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Abstract

In a recent paper, Dash, Dey and Günlük (2010) showed that many families of inequalities for the
two-row continuous group relaxation and variants of this relaxation are cross cuts or crooked cross cuts,
both of which generalize split cuts. Li and Richard (2008) recently studied t-branch split cuts for mixed-
integer programs for integers t ≥ 1. Split cuts are just 1-branch split cuts, and cross cuts are 2-branch
split cuts. In this paper, we study whether cross and crooked cross cuts can be separated in an effective
manner for practical MIPs, and can yield a non-trivial improvement over the bounds obtained by split
cuts. We also study whether such cuts obtained from two simplex tableau rows at a time can strengthen
the bounds obtained by GMI cuts based on single tableau rows. We give positive answers to both these
questions for MIPLIB 3.0 problems.

1 Introduction

There has been much recent work on the use of lattice-free sets to generate cutting planes (lattice-free
cuts) from multiple rows of a simplex tableau associated with a mixed-integer program (MIP). Andersen,
Louveaux, Weismantel and Wolsey [1] studied the two-row continuous group relaxation, a set of the form

W = {(z, s) ∈ Z2 × Rn
+ : z1 + r1s = f1, z2 + r2s = f2}, (1)

where r1, r2 ∈ R1×n and f1, f2 ∈ R, and showed that the convex hull of its solutions is given by cuts
obtained from polyhedral lattice-free sets in R2 (i.e., 2D lattice-free cuts) with at most 4 sides. Subsequently,
others have studied extensions to the semi-infinite version of the k-row continuous group relaxation for
k ≥ 2 [14], and extensions with more structure such as the integrality of non-basic variables [27], the
nonnegativity of basic integer variables [10], [27], [31], and both the integrality of non-basic variables and
nonnegativity of basic integer variables [9] [15]. See [25] and [16] for recent surveys on this topic.

Balas [3] proposed comparing lattice-free cuts for two-row continuous group relaxations to t-branch
split cuts defined by Li and Richard [33]). Dash, Dey, and Günlük [18] [19] introduced crooked cross cuts
for general mixed integer sets, and showed that they dominate 2-branch split cuts (which they call cross
cuts). They further showed that all valid inequalities (i.e., 2D lattice free cuts) for the two-row continuous
group relaxation are crooked cross cuts, and that many other cuts in the literature for variants of the two-row
continuous group relaxation are also crooked cross cuts. In particular, cuts derived in [27], [10], [31], [9],
and [15] for variants of the set W where the variables z1 and z2 have upper and lower bounds, or where
some of the s variables also have integrality restrictions are crooked cross cuts. However, the problem of
finding violated cross and crooked cuts effectively for practical MIPs is not addressed in [18] [19], and we
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study this computational problem here. Further, cross and crooked cross cuts can be viewed as generalizing
both cuts obtained from two-row continuous group relaxations and split cuts, and we explore both these
aspects.

The Gomory mixed-integer (GMI) cut can be seen as a lattice-free cut derived from a one-row contin-
uous group relaxation (a set defined by using only one of the two equality constraints of W ) which is then
strengthened using the integrality information on the s variables. GMI cuts generated from rows of the opti-
mal simplex tableau associated with the LP relaxation of an MIP are known to be very effective in practice
and are now incorporated in most commercial MIP solvers. An important motivation for the recent interest
in the two-row continuous group relaxation is the hope that cuts obtained from pairs of tableau rows could
significantly improve the bounds yielded by GMI cuts. Taking two simplex tableau rows corresponding to
basic integer variables, and then relaxing the nonnegativity of the basic variables as well as the integrality of
the non-basic variables yields such a relaxation. In the first work on this topic, Espinoza [28] generated some
(lattice-free) cuts from k tableau rows, for k up to 10. Further, he generated multiple rounds of such cuts and
compared their effect with multiple rounds of GMI cuts. His work does not measure the relative strength
of one round of GMI cuts versus one round of all possible cuts from multiple tableau rows. Louveaux and
Poirrier [34] give a fast algorithm to separate all lattice-free cuts from two-row relaxations arising from
pairs of tableau rows. Like Espinoza, they consider a subset of all possible tableau row pairs and generate
lattice-free cuts, augment the LP relaxation with these cuts and derive a new tableau (up to five times), but
they do not lift the cuts with respect to the non-basic integral variables. Recently, Dey, Lodi, Tramontani
and Wolsey [24] experimented with cuts obtained from pairs of tableau rows. They

(i) construct the two-row continuous group relaxation from a given pair of tableau rows by relaxing the
integrality of non-basic integral variables,

(ii) find violated 2D lattice-free cuts, in particular triangle cuts of type 2, and

(iii) then lift the coefficients of the variables which were relaxed to be continuous, so as to re-introduce
integrality information.

