a competitive IT service delivery, false alerts must
be minimized in order to reduce operational costs. How-
ever, our observations and study of related work [2] iden-
tify the difficulty of achieving these goals in complex ex-
ecution environment. In our observation of a large-scale
service delivery infrastructure, the volume of false alerts
can be significant, varying with the maturity of the deliv-
ery operations.

In practice, the service providers define monitoring
policies based on best-practices for the specific config-
uration and service management features of the moni-
tored components. False-positives can be reduced with
detailed analysis and fine-tuning of monitoring poli-
cies. However, even with state-of-the-art tooling, this
approach requires substantial SA effort and skills, pro-
hibiting its large-scale adoption. Furthermore, SAs have
limited system visibility and cannot easily share lessons-
learned from other SAs in geographically-dispersed lo-
cations.

Polygraph, the framework proposed in this paper,
specifically addresses these limitations with the automa-
tion of monitoring policy evaluation and fine-tuning.
Figure 1 illustrates the integration of Polygraph in the
service delivery infrastructure and its main components.
The goal of Polygraph is to identify false alerts and de-
sign new monitoring policies that lowers the occurrence
of false alerts while preserving negligible SLA/SLO fail-
ure risks. Towards this end, Polygraph integrates novel
methods and exploits content that originates from numer-
ous service-management components, such as incident
management, configuration management, change man-
agement, system vitals, monitoring events and alerts, and
operation data (SLAs/schedules).

Polygraph comprises of four functional components



(see Figure 1):

1. False Alert Detector, performs the analysis of cur-
rent alert specification effectiveness and false-alert
detection;

2. Monitoring Policy Generator, performs the gen-
eration of monitoring policies based on observed
false-alert patterns;

3. Monitoring Policy Evaluator, performs the evalu-
ation and adjustment of newly generated monitoring
policies; and

4. Monitoring Policy Deployment, performs the de-
ployment of new monitoring policies by close inter-
action with the monitoring infrastructure.

In addition to these components, Polygraph includes
component for providing and receiving input from SAs.
Polygraph can provide reports about observed false-
alarm patterns, and justification for its decisions of pol-
icy generation and deployment. Polygraph can receive
guidance for handling of situations where data quality
is limited and high-quality automated decisions are not
possible.

The novelty of Polygraph methods draws from two
principles:

e Learning from the SAs. Polygraph is learning
from the resolutions of incident tickets handled by
SAs in the past, about the alert instances considered
to be ignorable (false alerts). By temporal correla-
tion of these insights with system vitals, configura-
tion details, change management events, Polygraph
creates profiles for the monitored system compo-
nents, and uses them for new policy generation, as-
sessment and deployment. This principle enables
effective assessment of policies without an explicit
system analysis which can be highly elaborate and
resource-consuming [3].

o Leverage Component Similarity. Polygraph ex-
ploits monitored-component similarity with respect
to configuration and operational context, monitor-
ing policy and false alert patterns components. This
input is used in multiple ways for improving the
quality and scalability of new-policy generation.
Component similarity is used to aggregate across
alert input in order to achieve large data sets and
improved learning accuracy. Furthermore, policy
changes are deployed to groups of similar compo-
nent, thus reducing the amount of work required to
improve performance of every server, and reducing
the occurrence of false-alerts on servers likely to ex-
hibit behavior already present to similar servers.

In the following, we discuss each Polygraph compo-
nent.

3.1 False Alert Detector

Polygraph must be able to distinguish false alert from
true alerts. It does this by learning from SA’s assess-
ment of incident resolutions. The False Alert Detector
has two main functions. First, it must be able to iden-
tify the incident tickets that are generated automatically
by monitoring systems. Second, it must be able to assess
whether the identified alert corresponds to a real prob-
lem or is a false alert. These tasks can be complex since
the details of incident records do not provide this infor-
mation in structured fields and free-text mining is neces-
sary to extract the information. Section 4 describes the
algorithms we used to achieve such functionality when
free-text mining is used. The detector performs the ticket
classification off-line and the results are later used by the
Alert Policy Generator to determine how policies should
be modified.

