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Abstract 

Accurate prediction of incident duration is critical for efficient incident management which aims to 

minimize the impact of non-recurrent congestion. In this chapter, a hybrid tree-based quantile regression 

method is proposed for incident duration prediction and quantification of the effects of various incident 

and traffic characteristics that determine duration. Hybrid tree-based quantile regression incorporates the 

merits of both quantile regression modeling and tree-structured modeling: robustness to outliers, simple 

interpretation, flexibility in combining categorical covariates and capturing nonlinear associations. The 

predictive models presented here are based on variables associated with incident characteristics as well as 

the traffic conditions before and after incident occurrence. Compared to previous approaches, the hybrid 

tree-based quantile regression offers higher predictive accuracy.  
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1. Introduction 

Incidents, including accidents, vehicle breakdowns, spilled loads, or other random events, reduce the 

capacity of the road and cause congestion when traffic demand exceeds the reduced capacity at the 

incident location. Oak Ridge National Laboratory estimates that 55% of motorist delays on freeways are 

incident related (Chin et al. 2004). Effective management is essential for mitigating the negative effects of 

incidents on congested urban freeways. Various studies have been undertaken to develop mitigation 

measures that minimize non-recurrent congestion due to freeway incidents. A typical example of such 

efforts is the development of various types of incident management systems that aim to clear traffic 

incidents quickly to minimize its impact on traffic flow. 

In existing incident management systems, an ability to anticipate incident characteristics allows traffic 

managers to make better decisions on how to use management and control resources, such as Advanced 

Traveler Information System (ATIS) and Route Guidance Systems (RGS). Incident duration is an 

essential characteristic since it highly determines both the magnitude and the extent of congestion. 

Therefore, it is important to understand which factors can affect the incident duration. This study explores 

these critical factors and develops statistical models for incident duration prediction.  

Incident duration can be defined as the duration between the instances of incident occurrence and of 

departure of the response vehicles from the accident scene (Garib et al. 1997; Nam & Mannering 2000; 

Smith & Smith 2001). As indicated in previous studies, an incident is composed of the following four 

phases: (a) incident detection and reporting time, (b) response time, (c) clearance time, and (d) recovery 

time. Traditionally incident duration is defined as the sum of first three phases.  

Incident duration prediction models can be used as a means to improve incident management systems 

under non-recurrent traffic congestion. Incident management systems generally encompass three main 

modules, including incident detection technology, incident impact prediction, and incident-responsive 

traffic management and control. Incident duration prediction models are essential components in such a 

system, especially in the last two modules. Travelers and traffic management entities can generally realize 

the impact by the forecasted incident duration. In general, the impact of an incident in terms of both 

magnitude and extent of the congestion is significantly affected by incident duration. Virtually all existing 

impact prediction models developed in the literature require knowing the incident duration before 

producing a prediction. Since duration of an incident is usually not known until the incident is cleared, an 

accurate estimate is needed for accurate real-time prediction of incident impacts.  

Likewise, an accurate estimate of the incident duration is also required in deriving effective response 

management and control strategies. Effective traffic control strategies are supposed to alleviate impacted 

traffic without unnecessarily interrupting the normal traffic or creating a secondary bottleneck. Rerouting 

factors such as diversion and merge points, diversion percentages, and diversion duration need to be 

derived on the basis of accurate magnitude and extent of the congestion as well as the duration of 

congestion  (Lee et al. 2003; Srinivasan & Krishnamurthy 2003). In other words, the ability to redistribute 

flows over time is important for effective incident management (Oh & Jayakrishnan 2000). For instance, 

the projected incident duration will enable responsible traffic agencies to notify the en-route drivers of 

traffic congestion in a timely manner with VMS, and assess if any detour operators or control actions are 

needed. Drivers with better traffic information when encountering an incident can then make a proper 
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route choice decision with less anxiety, which may consequently increase their compliance to suggestions 

or guidance by responsible traffic agencies (Garib et al. 1997).  