Their computational experiments are performed on randomly generated problems, where they get a nontriv-
ial improvement over one round of GMI cuts, but their procedure has limited success on practical MIPs.
Basu, Bonami, Cornuéjols, Margot [8] also separate triangle cuts of type 2 (motivated in part by their results
in [7]), but conclude that their “family of two-row cuts is not competitive with GMI cuts in terms of gap
closed” for MIPLIB problems. Their approach also consists of steps (i)–(iii) above, and this approach has
some inherent difficulties. Firstly, it is not always clear what the best way to lift a given lattice-free cut is.
Secondly, it is hard to decide which lattice-free cut for the two-row continuous group relaxation would yield
a good cut after lifting. Therefore, although Louveaux and Poirrier [34] have shown that lattice free cuts
from such a relaxation can be separated quickly, it is still not clear if this relaxation is the best model for
obtaining cuts from pairs of tableau rows.

As discussed earlier, given a pair of tableau rows, the cuts obtained by steps (i)–(iii) above are crooked
cross cuts obtained from the tableau rows [18]. Further, if a nonbasic variable has finite upper and lower
bounds, then it is not known if all crooked cross cuts are obtainable using lifted lattice-free cuts. These facts
suggest an alternative to the approaches in [8] and [24] to finding cuts for tableau row pairs, namely finding
violated cross cuts and crooked cross cuts.We devise heuristics to find such cuts, and apply them to pairs of
rows from the optimal simplex tableau of the LP relaxation of an MIP. We demonstrate that one can obtain
bounds which are significantly stronger than the bounds obtained by only adding GMI cuts based on these
tableau rows.

2



Recently, Balas and Saxena [6] and Dash, Günlük and Lodi [23] approximately optimized over the
split closure of practical MIP instances and obtained very strong bounds on the optimal values of such
instances. As cross and crooked cross cuts generalize split cuts, we are also interested in comparing the
bounds obtained by the former class of cuts with the bounds in [6],[23], obtained using split cuts. For a
number of the MIPs in the MIPLIB 3.0 library, we are able to obtain noticeably better bounds on the integer
optimum value by generating cross cuts.

The remainder of the paper is structured as follows. In Section 2, we define the different classes of cuts
used in this paper, and in Section 3, we discuss separation models for these cut classes. In Section 4, we
describe the main heuristics we use to separate cuts from these classes. In Section 5, we use the heuristics
described in the previous sections to obtain cross cuts from pairs of tableau rows and show that these cuts
yield significantly better bounds than the GMI cuts derived from the same tableau rows. In Section 6, we
explain how we find violated cross cuts and crooked cross cuts (from all constraints). We compare bounds on
the integer optimum value obtained in this manner with bounds obtained earlier by approximately optimizing
over the split closure.

2 Preliminaries

Consider the following mixed-integer set with m rows

P = {(x, y) ∈ Zn1 × Rn2 : Ax + Gy = b, x ≥ 0, y ≥ 0}

where A,G, b are rational matrices with m rows and n1, n2, 1 columns, respectively. In general, the set of
feasible solutions for any mixed-integer linear program can be framed in this way. We denote the linear
programming (LP) relaxation of P by PLP . In the remainder of the paper π and a (along with subscripts
or superscripts) represent row vectors with n1 components, and c is a row vector with n2 components. We
next discuss disjunctive cuts for P (see Balas [2]).

Let D = ∪k∈KDk where Dk = {(x, y) ∈ Zn1×Rn2 : Akx+Gky ≤ bk} for k ∈ K. If Zn1×Rn2 ⊆ D,
then we call D a disjunction and we call each Dk an atom of the disjunction D. A linear inequality is called
a disjunctive cut for P obtained from the disjunction D if it is valid for PLP ∩ Dk for all k ∈ K. All
disjunctive cuts for P are valid for P . Note that multiple disjunctive cuts can be derived from the same
disjunction. In this paper we are interested in the following types of disjunctions.