3.2 Alert Policy Generator

The Alert Policy Generator is the core component in
which off-line data mining techniques are applied to fine-
tune policies. Some examples of alert policies include
the triggering of alerts when certain system parameters
rise above or fall below pre-defined thresholds. The
choice of techniques to be used for this task depended
on the constructs available in the policy language. Sec-
tion 4 goes into the details of the techniques we explored
for our IT service delivery environment based on IBM
Tivoli. The result of the analysis is a set of new policies,
such as threshold changes and extensions of conditions
to capture time and operational context.

3.3 Alert Policy Evaluator

The Alert Policy Evaluator assesses the impact of newly
generated sets of policies by simulating these policies
against historical alerts and events data. The goal of the
simulation is to assess the potential of false-alert reduc-
tion and the missed true alerts that might result due to
algorithmic fine-tuning. The results are available for re-
view by SAs, with details on their accuracy and SLA im-
pacts. The system administrators can choose to accept or
reject these recommendations. This fine-tuning can be an
iterative process, generating new policies and evaluating
them.

Polygraph-specific policies can be defined to enable
the automated deployment of newly generated policies
if the accuracy and SLA impacts are above thresholds
defined by SAs. This allows Polygraph to reduce SAs’
effort for less complex and critical investigations, which
account for a majority of the incidences. The policy eval-
uation can be limited to a specific monitored component



or can encompass a large set of servers based on pre-
defined similarity criteria. For instance, similarity can
be defined by server type (Web server, DB server, etc.),
the hardware configuration (CPU, memory, disk type),
applications installed, server execution context (mainte-
nance/security process), SLOs or other operations data,
resource utilization patterns, or geographical location.
This approach builds on current best-practices of deploy-
ing the same package of policies on similar servers. The
benefit is an increase in the effectiveness of false alert
reduction.

The accepted policy changes are placed in a policy de-
ployment package that is passed to the Policy Deploy-
ment component.

3.4 Policy Deployment

The Policy Deployment module interacts with the under-
lying monitoring infrastructure to deploy the newly gen-
erated policy packages. This module uses the internal
specification of new policies to generate the necessary
details about rule deployment specific to the monitor-
ing infrastructure. This module implements appropriate
staging of requests for policy deployment to minimize
disruptions on the monitoring infrastructure.

4 Component Details

In this section, we describe the Polygraph prototype, re-
ferring to the methods and algorithms used to implement
the main components of the framework: false-alert de-
tection, alert policy generation, and alert policy evalu-
ation. The scope of the current prototype is limited to
threshold-based alert policies. In this context, the auto-
mated generation of new policies is equivalent to auto-
matically adapting the threshold values of each rule.

4.1 Detecting False Alerts

Polygraph is a learning-based framework to utilize his-
torical data including server resource utilization and per-
formance metrics, system configuration data, incident
events, and alerts. Mining patterns or correlations among
these data enables the detection of false alerts.

Among all incident events, in the present framework,
we only consider threshold-based alert policies which
cover the majority of issues. For this purpose, these
alerts are separated from other human-entered tickets
by searching for centain special signatures in the prob-
lem description, which are added by the policy en-
gine when issuing the alerts. The signatures have well-
defined structured and entity-value expressions. An alert
contains several fields including incident occurred time,
problem description, and solution description (which is

available after the incident is resolved). The histori-
cal data of these machine-generated alerts are classified
based on their solution fields. First, we classify whether
a ticket is an alert (automatically generated) or is man-
ually entered. Second, of the ones that are alerts, we
categorized them into two types: True or False. False
alerts are defined to be the ones that are (1) duplicates,
(2) not reproducible, or (3) have no action taken in their
resolutions. These classified alerts are passed to the next
module for analysis.

An alert can be triggered by one or more incident
events, and an event is generated by an alert policy. In
general, an alert policy is defined by any user-specified
predicate (indicator function) over the performance met-
rics. A monitoring rule may specify a counter threshold,
and require an alert to be sent when such threshold is
met.