The vast majority of previous related studies focused on predicting incident duration solely from incident 

characteristics. This work incorporates not only incident characteristics but also traffic data from both 

before and after the incident occurrence. Traffic data collected prior to incidents act as spatial and 

temporal indicators. Spatially, sequential traffic measurements indicate if the location of an incident is a 

bottleneck in the network. Temporally, time of day and day of week are associated with different levels of 

traffic variables and consequently, with different effects for incidents of the same type. Furthermore, the 

levels of traffic variables after an incident are associated with incident severity and hence with clearance 

times.  

In addition, this work uses hybrid tree-based quantile regression. Other tree approaches have been used in 

the literature previously, including (Ozbay & Kachroo 1999; Smith & Smith 2001). A critical feature of 

the method used here is that it is designed to overcome the fundamental problems of previous trees such 

over-fitting and selection bias towards predictors with many possible splits or missing values.    

This chapter is organized as follows. Section 2 is devoted to a literature review which discusses different 

methods for online prediction of incident duration. In section 3, we present the methodology of hybrid 

tree-based quantile regression, which combines conditional inference trees with quantile regression. Data 

description and preliminary data analysis are illustrated in section 4. Section 5 describes the calibration of 

the statistical models, which is followed by an evaluation of their predictive accuracy. Finally, Section 6 

presents some concluding remarks. 

 

2 Literature review 

Incident duration is one of the essential characteristics of incidents that determine the magnitude and 

extent of the congestion. Thus, it has been extensively studied over the last few decades. Different 

approaches proposed in the literature can be grouped into the following categories:  

 Linear regression: Garib et al. (1997) performed duration prediction using regression models, to 

provide real-time incident information to travelers. As the empirical distribution of incident 

duration is skewed (Golob et al. 1987, Giuliano 1989), linear models are based on its logarithmic 

transformation. Khattak et al. (1994) used a series of truncated regression models to predict 

incident duration, which account for the fact that incident information at a Traffic Operations 

Center is obtained sequentially.  

 Tree models: Ozbay & Kachroo (1998) constructed decision trees which do not require 

knowledge of all observable incident characteristics. A similar approach was followed in Smith & 

Smith (2001) where classification trees were applied to predict incident duration, defined as a 

categorical variable. The classification tree was shown to be well suited for forecasting the phases 

of incident duration with reliable and informative characteristics.  Recently, Kim et al. (2008) 

constructed a rule-based tree model coupled with a discrete choice model, aiming at improved 

predictive ability. However, these models do not use any traffic data nor do they consider the tails 

of the distributions. 
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 K-nearest neighbor (KNN): Smith & Smith (2001) investigated incident duration prediction with 

KNN methods.  Qi & Smith (2004) developed a distance metric that can be effectively used with 

categorical data. They argued that KNN outperformed parametric forecasting models 

significantly. Again, these methods did not leverage traffic data. 

 Survival analysis: Incident duration can be viewed as the time period an incident can survive 

before being cleared. However, to implement survival analysis, selecting an appropriate 

probability distribution for incidence duration can  be a challenging task (Jones et al. 1991; Nam 

& Mannering 2000; Qi & Teng 2008; Chung 2010; Chung et al. 2010). 

 Artificial intelligence: Wei & Lee (2007) applied Artificial Neural Network (ANN) based models 

and data fusion techniques to forecast incident duration. Recently they employed Genetic 

Algorithms (GA) and ANNs to construct two models that forecast accident duration from the 

moment of accident notification to accident clearance (Lee & Wei 2010).  Demiroluk & Ozbay 

(2011) developed three structure learning algorithms to construct Bayesian Network (BN) 

structures. They demonstrated that BNs were very useful in uncovering important relationships 

among predictors, using the concept of strength of links. 