2.1 Split disjunctions

For a fixed π ∈ Zn1 \ {0}, and γ ∈ Z, a split disjunction is denoted by S(π, γ) and defined as

S(π, γ) = S1(π, γ) ∪ S2(π, γ),

where S1(π, γ) = {(x, y) ∈ Rn1+n2 : πx ≤ γ} and S2(π, γ) = {(x, y) ∈ Rn1+n2 : πx ≥ γ + 1}. A
linear inequality is said to be a split cut [17] for P if it is valid for PLP ∩S1(π, γ) and PLP ∩S2(π, γ). We
define PS(π, γ) as the convex hull of PLP ∩ S(π, γ), and PS to be the set of points in PLP which satisfy
all split cuts for P , i.e., the split closure of P . Therefore

PS =
⋂

π∈Zn1

⋂
γ∈Z

PS(π, γ). (2)
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Assume that the following equation is satisfied by all points in P (for example, it could be obtained via
a linear combination of the constraints Ax + Gy = b):

n1∑
i=1

aixi +
n2∑
i=1

ciyi = β. (3)

Let β̂ = β − bβc and assume that β̂ 6= 0. The mixed-integer rounding (MIR) cut derived from (3) is
n1∑
i=1

(β̂baic+ min(âi, β̂))xi +
n2∑
i=1

max(ci, 0)xi ≥ β̂dβe, (4)

where âi = ai − baic. It is well known that the MIR cut (4) is a split cut for the following 1-row relaxation
of P ,

P1 = {(x, y) ∈ Zn1 × Rn2 :
n1∑
i=1

aixi +
n2∑
i=1

ciyi = β, x ≥ 0, y ≥ 0},

using the disjunction S(π, γ) where

γ = bβc and πi =
{
baic if âi ≤ β̂,

daie if âi > β̂.
(5)

Conversely, any split cut for P is an MIR cut derived from a single implied equation (3) for P along with
nonnegativity constraints on the variables. When the MIR cut is derived from a row of the simplex tableau
associated with the LP relaxation of the mixed-integer program, we call it the Gomory mixed-integer (GMI)
cut.

2.2 Cross disjunctions and cross cuts

The cross disjunction (see [18]) associated to π1, π2 ∈ Zn1 \ {0}, and γ1, γ2 ∈ Z, is given by

C(π1, π2, γ1, γ2) =
⋃

k∈{1,2,3,4}

Ck(π1, π2, γ1, γ2)

where:

C1(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≤ γ1, π2x ≤ γ2},
C2(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≤ γ1, π2x ≥ γ2 + 1},
C3(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≥ γ1 + 1, π2x ≤ γ2}, and

C4(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≥ γ1 + 1, π2x ≥ γ2 + 1}.

Cross disjunctions were first defined and studied by Li and Richard [33] who call them 2-branch split
disjunctions. A linear inequality valid for PLP ∩ Ck(π1, π2, γ1, γ2) for k = 1, . . . , 4, is called a cross
cut for P obtained from the disjunction C(π1, π2, γ1, γ2). As P ⊆ Zn1 × Rn2 ⊆ C(π1, π2, γ1, γ2), cross
cuts are valid for all points in P .

We define PC(π1, π2, γ1, γ2) as the convex hull of PLP ∩ C(π1, π2, γ1, γ2). The cross closure of P ,
denoted by PC , is the set of points in PLP that satisfy all cross cuts obtained from all possible disjunctions
for P . Clearly,

PC =
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

PC(π1, π2, γ1, γ2).
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2.3 Crooked cross disjunctions and crooked cross cuts

Similar to cross disjunctions, the crooked cross disjunction (see [18]) associated to π1, π2 ∈ Zn1 \ {0}, and
γ1, γ2 ∈ Z is given by

D(π1, π2, γ1, γ2) =
⋃

k∈{1,2,3,4}

Dk(π1, π2, γ1, γ2)

where:

D1(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≤ γ1, (π2 − π1)x ≤ γ2 − γ1},
D2(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≤ γ1, (π2 − π1)x ≥ γ2 − γ1 + 1},
D3(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≥ γ1 + 1, π2x ≤ γ2}, and

D4(π1, π2, γ1, γ2) = {(x, y) ∈ Rn1+n2 : π1x ≥ γ1 + 1, π2x ≥ γ2 + 1}.

Notice that D3 and D4 above are same as C3 and C4 described in Section 2.2 whereas D1 and D2 are
different from C1 and C2. A linear inequality valid for PLP ∩Dk(π1, π2, γ1, γ2) for k = 1, . . . , 4, is called
a crooked cross (CC ) cut for P obtained from the disjunction D(π1, π2, γ1, γ2). Clearly CC cuts are valid
for all points in P .