There are three basic alert policy types: (1) IF A; (2)
IF A AND B; and (3) IF A OR B. Here, A and B are
predicate units consisting of one parameter and its cor-
responding threshold value. The first alert policy is the
smallest form of a predicate unit, while the other two
alert policies are either a conjunction or a disjunction of
two predicates of the first type. The following examples
illustrate three basic types of an alert policy.

1. IF (System.Virtual_Memory_Percent_Used >
90.0)

2. IF (NTphysical_Disk.Disk_Time > 80) AND
(NT_Physical _Disk.Disk_Time <= 90)

3. IF (SMP_.CPU.CPU_Status = ‘off-line’) OR
(SM P_CPU.Avg_CPU _Busy-15 > 95)

As the third alert policy example shows, different pa-
rameters can be used in the same alert policy, and they
are compared either with numeric values or with cate-
gorical values. Polygraph, in its current form, focuses on
numeric threshold values wrapped in an inequality con-
dition, but still considers the cases where multiple per-
formance metrics are used in one alert policy. For the
rest of this subsection, we describe two dynamic thresh-
old adaptation schemes for the basic alert policy types.
In practice, an alert policy is a complicated composite
of these three basic types of predicates, and our schemes
easily apply to these more complex cases because ev-
ery predicate can be converted into a conjunctive nor-
mal form. These schemes target to reduce the number
of events that generate false alerts, which would result in
reducing the number of false alerts as well. Without loss
of generality, let us assume that a higher parameter value
means a higher workload of a server.

There is one important necessary condition that must
be satisfied when tuning the threshold of an alert policy.
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Figure 2: An example of a sequence of performance met-
ric values and their corresponding alerts.

The new threshold must not generate any false negatives.
That is, we do not want to miss any true alerts by tuning
the threshold, which makes the problem hard to solve.
We assume that the given history data (or training data)
for learning purpose is large enough to ensure high accu-
racy of the Polygraph framework, and we will later show
that this assumption is realistic by experimental results
of various sizes of training data in the evaluation section.

Figure 2 illustrates an ideal case of tuning a thresh-
old for a basic type (1) alert policy. If the parameter
values of true events (events that generated true alerts)
are all above the parameter values of false events (events
that generated false alerts), then we can set up the new
threshold to be the minimum parameter value of true
events. This new threshold will divide events (and there-
fore alerts) into two categories, and perfectly detect all
false events. But, in the real life, this case seldom hap-
pens. We need to allow more general cases into consid-
erations, not to detect all false events but to reduce the
number of false events as much as we can, which is de-
scribed in the following proposition. We define a true set
of an alert policy P to be the set of parameter values of
true events which were triggered by P.

Proposition 1 For a given alert policy P consisting of
one parameter p and its corresponding threshold 0, let
T be the true set of P, and let t = min(T). Ift > 0,
then we can set a new threshold of P to be t and it will
generate no false negatives for the given dataset.

Proposition 1 describes how to tune the threshold
value for a basic type (1) alert policy. If the smallest per-
formance metric value t that triggered true alerts is bigger
than the original threshold value, then we can safely set it

up to be a new threshold value §’. As an example, given
a policy governing CPU threshold, if all true alerts hap-
pen for thresholds greater than or equal to 95%, we can
safely raise the original threshold of 90% to 95%. But
even if we change the threshold based on this scheme,
there will be no gain on doing this if the smallest perfor-
mance metric value that triggered false alerts is bigger
than or equal to t, since all events are still above the new
threshold ¢’ and no new false alerts can be detected by
#'. That is, if we have a false alert happening at thresh-
old 98%, this does not affect our new threshold setting.
As mentioned above, note that we assume that we have
enough history data (or training data) that guarantees all
different performance patterns that caused the true alerts.

The next proposition describes a method to tune
threshold values for basic type (2) and (3) alert policies.