 

3. Methodology 

The adopted methodology, proposed recently in Hothorn et al. (2006), combines unbiased recursive 

partitioning (URP) with piecewise constant fitting using permutation tests. The conditional distribution of 

statistics measuring the association between incident duration and its predictors is the basis for an 

unbiased selection of the predictors in the model. Multiple tests are applied to determine whether no 

significant association between any predictor and duration can be stated and the recursion needs to stop. 

The above framework aims to solve both the over-fitting and the variable selection problems of older 

recursive partitioning methods; (a detailed overview is provided in Murthy, 1998).  

Our implementation was based on the software provided by the developers of the method (Hothorn et al., 

2011). Significance levels for the test statistics were set to conventional levels (0.05) and a Bonferroni 

correction was applied in multiple testing procedures, in accordance with the suggestion in Hothorn et al. 

(2006).  

Predictions from conventional tree models are compared to the ones derived from a hybrid approach that 

combines regression trees based on the incident characteristics with quantile regression models that use 

traffic variables as predictors. The latter are robust to outliers and skewed response distributions 

(Koenker, 2005), and are widely used in applications instead of conventional least-squares regression 

during the last decade. It is worth noting that our hybrid method is similar to the one adopted in GUIDE 

(Loh, 2008). 

 

In Section 5 we display predictive models for the 0.5 (median regression) and the 0.9 quantiles of log-

duration.  Median regression models can be used as conventional incident duration predictors, while 

models for the 0.9 conditional quantile quantify the uncertainty associated with each prediction and can 

also be viewed as predictors of worst-case scenarios. 

 

Finally, URP (prediction from only tree models) and hybrid tree-based quantile regression models are 

compared with the well-known older approach known as Classification and Regression Tree
†
 (CART) 

                                                
†
 CART is implemented in R (R Development Core Team 2009), using rpart (Therneau & Atkinson 2011). 
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(Breiman et al. 1984) as well as with the classic K-nearest-neighbor (KNN) methods without using traffic 

data as predictors, as was done in previous work found in the literature. Overall prediction accuracy is 

measured by mean absolute error (MAE1), median absolute error (MAE2), mean absolute percentage 

error (MAPE1) and median absolute percentage error (MAPE2). We also present percentages of 

predictions that are within a certain tolerance of their actual duration times, as suggested by Smith & 

Smith (2001). 

 

4. Data Description 

We examine incidents that occurred in 17 major freeways in Bay area, California, from April to June, 

2010. The freeway network, shown in Figure 1, connects ten cities. Incident data were obtained from the 

California Highway Patrol computer aided dispatch (CHP/CAD) system (CHP 2011). Incident 

information was collected from two sources: the first source provided the incident type and the 

corresponding spatio-temporal information, while the second source provided further details on incident 

characteristics, such as number of vehicles involved
‡
. Original incident types were classified into three 

groups: collision, disabled vehicle and traffic hazard. In total, 1245 incidents with valid data were 

analyzed. Table 1 contains the basic summary statistics of the dataset. The empirical probability 

distribution of incident duration has a long tail, which is in accordance with observations from previous 

studies (Chung, 2007). The average incident duration is 20.61 minutes, while the median incident 

duration is 15.5 minutes. The set of incidents was randomly cut into a training dataset (60 percent of data) 

and test dataset (40 percent of data).  

 

                                                
‡
 Incidents associated with scheduled road closures or without any log were excluded from the analysis. Duplicated 

incidents were identified by incident reporting time and location and were excluded as well while their logs were 

reviewed and merged. An automatic text recognition program was developed to parse incident logs. 

Figure 1 Bay area freeway network with detectors in highlighted links 
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Traffic data were obtained from the Caltrans Performance Measurement System (PeMS). PeMS is a 

system designed to maintain California freeway traffic data and compute annual congestion for facilities 

with surveillance systems in place, typically loop detectors spaced approximately 0.5 mile apart on each 

freeway lane (Choe et al. 2002). There are around 850 detectors in Bay area freeways, shown as 

highlighted links in Figure 1. The analysis that follows uses 5-minute aggregated volume, speed, and 

occupancy data. Each incident was associated with traffic data spatially and temporally: 

 Spatially, each incident was matched with the closest link, which satisfied the incident location 

descriptions. Upstream and downstream traffic detectors were also identified accordingly. 