We define PCC(π1, π2, γ1, γ2) to be the convex hull of PLP ∩ D(π1, π2, γ1, γ2), and denote the CC
closure of P by PCC where

PCC =
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

PCC(π1, π2, γ1, γ2).

It is easy to see that the CC closure and cross closure of P are contained in its split closure. Further, it
is shown in [19] that PCC ⊆ PC , though it is not known if the containment is strict.

2.4 Breaking symmetry

We next discuss how to represent the disjunctions discussed above uniquely and how to identify “useless”
disjunctions. First note that given π1, π2 ∈ Zn1 and γ1, γ2 ∈ Z, such that S(π1, γ1) ⊂ S(π2, γ2), any split
cut generated from S(π2, γ2) can also be generated from S(π1, γ1). This basic idea easily extends to more
general disjunctions. We say that a split (or, cross, or crooked cross) disjunction “dominates” a second split
(or, cross, or crooked cross) disjunction one if the first one is strictly contained in the second.

A split disjunction S(π, γ) is dominated by another split disjunction unless components of π are co-
prime. In other words, S(π, γ) is dominated if there exists an integer k > 1 such that π/k ∈ Zn1 ; in this
case S(π/k, bγ/kc) is strictly contained in S(π, γ). Conversely, as S(π, γ) is dominated by S(π′, γ′) only
when the hyperplanes defined by π and π′ are parallel to each other, it is easy to show that S(π, γ) is not
contained in another split disjunction if the components of π are coprime. Consequently, it suffices to only
consider π that have coprime elements in (2).

It follows that for π 6= π′, S(π, γ) = S(π′, γ′) if and only π′ = −π and γ′ = −γ − 1. Notice that
exactly one of γ and −γ − 1 is nonnegative and the other one is strictly negative. Consequently, in the
definition of the split closure in (2), one can assume γ ∈ Z+. We therefore have the following observation.

Observation 2.1. A split disjunction S(π, γ) is uniquely defined by its parameters if γ ≥ 0 and, it is not
dominated by another split disjunction if and only if elements of π are coprime.

It is relatively straight forward to extend this observation to cross disjunctions as follows after noticing
the fact that C(π1, π2, γ1, γ2) = C(π2, π1, γ2, γ1).
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Observation 2.2. A cross disjunction C(π1, π2, γ1, γ2) is uniquely defined by its parameters if γ1, γ2 ≥ 0
and, [π1, γ1] is greater than [π2, γ2] in the lexicographical sense. Furthermore, it is not dominated by
another cross disjunction if elements of [π1, π2] are coprime.

When the elements of the vector [π1, π2] ∈ Z2n1 are divisible by a common integer k > 1, then it is
easy to show that D(π1, π2, γ1, γ2) is dominated by D((1/k)π1, (1/k)π2, bγ1/kc, bγ2/kc). However, due
to the asymmetry in the description of crooked cross disjunctions, D(π1, π2, γ1, γ2) = D(π′1, π

′
2, γ

′
1, γ

′
2)

only when π1 = π′1, π2 = π′2, γ1 = γ′1 and γ2 = γ′2 and consequently these disjunctions are uniquely de-
fined by the associated parameters. To see this, consider the crooked cross disjunction D([1, 0], [0, 1], 0, 0)
for n1 = 2 as shown in Figure 1. Assume that there exists π1, π2 ∈ Z2 and γ1, γ2 ∈ Z such that
D(π1, π2, γ1, γ2) = D([1, 0], [0, 1], 0, 0). It is easy to see that either π1 = [1, 0], γ1 = 0, or, π1 = [−1, 0],
γ1 = −1. Furthermore, if π1 = [1, 0] clearly π2 = [0, 1] and (π1, π2, γ1, γ2) = ([1, 0], [0, 1], 0, 0). On the
other hand, when π1 = [−1, 0] and γ1 = −1, it is possible to show that there does not exist π2, γ2 such that
D(π1, π2, γ1, γ2) = D([1, 0], [0, 1], 0, 0) holds. We therefore make the following observation.

Observation 2.3. A crooked cross disjunction D(π1, π2, γ1, γ2) is uniquely defined by its parameters. Fur-
thermore, it is not dominated by another crooked cross disjunction if elements of the extended vector [π1, π2]
are coprime.

x2 ≤ 0

x2 ≥ 1

x1 ≥ 1x1 ≤ 0

x1 ≥ 1x1 ≤ 0
x2 − x1 ≥ 1

x2 − x1 ≤ 0

Figure 1: A crooked cross disjunction defined by π1 = [1, 0], γ1 = 0 and π2 = [0, 1], γ2 = 0

Given a pair of split disjunctions S(π1, γ1) and S(π2, γ2), we get only one “natural” cross disjunction
by intersecting these two split disjunctions, which is C(π1, π2, γ1, γ2). However, we can construct eight
“natural” crooked cross disjunctions; we get different crooked cross disjunctions by switching (π1, γ1) and
(π2, γ2), and by separately multiplying these vectors by ±1.