Proposition 2 For a given alert policy P consisting of
either a conjunction or a disjunction of two predicate
units A and B where A has one parameter py and its
corresponding threshold 01, and B has one parameter py
and its corresponding threshold 0. Let Ty and T be the
true sets of A and B of P respectively. Lett; = min(T})
and ta = min(Ty). If we set the new thresholds 0 and
0% to be t1 and to, then they will generate no false nega-
tives for the given dataset.

Suppose that P is a disjunction of two predicate units
A and B, and P is triggered by values p; = a and py =
b. If the value p; = a contributes to triggering A and
thereby triggering P, then we add a to T, but if the value
p2 = b does not contribute to triggering B (and therefore
to P) we do not add b into 75. In case P is a conjunction
of two predicate units A and B, and P is triggered by
values p; = a and p; = b, then they should always be
added to their corresponding true value sets, since for
a conjunction of two predicates, both of them have to
be satisfied at the same time to trigger the conjunction
predicate.

For the rest of the paper, we consider an alert policy to
be in the basic type (1) for the purpose of simplicity.

4.2 Mining Event and Server Characteris-
tics

At the time of deployment, when the servers and their
sensors were initially set up, most of the servers were
clustered together based on their workload types and the
alert policies were consistently determined for each clus-
ter of servers. As the enviornment changes over time,
there can be a significant change in each server’s work-
load. Therefore, sometimes the servers need to be up-
graded by increasing their memory and hard disk capac-
ity, or sometimes one needs to change their configura-
tions based on the applications they run. Their initial



clusters may have moved into a larger cluster or divided
into smaller clusters. Even within the same cluster, the
servers may now be performing different tasks that rede-
fine the boundaries of these clusters. Similarly, the ini-
tial settings of alert policies on each server which were
originally set-up in a group-wise manner, now need to be
tuned separately for themselves based on their own con-
figurations and workloads. For example, if we increase a
server’s hard disk capacity from 100GB to 10TB, then
a threshold of 90% will generate alerts when it is us-
ing 9TB of disk space even though there are 1TB of free
space left.

For these reasons, Polygraph tunes alert policy thresh-
olds for each server and our initial results show that one
can gain trmendously from this approach.

We do not exclude the possibility of re-clustering the
servers based on current environments and tune their
alert policy consistently within the same group, we leave
this as future work since defining a similarity measure
based on multiple attributes of the servers is out of the
scope of this paper. A server’s profile becomes a complex
data type because its time-stamped performance metrics
represent a (numeric) time series data, its configuration
is textual data, and its time-stamped events and alerts are
(textual) time series data.

4.3 Extrapolating Time-Dependent Behav-
ior
To further improve our false alert detection framework,
Polygraph takes into account time dimension of the data
since events, alerts, and performance metrics are all time-
stamped. In general, there are two ways to utilize time
dimension of the data: (1) mining time-related patterns
of false alerts; and (2) mining time-related patterns of
true alerts.

The idea of mining time-related patterns of false alerts
comes from the observation of periodic patterns of daily
jobs, weekly jobs, or even monthly jobs that can signif-
icantly affect memory and CPU usage of a server to be
captured by some of its alert policies. These routine jobs
should be considered as false alerts. Finding periodicity
is a key technique for this approach. For example, in Fig-
ure 3, a green solid circle shows a daily pattern and a red
dashed circle shows a weekly pattern of a performance
metric time-series data. A drawback of this approach is
that even if we mine all time-related patterns for false
alerts, we cannot completely consider them all as false
alerts since there is a chance that a true event occurs to-
gether with them. For this reason, Polygraph follows the
second approach of utilizing time-related patterns of true
alerts.

Given an alert policy P, Polygraph mines a set of true
ranges for each host, because Polygraph performs false

Figure 3: An example of a sequence of performance met-
ric values that contains daily patterns and weekly pat-
terns.

alert detection for each host as mentioned in the previous
section. A true range is a range of performance metric
values that might trigger P. It does not mean that every
value in a true range always triggers P, but it means that
all candidate values triggering P fall in this range. For
an alert policy P, it might have one or more true ranges
for each host.