 Temporally, a modified incident detection algorithm based on the DELOS (also called 

Minnesota) algorithm (Chassiakos & Stephanedes 1993) was developed to trace differences in 

occupancy between adjacent detectors through time, and to detect an incident when these 

differences change significantly in a short time period. This incident detection algorithm 

associates incident data with upstream and downstream traffic data, locates the time stamp when 

the shockwave hits the nearest upstream detector, and records traffic data before and after the 

incident’s time of occurrence. 

Table 1 Summary statistics 

Incident data  
Number of incidents 

Median incident duration (min) 

1245 

15.5 

Average incident duration (min) 20.61 

Proportion of incidents in  "Collision" 0.52 

Proportion of incidents in  "Disabled" 0.26 

Proportion of incidents in  "Hazard" 0.22 

Proportion of incidents with injuries 

Average number of vehicle involved 

0.08 

1.30 

Traffic data  
Average historical speed across all incident sites (mph) 

Average historical volume across all incident sites (veh/hr/ln) 

Average historical occupancy across all incident sites 

52.84 

1361 

0.139 

Average speed before incident (mph) 48.75 

Average speed after incident (mph) 29.27 

Average volume before incident (veh/hr/ln) 1303 

Average volume after incident (veh/hr/ln) 1300 

Average occupancy before incident  0.147 

Average occupancy after incident 0.316 

 

Table 1 depicts summary statistics of traffic data before and after the incident. Prior knowledge suggests 

that incidents will cause congestion on an upstream detector whereas traffic conditions will become less 

congested at downstream stations (Payne & Tignor, 1978). In our study, it is found that speed and 

occupancy are affected dramatically by incidents, while volume remains relatively stable. On average, 

speed drops 40% after an incident, while occupancy increases by 115%. The impact of incidents on traffic 

data is illustrated in Figure 2. Speeds, volumes and occupancies at the first upstream detector before and 

after an incident’s time of occurrence are normalized and plotted in the same graph. Points on the 45 

degree line correspond to data that are not affected by an incident. One notes that speeds tend to decrease 
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while occupancies tend to increase after the incident, in accordance with prior expectations. On the other 

hand, volumes may increase or decrease, depending on the levels of traffic congestion before and after the 

incident.  

 

 

Figure 3 Empirical distributions of incident duration for different occupancy increment levels 

after incident detection at the first upstream detector. 

Figure 2 Scatter-plots of normalized traffic data (speed, volume and occupancy) at the first 

upstream detector before and after incident occurrence. 
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The candidate predictor variables are displayed in Table 2. All incident-related variables are categorical 

except for the number of vehicles involved in the incident. Figure 3 depicts a heteroscedastic relationship 

between incident duration and occupancy range. The latter is measured by occupancy differences, i.e., 

Occ(s,t) – Occ(s,t-1), where section s indicates the first upstream detector, and t is the time when the 

incident-induced impact is observed, with t-1 being the preceding time period to t. Each violin-type plot 

represents the empirical probability density of incident duration at different ranges of occupancy. Clearly, 

the variability of incident duration increases as occupancy increment increases. Low occupancy ranges 

are associated with short incident durations, while high occupancy increments may be related to both 

short and long incident durations. This suggests that traffic data may provide significant predictive power 

for incident duration. An increasing relationship between incident duration and the number of vehicles 

involved in an incident can be observed in Figure 4.  