3 Separating cross and crooked cross cuts

Given a mixed integer set P = {(x, y) ∈ Zn1 × Rn2 : Ax + Gy = b, x ≥ 0, y ≥ 0}, and a point
(x̄, ȳ) ∈ PLP , it is easy to write a linear program to separate (x̄, ȳ) from PC(π1, π2, γ1, γ2) if π1, π2 ∈ Zn1 ,
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and γ1, γ2 ∈ Z are fixed. More precisely, a violated cross cut of the form ax + cy ≥ d (here a and c are row
vectors and d is a number), if it exists, can be obtained by solving the following linear program.

Cross Cut Separation LP:

min z = ax̄ + cȳ − d (6)

subject to

a ≥ λ1A− α1π1 − β1π2, d ≤ λ1b− α1γ1 − β1γ2 (7)

a ≥ λ2A− α2π1 + β2π2, d ≤ λ2b− α2γ1 + β2(γ2 + 1) (8)

a ≥ λ3A + α3π1 − β3π2, d ≤ λ3b + α3(γ1 + 1)− β3γ2 (9)

a ≥ λ4A + α4π1 + β4π2, d ≤ λ4b + α4(γ1 + 1) + β4(γ2 + 1) (10)

c ≥ λiG ∀i ∈ {1, 2, 3, 4} (11)

βi, αi ≥ 0, ∀i ∈ {1, 2, 3, 4} (12)

λi free, ∀i ∈ {1, 2, 3, 4} (13)

a, c, d free. (14)
4∑

i=1

(‖λi‖1 + αi + βi) ≤ 1 + n1 + n2. (15)

Here λ1, . . . , λ4 are row vectors with m components, and αi and βi are real numbers.
As 0 is a feasible solution to the cross cut separation LP, the optimal value z∗ ≤ 0. Note that if

there exists a solution to the separation LP with z < 0, then the cross cut ax + cy ≥ d associated with
this solution is violated by (x̄, ȳ) and conversely, if there exists a violated cross cut, then there is a cor-
responding solution to the LP with z < 0. This implies that the optimal value z∗ = 0 if and only if
(x̄, ȳ) ∈ conv

(
PLP ∩ C(π1, π2, γ1, γ2)

)
.

Observe that the constraints (7)-(14) define a cone, and thus the objective function value of the cross cut
separation LP without the normalization constraint (15) is unbounded (when a violated cut exists). The nor-
malization constraint makes the problem bounded while preserving all valid cuts up to scalar multiplication
(see [32, 4]). Many other normalization constraints can be found in the literature, see [4]. We chose the one
above based on some preliminary experiments.

3.1 Separating split cuts

Split cuts derived from a fixed split disjunction S(π, γ) can be separated in a similar fashion by solving the
split cut separation LP which we define by replacing the constraints (7)-(10) by

a ≥ λ1A− α1π, d ≤ λ1b− α1γ

a ≥ λ2A + α2π, d ≤ λ2b + α2(γ + 1)

and the number 4 by 2 in the constraints (11)-(13) and (15).

3.2 Separating crooked cross cuts

For a given fixed crooked cross disjunction D(π1, π2, γ1, γ2), the associated separation problem can again
be formulated as a linear program. The resulting LP is identical to (6)-(14) except constraints (7) and (8),
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associated with the first two disjunctions are replaced with

a ≥ λ1A− α1π1 − β1(π2 − π1), d ≤ λ1b− α1γ1 − β1(γ2 − γ1) (16)

a ≥ λ2A− α2π1 + β2(π2 − π1), d ≤ λ2b− α2γ1 + β2(γ2 − γ1 + 1). (17)

The resulting LP produces a violated cut provided that there is one.