Similar to most of the frequent pattern mining algo-
rithms in data mining that needs to specify a minimum
support to retrieve frequent interesting patterns, Poly-
graph requires a user-specified threshold to decide the
width of a true range to mine a set of these true ranges
for each alert policy.

Polygraph mines a set of true ranges in the following
way. First, Polygraph scans the history data (or training
data) to get a true set 7" for each host H. Given the true
range threshold, Polygraph constructs a set of true ranges
R from T'. Once an event of the host H occurs outside
the true ranges R, then consider it as a false event.

Proposition 3 For a given alert policy P, let T be the
true set of P, and R be its true range. Then, for the given
dataset, all parameter values that trigger true alerts of P
will be in R.

For example, suppose host H has three true events at
3pm, 4pm, and 8pm. Given a true range threshold of
1 hour, two ranges (2pm-5pm) and (7pm-9pm) become
H’s true ranges. If the threshold becomes smaller, Poly-
graph will detect more false alerts but there might be
higher risk of missing true alerts. In the evaluation sec-
tion, we show the effectiveness of our approach with var-
ious settings of true range thresholds.



4.4 False Alert Prevention Algorithm

Based on the above false alert detection schemes, Poly-
graph helps to significantly reduce the number of false
alerts and resulting manual investigation by system ad-
ministrators. We describe the procedures of the false
alert detection algorithm in Algorithm 1.

Algorithm 1: False Alert Prevention

Learning Phase

Inputl: History data of performance metrics, events, and alerts

Input2: A true range threshold §
Output: True sets and true ranges

begin

1. Scan DB

2. for each rule and host

3. Construct true sets

4. for each true set T’

5. Construct 1”s true ranges

end

Prediction Phase

Inputl: Event E occurred at host H
Input2: True sets and true ranges
Output: Filtered alerts

begin

6. If (E’s parameter value is below min(T(H))
7. then E is a false event

8.  Elseif (E’s parameter value is outside R(H)
9. then E is a false event

10. Else generate an alert

end

It is based on two phases: learning and detection. For
the learning phase, Polygraph scans the whole history
data and constructs true sets and their corresponding true
ranges. These two components are to be used for false
alert detection. Line 3 and 4 explain how to apply Propo-
sition 1 and 2 to detect false events. If an event E occurs
at a host H and its parameter value is less than the min-
imum of H’s true set, then E is considered to be a false
event and Polygraph prevents it from generating an alert.
Line 5 and 6 explain how to apply Proposition 3 to con-
sider time dimension for false event detection. If E’s
parameter value is outside true range of H, then F is
considered to be a false event. If E passes all these tests,
then Polygraph considers it to be a true event, and allows
generation of an alert.

5 Evaluation

Our empirical results are based on large and detailed
datasets collected from globally distributed production
environments serving real clients. There are four data
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components used in our experiments: alert policy, sys-
tem performance metric, alert, and event datasets. With
the exception of alert policies, all these are time-stamped
data. For confidentiality reasons, we do not disclose in-
formation on clients, and detailed information of their
datasets.

We collected 30-day datasets with around 60K events.
We divide the datasets of system performance metrics,
alerts, and events into six parts (5 days for each) based on
their occurred time: older data are to be used for learning
purpose, and recent data are for test purpose. We do not
use cross-validation because policy threshold adjustment
must be trained based on previously occurred events, not
an arbitrarily chosen events. To show the effects of train-
ing data size on our alert threshold adjustment schemes,
we use the first five datasets to make five differently sized
training data (datasets of 5, 10, 15, 20, and 25 days) and
the last part as test data.

In our experiments, we test the effect of Polygraph on
events. Our original thought was to reduce the num-
ber of false alerts, but in reality it is hard to measure
the effect of alert policy threshold adjustment as the re-
duction of the number of false alerts since an alert is
usually generated by a mixture of events. Therefore,
in our experiments, we test the effect of our framework
on event datasets, which can indirectly measure the re-
duction in the number of false alerts by counting the re-
duction in the number of false events. Moreover, mini-
mizing events reduce the communication overhead (from
monitored servers to monitoring systems) in a highly dis-
tributed systems.