 

Table 2 Candidate independent variables 

Information type Independent variables Notation 

Weather 

characteristics 

Rainy rain 

Snowy snow 

Temporal 

characteristics 

Time of day (AM, PM, Mid, Off-peak) t_am, t_pm, t_mid, t_off 

Day of week (Weekday or not) weekday 

Incident 

characteristics 

Incident type (collision, disabled or hazard) type 

Num of vehicles involved num_veh 

Lanes blocked (binary) lane_block 

Truck involved (binary) truck 

Person injured (binary) injured 

CHP officer assigned (binary) CHP 

Geometric 

characteristics 

Freeway (CA-17, CA-237, CA-24, CA-242, CA-4, CA-84, 

CA-85, CA-87, CA-92, I-238, I-280, I-580, I-680, I-80, I-

880, I-980, US-101) 

freeway1~freeway17 

City (Castro Valley, Contra Costa, Dublin, Hayward, 

Marin, Oakland, Redwood City, San Francisco, San Jose, 

Solano) 

city1~city10 

Figure 4 Box-plots of incident duration for different numbers of vehicles involved. 
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Interstate highway interstate 

Ramp exists near incident location (upstream/downstream 

on-ramp/off-ramp; binary) 

uponramp,upofframp, 

downonramp, downofframp 

Upstream off-ramp and a downstream on-ramp exist near 

incident location (binary) 

junction 

Upstream on-ramp and/or downstream off-ramp exist near 

incident location (binary) 

junctionbwt 

number of lanes (2 or 3, 4, 5+) ln23, ln4, ln5 

Traffic 

characteristics 

Historical mean of traffic data (speed, volume and 

occupancy) at the time of incident 

v_mean, q_mean, o_mean 

Traffic data at the first upstream detector before incident  

detection 

v_prior, q_prior, o_prior 

Traffic data at the first upstream detector after incident  

detection 

v_inc, q_inc, o_inc 

Traffic data  after incident occurrence divided by 

measurements collected before incident occurrence 

v_ratio, q_ratio, o_ratio 

Traffic data  increments after incident occurrence v_diff, q_diff, 

o_diff 

Note: v_ratio = v_inc/v_prior; v_diff = v_inc – v_prior. 

 

5. Model Estimation and Validation 

Two URP trees were built based on different sets of predictors. The first one, called URP tree1, shown in 

Figure 5, was created using all candidate variables in Table 2. The second one (URP) was obtained using 

all but traffic variables and is depicted in Figure 6. The decision path of the tree model is followed by 

answering a yes or no question at each node. Eventually, at each terminal node, a prediction is made 

based on the mean of incident duration of the data in that category. 

Specifically, URP tree2 is a subset of URP tree1 that does not contain traffic data variables. According to 

the p-values in each node in both URP tree1 and URP tree2, the most significant predictor variables are 

incident characteristics (type, injured, num_veh and lane_block). As shown below, URP tree1 turns out to 

yield improved prediction accuracy than URP tree2, demonstrating that the incorporation of traffic data 

provides increased predictive power to the model. 

In both URP trees the first node separates incidents according to type. This finding is in accordance with 

earlier studies which suggest that the empirical distribution of incident duration depends significantly on 

incident type (Kim et al. 2008). In the case of traffic collisions, the second node divides incidents 

according to the presence or not of an injury. In the URP tree with traffic data, URP tree1, if both 

collision and injury occur, v_prior, the level of speed prior to an incident, divides the dataset further. 

Hence, collisions with injuries and high prior speeds (>48.8 mph), cause the longest incident durations in 

URP tree. High speeds prior to the incident are usually associated with off-peak periods; severe off-peak 

incidents are expected to last longer due to fewer available response units.  

Node 3 indicates that CHP officer involvement reduces incident duration while node 4 indicates that a 

large reduction in traffic volume is associated with elevated incident duration. Node 5 uses historical 

occupancy to split incidents. Large values correspond to peak-periods, which tend to have short incident 

duration. Information from node 6 is consistent with the observations from Figure 3: a larger occupancy 

increment is associated with larger incident duration. Incidents with disabled vehicles (num_veh=1) have 

longer expected duration than traffic hazard (num_veh=0). Node 17 shows that information on blocked 

lanes is significant for duration prediction with disabled vehicles.  
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Figure 5 URP tree1 (with traffic data): Unbiased recursive partition tree using all candidate predictors in training data. For each inner node, the 

Bonferroni-adjusted p-values are given. A box-plot of the log of incident duration is displayed in each terminal node.  
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To gain better prediction accuracy, quantile regression models are built for each terminal node in URP 

tree2. Unlike least-squared regression trees, which concentrate on modeling the relationship between the 

response and the covariates at the centre of the response distribution, quantile regression can provide 

insight into the nature of that relationship at the centre as well as the tails of the response distribution. 