3.3 A bilinear integer program for separating from the (crooked) cross cut closure

If we let π1, π2, γ1, γ2 be variables in (6)-(14) we obtain a bilinear mixed integer separation problem for
cross cuts given by (6)- (15), and

π1, π2 ∈ Zn1 , γ1, γ2 ∈ Z. (18)

This separation problem will automatically select a cross disjunction from all possible cross disjunctions. A
similar bilinear separation problem can be formulated for crooked cross cuts as well. Unfortunately, in both
cases the bilinear problem is significantly harder to solve than the original separation problem as it contains
integer variables as well as non-convex constraints. Still, the same can be said of the bilinear program for
split cuts introduced in [23, 6] and these later formulations proved useful when (approximately) solved with
specialized techniques. Developing similar techniques for the bilinear mixed integer separation problem for
the cross closure or crooked cross closure is possible but it is beyond the scope of this paper.

3.4 When the separation LP fails

For a given disjunction, if the associated separation LP fails to produce a cut violated by the point p̄ = (x̄, ȳ),
useful information can be extracted from the optimal solution of the dual of the LP. For simplicity, consider
a split disjunction S(π, γ) = S1(π, γ) ∪ S2(π, γ) such that p̄ 6∈ S(π, γ) and assume that p̄ ∈ PS(π, γ). In
this case, for some 1 > µ > 0

p̄ = µp1 + (1− µ)p2 such that pi ∈ PLP ∩ Si(π, γ), for i = 1, 2.

We refer to points p1, p2 as a pair of friends of p̄. From a computational point of view, this information
can be very useful when selecting a new disjunction from among a list of candidate disjunctions to find cuts
separating the same point p̄. More precisely consider a second disjunction S(π′, γ′) not containing p̄. If both
p1, p2 obtained from the previous disjunction belong to S(π′, γ′), then clearly p̄ ∈ PS(π′, γ′), and therefore
no violated split cut can be derived from S(π′, γ′). We discuss how we exploit this idea further in Section 6.

friends

(a) (b) (c) (d)

Figure 2: Friends of a point
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The idea of friends is illustrated in Figure 2. For simplicity, this figure shows the projection onto a
two dimensional space that contains the π’s for all the split disjunctions considered. In Figure 2(a), we
depict a pair of friends of p̄ obtained from the displayed disjunction, say S(π, γ). The polygon represents
PLP , the pair of parallel vertical lines represent the hyperplanes πx = γ and πx = γ + 1 that define the
disjunction and the shaded regions represent the atoms of the disjunction intersected with PLP . The point p̄
is represented by a filled square, and the friends are represented by filled circles. In Figure 2(b), we depict a
pair of “good” friends of p̄ (defined below) obtained from a different disjunction. In Figure 2(c), we depict
a disjunction by a pair of horizontal lines, and show the two pairs of friends of p̄ from Figures 2(b),(c). One
pair does not belong to the disjunction, but the other pair does and consequently no violated split cut can
be obtained from this disjunction. Figure 2(d) shows a cross disjunction that excludes one friend from each
disjunction and therefore has the potential of producing violated cuts.

We next discuss how to generate a pair of friends from the separation LP when it does not produce
a violated cut. Remember that the normalization constraint (15) requires taking the absolute value of the
λ variables and therefore in the reformulation of the split cut separation LP below, we use two sets of
nonnegative variables. Let (x̄, ȳ) ∈ PLP denote the point to be separated.

min z = ax̄ + cȳ − d (19)

subject to

a ≥ λ1,+A− λ1,−A− α1π, d ≤ λ1,+b− λ1,−b− α1γ (20)

a ≥ λ2,+A− λ2,−A + α2π, d ≤ λ2,+b− λ2,−b + α2(γ + 1) (21)

c ≥ λi,+G− λi,+G for i = {1, 2} (22)

λi,+, λi,−, βi, αi ≥ 0, for i = {1, 2} (23)

a, c, d free. (24)
2∑

i=1

(αi + βi +
m∑

j=1

(λi,+
j + λi,−

j )) ≤1 + n1 + n2. (25)

Note that when (x̄, ȳ) ∈ PS(π, γ), the optimal solution to the separation LP has z = 0. Now consider the
dual of this LP which also has an optimal value of 0.

max (1 + n1 + n2)η (26)

subject to

Aui + Gvi ≤ ωib− 1η for i = 1, 2 (27)

−Aui −Gvi ≤ −ωib− 1η for i = 1, 2 (28)

−πu1 ≤ −ω1γ − η (29)

πu2 ≤ ω2(γ + 1)− η (30)

−u1 − u2 = x̄ (31)

−v1 − v2 = ȳ (32)

ω1 + ω2 = −1 (33)

ui, vi, ωi, η ≤ 0 for i = 1, 2 (34)