For the rest of this section, we explain characteristics
of our four different type of datasets, and analyze ex-
perimental results of our threshold adaption schemes in
various parameter settings. By default, we use 1 hour as
a default true range threshold value.

5.1 Data Characteristics

Alert policies are pre-defined for each client. An alert
policy dataset contains several fields including the server
it is monitoring and predicate descriptions. Their pa-
rameter values have never been changed since they were
originally deployed (typical in most environments).
Event data itself does not contain any information of
whether it generated false alerts or true alerts. For this
reason, we analyze alert data to get the class label of
events. Alert datasets have their problem description and
solution description as their record fields, and most of the
solution descriptions contains useful information (pat-
tern) that can be classified to either true or false. There
are four different types of relations between events and
alerts: (1) in general, an alert is generated by an event;
(2) an alert might have more than one root events that



caused its generation (3) not every event contributes to
generation of an alert; and (4) an event might be related
to more than one alerts. As long as an event resulted in
generating at least one alert with consistent solution (ei-
ther true or false), we included it in our input data. A
small portion of alerts missing their solutions were dis-
carded in the experiments.

System performance metric data are collected at one
minute intervals and are aggregated into different time
windows such as 15 minute, 1 hour, 1 day, and further.
In the experiments, we use the exact measure of the per-
formance metrics in the alert policy, which is described
in each event record.

We use two major alert policies, say P; and P», in our
experiments to show the effectiveness of the Polygraph
framework. Table 1 shows their characteristics. In fact,
P, is the most frequently occurred alert policy among
360 alert policies that were triggered in our dataset, and
most of its events are biased to generate false alerts. P is
also one of the most frequently triggered alert policy, but
it almost uniformly generates true alerts and false alerts.
P, will be a good example of how Polygraph can auto-
matically and effectively tune the alert policy threshold,
while the performance of P, indicates the reason Poly-
graph needs expert reviews to prevent abuse of automa-
tion.

Table 1: Characteristics of two different alert policies

Alert PolicyHCount[Ratio(%)[True Events [False Events

P, 23355 40.48 (1026 (4.39%) (22329 (95.61%)

P 3344 | 5.80 [1526 (45.63%)|1884 (56.34%)

5.2 Basic Alert Policy Threshold Adjust-
ment

Both P; and P alert policies did not have any gain when
applying alert policy threshold adjustment schemes on
the whole dataset, not considering each server or host
separately. Based on further experiments which will be
shown below, it does not mean that the current threshold
is the optimized one, but it means the servers with same
alert policy are not similar in the dataset.

5.3 Host-Based Alert Policy Threshold Ad-
justment

In Figure 4, we compare false alert detection rates of
P, and P,. For each alert policy, we show two lines:
one is the false alert detection rate based on all servers,
and the other is based only on the servers whose train-
ing data contains true events. The difference between
those two lines indicates the false event detection rate
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Figure 5: Missing true events for host-based false event
detection on P; and P,

of the servers whose training data do not have any true
events. This type of servers exist mainly because of the
following two reasons: either (1) training data is not big
enough to hold all possible patterns; or (2) those servers
do not need the given alert policy any more because it
always generates false alerts. We can check it by look-
ing at the true event missing rate described in Figure 5.
(In this figure, we only showed two legends of P; and
P, based on the whole training data. The missing rates
of P; and P>, based on the servers whose training data
contains true events were all 0 for all training datasets.)
In case of P, it does not miss any true events. Thus,
some servers with P; alert policy would have no true set
in their training data because of the latter reason. On
the other hand, some servers with P, alert policy whose
training data does not contain any true events also miss
true events. Therefore, we can conclude that they require
bigger training data to learn their true sets.