Table 3 shows the coefficients of the six estimated regression models for the 0.5 (median) and 0.9 

quantiles of the logarithm of incident duration. Besides traffic characteristics, geometric characteristics 

appear in most of the estimated regression models, such as ramp, city and freeway junction information. 

This implies that incident duration varies significantly for different geometry factors, as well as different 

jurisdictions. For example, incidents that happen in freeway junctions are related to increased clearance 

times, while the presence of an upstream off-ramp may decrease incident duration.  

By replacing the mean in the final nodes of tree2 by quantile regression models, the forecasting accuracy 

(measured by median absolute percentage error) on each terminal node was improved on average by 15%, 

as can be observed in Figure 7. To better visualize the difference between 0.5 and 0.9 quantile estimates, 

the corresponding predictions are plotted in Figure 8; the average ratio of 0.9 and 0.5 quantile estimates is 

2.29.  

 

 

 

 

Table 3 Coefficients of regression models estimated at each terminal node of URPtree2 

Figure 6 URP tree2 (without traffic data): Unbiased recursive partition tree using only categorical variables 

in training data. For each inner node, the Bonferroni-adjusted p-values are shown. A box-plot of the log of 

incident duration is displayed in each terminal node. 
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0.5 quantile    0.9 quantile    

Regressor Value 
Std. 

Error 
t value Regressor Value 

Std. 