Here, for i = 1, 2, ui ∈ Rn1 , vi ∈ Rn2 , and η, ωi ∈ R.
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Let (û1, û2, v̂1, v̂2, ω̂1, ω̂2, η̂) be an optimal dual solution. As the optimal objective value of the dual
problem equals 0, we have 0 = (1 + n1 + n2)η̂ and therefore η̂ = 0. Therefore, constraints (27) and (28)
imply that Aûi + Gv̂i = ωib for i = 1, 2. First assume that ω̂1, ω̂2 < 0, and let

ūi = ûi/ω̂i and v̄i = v̂i/ω̂i

Note that (ūi, v̄i) ≥ 0 and Aūi +Gv̄i = b and therefore (ūi, v̄i) ∈ PLP for i = 1, 2. Next, notice that (x̄, ȳ)
is a convex combination of (ū1, v̄1) and (ū2, v̄2) as (31)–(34) imply that

x̄ = (−ω̂1)ū1 + (−ω̂2)ū2 and ȳ = (−ω̂1)v̄1 + (−ω̂2)v̄2. (35)

Finally, due to (29) and (30), we have (ūi, v̄i) ∈ Si(π, γ) and consequently, the points (ūi, v̄i) for i = 1, 2
give a pair of friends for (x̄, ȳ).

Next consider the case when one of ω̂1, ω̂2 is zero. Without loss of generality, let ω̂1 = −1 and ω̂2 = 0.
Let ū = −û1, v̄ = −v̂1 and du = −û2, dv = −v̂2 and notice that by (27), (28) and (34), (ū, v̄) ∈ PLP

and (du, dv) belongs to the recession cone of PLP . Also notice that πū ≤ γ and πdu ≥ 0 by (29) and
(30), respectively. Furthermore, as x̄ = ū + du by (31), and as πx̄ > γ we have πdu > 0. Therefore,
π(ū + αdu) ≥ γ + 1 for some α > 0 and points (ū, v̄) and (ū, v̄) + α(du, dv) give a pair of friends for
(x̄, ȳ).

Therefore if the split cut separation LP fails to produce a violated cut, then it is possible to produce a
pair of friends of p̄, namely, p1, p2 ∈ PLP such that p̄ = (1 − µ)p1 + µp2 for some µ with 0 < µ < 1. In
other words,

p2 = p1 +
1
µ

(p̄− p1).

Now consider a point p′ = p1 + θ(p̄ − p1) such that θ > 1/µ. If p′ ∈ PLP , then clearly p1 and p′

also form a pair of friends for p̄. Moreover, from a computational point of view, this new pair is more
useful than p1, p2 for checking if disjunctions other than S(π, γ) have the potential to yield violated cuts.
Assume p̄ 6∈ S(π′, γ′) 6= S(π, γ). If p1, p2 ∈ S(π′, γ′) (implying that p̄ ∈ PS(π′, γ′)), then p′ ∈ S(π′, γ′).
Consequently, it is best to find the point p̄2 = p1 + θ(p̄ − p1) ∈ PLP such that θ is maximized. Similarly,
one can find the point p̄1 = p2 + θ(p̄− p2) ∈ PLP such that θ is maximized. We call the new pair of friends
p̄1 and p̄2 good friends of p̄; see Figure 2(b).

It is possible to extend these ideas to separation LPs other than the split cut separation LP but the analysis
is more tedious and as we discuss later in Section 6, we implemented this idea only for split cut separation.

4 Separation Heuristics

In this section we describe our separation heuristics to find violated cross cuts. Solving the separation prob-
lem exactly for split cuts is hard for practical instances [6, 23]. Therefore, we expect that finding violated
cross or crooked cross cuts will also be very hard. For computational tractability, we do not attempt to
generate a cross disjunction from scratch. Our simplest heuristic starts with a pair of given split disjunctions
and just solves the cross cut separation LP to find a violated cut. Other heuristics start with a given split
disjunction and then generate a second disjunction that leads to a violated cross cut. To obtain a list of
potentially useful split disjunctions that we can use in these heuristics, we first generate violated split cuts
and record the associated disjunctions. Assuming one of the disjunctions is fixed, we next discuss two ways
of generating violated cross cuts.
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In a recent paper, Dash and Goycoolea [20] describe a fast heuristic that finds violated split cuts using
simplex tableau rows associated with feasible as well as infeasible bases. Given a point to be separated, their
heuristic constructs a (possibly infeasible) basis and selects violated rank-1 GMI cuts from the corresponding
tableau rows which, as discussed earlier, are split cuts. Their computational results show this approach
produces cuts that give a reasonably good approximation of the split closure for problems in MIPLIB 3.0.
Subsequent papers by Fischetti and Salvagnin [30] and Bonami [12] confirm this observation and give faster
heuristics to find such cuts. Consequently, we assume that one can produce good split cuts for problems
in MIPLIB 3.0 fairly quickly. The idea that violated split cuts and the associated split disjunctions can be
found quickly is important to both our heuristics.