As easily seen in Figure 4 and 5, P; showed high rate
of false event detection and did not miss any true events,
while P» achieved low rate of false event detection with
sometimes missing true events. For P», we see that at
least 10 days of training data is needed for reliable per-
formance. The spikes of P» in both figures are because
of the increase of the number of servers whose training
data does not contain true events. The purple line in Fig-



ure 5 declines at 5-day training dataset since quite a few
servers lost all of their true events because of the dataset
shrinkage. In general, we see that an alert policy detects
more false events and misses more true events in total as
the size of training data becomes smaller.

5.4 Host and Time-Based Alert Policy
Threshold Adjustment
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Figure 7: Missing true events for host and time-based
false event detection on P; and P»

Figure 6 shows false event detection rates of P, and
P, when using both host- and time-based schemes. In
Figure 7, we show true event missing rate of P; and Ps.
As before, for each alert policy, we show two lines: one
is the true alert missing rate based on entire training data,
and the other is based only on the servers whose training
data contains true events. For P;, both lines were identi-
cal, so we only showed the total version of missing rates.

Compared with the results of the host-based scheme
described in Figure 4, host-and-time-based scheme also
shows similar trends except that its lines show higher
false alert detection rates than those of host-based
scheme. That is, host and time-based scheme achieves
higher recall than host-based scheme. But on the other
hand, it suffers from higher rate of missing true tickets,
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or in other words lower precision. For host-based scheme
(described in Figure 5), most of the true event missing
rates were 0 or similarly small for both alert policies, but
now P, misses more than 10% of the true events. Note
that it shows a big spike at the 5-day training dataset as
before.

Based on the experimental results described above, P;
can be safely tuned by Polygraph with no human inter-
action, but P» needs to be shown to the system admin-
istrator before deployment. One way to assure higher
precision of not missing true events is to utilize the data
occurred around the same day of the year for the past few
years as additional training data. For example, a server
might show similar patterns for Christmas season, every
year. For this server, it will be helpful to use last year’s
Christmas season data as additional training data. It is
based on the observation that our false event detection
schemes never miss any true event if given perfect future
knowledge of the whole dataset we used.

5.5 True Range Threshold Effect

In Polygraph, we only have one parameter, true range
threshold, to be applied to host and time-based false
event detection scheme. In Figure 8 and 9, we used
10-day training dataset by default and tested the effect
of various true range threshold values. In Figure 9, we
skipped to show the true alert missing rates of P} based
on the servers whose training data contains true events
since it is identical to P;’s total false event detection
rates.
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Figure 8: Host and time-based false event detection on
Py and P, with various true range threshold values

As expected, in Figure 8, as the threshold value be-
comes bigger, the true ranges of P; and P, become larger
which leads to the decrease of false event detection rate.
Analyzing the slopes of both figures indicates that the
setting of a true range threshold of P, has a big impact
on false event detection and a small impact on missing
true events, while for P; the performance of both false
event detection and missing true tickets are mostly sta-
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ble. One of the reason is because P; has quite a few
servers that do not need it anymore. In that sense, P; is
one of the desired alert policy that needs to be tuned with
a big impact on the whole system performance.

6 Discussion

6.1 False Alert Detection and Policy Gen-
eration

In this paper, we proposed a framework for dynamically
tuning monitoring policies in order to reduce the num-
ber of false alerts. The prototype proposed methods for
automatic generation of threshold-based policies. In the
following, we discuss several extensions that can be used
to improve the effectiveness of the overall system.

Leverage operational data for monitoring policy tun-
ing Polygraph framework enables the integration of a
broader range of relevant operation data into alert man-
agement system. One of such operational data types is
scheduled maintenance activities such as anti-virus scans
and new user on-boarding which could generate signifi-
cant workload on a server. Incorporating this type of in-
formation into monitoring rules/policies could help avoid
false alerts that might be triggered during such activities.
For instance, our analysis of the sample dataset used for
a prototype evaluation shows that 20.3% of a customer’s
alerts were due to virus scan that caused higher CPU us-
age than the normal state. Adding active-application con-
straints can eliminate these type of false alerts. Another
relevant operational data type is the SLA specifications
and attainment information. It is yet to be explored how
SLAs can be translated into individual monitoring poli-
cies appropriately to avoid over/under provisioning.