Error 
t value 

Node 4    Node 4    

constant 2.7325 0.1266 21.5818 constant 3.3950 0.1967 17.2611 

city2 -0.2881 0.1692 -1.7025 interstate -0.1924 0.1353 -1.4215 

q_diff -0.0007 0.0003 -2.3113 junctionbwt -0.2772 0.1076 -2.5768 

o_diff 1.8049 0.6023 2.9968 o_prior 1.3523 0.6291 2.1495 

Node 5    o_diff 1.8274 0.7205 2.5364 

constant 2.6672 0.0910 29.2972 Node 5    

Node 6    lane_block 0.3862 0.1603 2.4096 

v_diff 0.0175 0.0144 1.2180 city2 -0.9949 0.4525 -2.1985 

v_prior 0.0566 0.0074 7.6151 city6 -0.7597 0.3037 -2.5012 

o_prior 6.6888 1.3426 4.9818 city7 -0.3904 0.2175 -1.7954 

city8 -0.8139 0.3257 -2.4987 city9 -0.6949 0.1800 -3.8601 

city2 0.5440 0.2358 2.3071 q_mean 0.0006 0.0003 1.8679 

Node 8    v_prior 0.0441 0.0108 4.0738 

constant 1.7954 0.1688 10.6352 o_prior 4.3970 1.2343 3.5624 

junction 0.6095 0.1287 4.7376 v_diff 0.0631 0.0182 3.4759 

uponramp 0.2327 0.1087 2.1402 o_diff 8.0788 2.2776 3.5470 

upofframp -0.4717 0.1057 -4.4644 Node 6    

v_prior 0.0060 0.0028 2.1330 interstate 0.4334 0.3388 1.2792 

Node 10    o_diff 3.1075 1.5401 2.0177 

constant 1.7715 0.2757 6.4263 v_prior 0.0426 0.0071 5.9916 

t_mid 0.4259 0.1787 2.3832 o_prior 7.9935 1.7221 4.6418 

t_off 0.6355 0.2892 2.1977 city8 -0.8302 0.3984 -2.0837 

t_pm 0.2677 0.1373 1.9501 Node 8    

junction 0.2560 0.1296 1.9751 constant 2.8679 0.1357 21.1301 

CHP -0.3997 0.1244 -3.2133 junction 0.8737 0.2749 3.1787 

downonramp -0.2272 0.1599 -1.4208 junctionbwt 0.5531 0.2895 1.9109 

city6 0.3466 0.2346 1.4772 upofframp -1.1451 0.2178 -5.2583 

q_mean 0.0002 0.0002 1.5193 downonramp 0.3267 0.1980 1.6497 

o_diff 1.7876 1.0319 1.7324 Node 10    

Node 11    constant 3.7102 0.3994 9.2896 

constant 1.6724 0.6992 2.3918 junction 1.2756 0.4000 3.1891 

weekday -0.5759 0.2481 -2.3209 upofframp -1.1815 0.3823 -3.0906 

interstate -0.6921 0.2970 -2.3303 downonramp -0.8234 0.3498 -2.3537 

truck 0.4832 0.2702 1.7882 downofframp -0.8556 0.4051 -2.1121 

uponramp -0.2953 0.1660 -1.7790 city6 0.3029 0.1863 1.6260 

freeway12 0.3397 0.2504 1.3564 v_diff 0.0110 0.0057 1.9181 

v_prior 0.0198 0.0087 2.2799 q_diff -0.0007 0.0004 -2.0189 

o_prior 4.8327 1.7361 2.7836 o_diff 2.4608 1.4465 1.7012 
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o_diff 2.5521 1.3578 1.8796 Node 11    

    constant 3.6738 0.1235 29.7529 

    uponramp -0.4549 0.1742 -2.6114 

 

 

Finally, the proposed hybrid tree-based quantile regression model is compared with the well-known 

Classification and Regression Tree
4
 (CART) (Breiman et al. 1984) and K-nearest-neighbor (KNN) 

methods that do not use traffic data, as was reported in earlier studies in the literature. Hence, we consider 

                                                
4
 CART is implemented in R (R Development Core Team 2009), using rpart (Therneau & Atkinson 2011). 

Figure 7 Comparisons of median absolute percentage error for URPtree2 and 0.5 quantile 

regression in each terminal node. 

 

Figure 8 Comparisons of 0.5 and 0.9 quantile estimates 
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the CART and the KNN approaches as performed here to be benchmarks for this research. The tree model 

from CART is depicted in Figure 9. Again, the first nodes are incident type and the presence of an injury. 

KNN selects k past incidents that are closest to the current one, and takes the mean or median of incidents 

in the neighborhood. A similar KNN approach implemented for incident prediction was reported in 

previous studies (Qi & Smith 2004; Smith & Smith 2001). The predictors in URPtree2 (Figure 6) were 

used as the set of descriptors for each incident in KNN. The distance metric of Qi & Smith (2004) was 

adopted for measuring similarity between current and past incidents. 

 

Table 4 reports measures of predictive accuracy for all examined methods. Overall prediction accuracy 

was measured by mean absolute error (denoted as MAE1), in minutes, median absolute error (denoted as 

MAE2), in minutes, mean absolute percentage error (denoted as MAPE1) and median absolute percentage 

error (denoted as MAPE2). As can be observed from the table, the URP tree approaches, and specifically 

the hybrid tree-based quantile regression, reduced error across the board as compared to the KNN and 

CART approaches used in the literature. 

Table 4 Evaluation of predictive error with different methods 

 KNN CART 

URP tree2 

(without 

traffic data) 

URP tree1 

(with traffic 

data) 

hybrid tree-based 

quantile reg. 