Emphasize more recent history = When long history
of data is available, such as in a typical production en-
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vironment, false-alert detection is likely to exhibit poor
quality if all data samples are given equal weight in the
analysis because the detector would miss recognizing the
most recent trends in false alert occurrences. In order to
improve that decision quality, a weighted scheme can be
employed to put more emphases (larger weights) on re-
cent input. The method applies when our historical con-
tent is complete, not missing any false negatives (i.e., not
missing any true alerts).

6.2 Polygraph in Production Deployment

The integration of Polygraph with a monitoring infras-
tructure and service management tools like IBM Tivoli
[9] will require the integration of novel approaches for
ensuring scalability with the number of monitored com-
ponents and deployed monitoring policies.

Policy deployment Polygraph analysis could result
in the generation of new policies for a server profile
that matches a very large number of servers. In order
to avoid the disruption of the monitoring infrastructure,
Polygraph must fully exploit the features and protocols
of the scalable monitoring infrastructure. Also, Poly-
graph must inject the changes in a staged manner. The
assessment on server-specific risks/costs due to delaying
the policy deployment will be the base for deciding the
staging order and timeline.

Change history considerations As discussed in 4.2,
the infrastructure of a server (hardware, software, and
workload, etc..) and the environment in which the server
is running is not always static. System behavior may
change over time. At the very beginning, when the
servers and their sensors were initially set up, most of
the servers were clustered together based on their work-
load types. As time passes, the initial policy is out-dated.
Therefore, capturing all changes that server has experi-
enced (for example, new patch/software installation, HD,
CPU, Memory expansion, subnet change, etc..) and ad-
justing the policy becomes more important. As one of the
enhancements in the near future, we will bring the server
change history into consideration when recommending
policy changes.

Leverage server similarity for monitoring policy tun-
ing One of the insights from our experiments in Sec-
tion 5 is the potential benefit of grouping similar servers
in alert policy tuning. This is particularly helpful in the
cases when the train dataset collected on an individual
server does not have sufficient data points for some rare
events. Grouping similar servers will provide a better
train dataset, hence better policy tuning. A simple exam-
ple is the clustered load-sharing servers for applications



with high traffic volumes, which have the same server
configuration and the same workload characteristics. For
more general cases, it will be challenging to define a
server similarity measure that may be composed of not
only a server resource profile but also the workload char-
acteristics. For Polygraph system implementation, it re-
quires integration with the data sources that maintain up-
to-date server profile information and workload history.

7 Conclusion

With the increasing complexity and scale of modern data
centers, efficient and cost-effective management of inci-
dents and failures have become an important optimiza-
tion target for IT service providers. Alerts can origi-
nate from anywhere in the end-to-end service manage-
ment stack, e.g. from servers, storage, networks, middle-
ware, and applications. Our data collected from a large
IT service delivery environment indicates that often a
large portion of these alerts can be false positives, which
can safely be ignored, and with suitable techniques can
be eliminated from the environment. Our system, called
Polygraph, uses historical incidents and their resolutions
to learn which alerts can be safely labeled as false; and
correlates the alerts/incidents data with other informa-
tion such as system vitals and server similarities to up-
date policies that trigger these alerts in the first place.
In our experiments with real-life traces from a large ser-
vice delivery environment that includes many different
types of servers and application architectures, Polygraph
performs very well in reducing false alerts while keeping
false negatives to a low level. Polygraph achieves this via
both host-based and time-based tuning of the monitoring
policies.

There are several areas of future work. First, we plan
to extent Polygraph by incorporating operational context,
by automatically identifying durations when certain pro-
cesses are kickstarted on a server generating a temporary
spike in resource consumption. Second, we plan to in-
vestigate tuning the monitoring policies to a less stricter
or more relaxed threshold values to improve the balance
between false alert reduction and potential SLO viola-
tion. Finally, by giving more weight to recent incident
history, we anticipate that the quality of false alert de-
tection in Polygraph will increase, especially when the
historical content is complete, i.e. not missing any false
negatives.
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