MAE1 

(min) 
9.77 9.62 9.39 9.15 8.54 

MAPE1 

(%) 
59.2% 57.1% 55.1% 53.2% 49.1% 

MAE2 

(min) 
6.2 6.02 5.81 5.78 4.99 

Figure 9 Regression tree from CART for the training data. The split is beneath each intermediate 

node. Types a,b and c represent collision, disabled vehicle and hazard, respectively. The number 

beneath each terminal node is the predicted logarithm of incident duration. 
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MAPE2 

(%) 
42.2% 42.2% 40.4% 39.8% 34.5% 

 

An alternative measure of effectiveness is related to a certain tolerance of the prediction error. As 

suggested by Smith & Smith (2001), it is useful to know the percentage of predictions that are within a 

certain tolerance of their actual duration times. Table 5 reports accuracy in terms of tolerance levels. Five 

tolerance values were used: 5, 10, 15, 30, and 60 min. 

Over 50% of incidents have been predicted with less than 5 min prediction error with hybrid tree-based 

quantile regression, while other published methods reached at most 44%. For the ranges of prediction 

error under 5min, 10min, and 15min, there were clear advantages to using the URP approaches proposed 

here. Note that for thresholds of 30min and 60min, the benefits of the proposed approach decrease. That is 

not surprising for this data set in that the average and median incident durations were 20 and 15 minutes, 

respectively. Hence relatively few incidents fall into the range of 30minutes or more, and the benefits of 

predicting better those durations is therefore not as visible. Nonetheless, the most important tolerance 

levels for the incidents in the dataset used in this study, namely the 5min, 10min, and 15min thresholds, 

all demonstrated significant improvements via the use of the URP techniques developed here. 

Table 5 Comparisons of percentage of test samples in different prediction tolerances 

 KNN CART 

URP tree2 

(without 

traffic data) 

URP tree1 

(with 

traffic data) 

hybrid tree-based 

quantile reg. 

prediction error <= 5min 42.8% 42.6% 43.4% 43.96% 50.1% 

prediction error <= 10min 69.1% 70.1% 71.2% 72.1% 72.3% 

prediction error <= 15min 82.5% 82.4% 84.8% 83% 84.6% 

prediction error <= 30min 94.2% 94.6% 94.7% 94.5% 94.3% 

prediction error <= 60min 98.8% 99.2% 99% 99.2% 99.1% 

 

6. Concluding Remarks 

In this chapter, the use of unbiased recursive partitioning (URP) on both incident characteristic data as 

well as traffic data is proposed for incident duration prediction. In particular, a hybrid tree-based quantile 

regression method was developed; hybrid tree-based quantile regression modeling incorporates the merits 

of both quantile regression modeling and tree-structured modeling. Its merits include simple interpretation 

and ease of handling categorical covariates, robustness, and flexibility for nonlinearity. Given a URP tree, 

the hybrid method works by obtaining quantile regression models for each terminal node. With both 0.5 

and 0.9 quantile estimates, traffic operators may understand not only the actual prediction but also the 

worst case results, and visualize the prediction range easily. Compared with the classic classification and 

regression tree (CART) approach, as well as a K-nearest neighbor approach, the URP trees and hybrid 

tree-based quantile regression proposed here appear to offer higher prediction accuracy. 

 The overall findings of this chapter can be summarized as follows: 
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 Incident characteristics (type, injuries, blocked lanes, number of vehicle involved etc) are the 

most significant predictors of incident duration. 

 Traffic data can provide additional information that improves forecasting accuracy. Incidents with 

high prior speeds (occurring for instance during the night or during off-peak hours) generally last 

longer than those in daytime due to the lack of sufficient response units for incident clearance 

operations. Incidents with large occupancy increment tend to have longer duration than those with 

small occupancy changes. 

 Incident location matters. Different geometry factors and jurisdiction may result in different 

incident duration.  

In summary, it is essential to forecast the spatial-temporal incident impact based on both incident duration 

prediction and traffic conditions. Spatial-temporal incident impact aims to capture how congestion 

propagates over space and time. Future work in this area should leverage not only the model structure 

developed here, but in an online decision support system would incorporate real-time traffic predictions 

as predictor variables, in addition to the incident characteristics as they become available. Together, such 

a system can provide traffic operators with important components of an optimized control strategy for 

non-recurrent congestion. 
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