In the first heuristic, we collect a number of split cuts associated with a single split disjunction. In other
words, we start off with a relaxation Q of PS(π, γ) for a fixed π ∈ Zn1 , and γ ∈ Z. We then simply use the
code of Dash and Goycoolea to generate rank-1 GMI cuts for Q. Clearly the generated cuts have split rank
at most 2. We show below that they are also cross cuts. In the second heuristic, we set up an MIP to find a
subclass of violated split cuts for PS(π, γ).

4.1 Rank 2 split cuts that are also cross cuts

We next describe a special family of rank-2 split cuts which are also cross cuts. As we discuss later, it is
easy to show that the 2-step MIR inequalities [22] belong to this family of cuts. Note that no inclusion
relationship between rank-2 split cuts and cross cuts is known, and in particular it is known that some cross
cuts have unbounded split rank. For fixed π ∈ Zn1 and γ ∈ Z, remember that PS(π, γ) denotes the points
in PLP that satisfy all split cuts generated from the split disjunction S(π, γ). We next present a basic
observation which we later use to generate cross cuts.

Proposition 4.1. Let π1 ∈ Zn1 and γ1 ∈ Z. Any split cut for PS(π1, γ1) is a cross cut for P . Furthermore,
if a split cut for PS(π1, γ1) is obtained from the split disjunction S(π2, γ2), then the same cut is a cross cut
for P obtained from the cross disjunction C(π1, π2, γ1, γ2).

Proof. Let ax + cy ≥ d be a split cut for PS(π1, γ1) obtained from the split disjunction S(π2, γ2). We
will call ax + cy ≥ d simply “the cut” in the rest of the proof. By definition, the cut is valid for both
PS(π1, γ1) ∩ S1(π2, γ2) and PS(π1, γ1) ∩ S2(π2, γ2) where S1(π2, γ2) and S2(π2, γ2) are the two half-
spaces that define the disjunction S(π2, γ2) as defined in Section 2.1. In addition, note that

PLP ∩ S1(π1, γ1), PLP ∩ S2(π1, γ1) ⊆ PS(π1, γ1)

as PS(π1, γ1) is the convex hull of the union of these two sets.
Clearly, as the cut is valid for PS(π1, γ1) ∩ S1(π2, γ2), it is valid for its subsets

PLP ∩ S1(π1, γ1) ∩ S1(π2, γ2) and PLP ∩ S2(π1, γ1) ∩ S1(π2, γ2).

Similarly, the cut is also valid for

PLP ∩ S1(π1, γ1) ∩ S2(π2, γ2) and PLP ∩ S2(π1, γ1) ∩ S2(π2, γ2).

To conclude the proof, it is sufficient to observe that

Si(π1, γ1) ∩ Sj(π2, γ2) = C2i+j−2(π1, π2, γ1, γ2)

for i, j ∈ {1, 2}, which shows that the cut is valid for PLP ∩ Ck(π1, π2, γ1, γ2) for k ∈ {1, 2, 3, 4}.
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rank−2 split cut =
cross cutsplit cut

Figure 3: Rank-2 split cuts which are also cross cuts

In Figure 3 we show an example demonstrating how Proposition 4.1 works. The first picture shows
PLP ∩ S1(π1, γ1) and PLP ∩ S2(π1, γ1), and the second picture shows their convex hull PS(π1, γ1). The
last picture shows a split cut for PS(π1, γ1) which is also a cross cut.

We next describe the so-called 2-step MIR inequalities and show that they are cross cuts. Dash and
Günlük [22] study the following simple mixed-integer set

Q =
{
y ∈ R, x1, x2 ∈ Z : y + αx1 + x2 ≥ β, y, x1 ≥ 0

}
.

where β, α ∈ R and 1 > β > α > 0, and show that(
1/(β − αbβ/αc)

)
y + x1 + dβ/αex2 ≥ dβ/αe (36)

is valid (and facet defining) for Q provided that 1/α ≥ dβ/αe > β/α. The validity proof in [22] essentially
shows that the 2-step MIR inequality (36) is an MIR inequality (or, split cut) for the set Q′ ⊆ Q obtained by
strengthening the original set with the simple MIR inequality

y + αx1 + βx2 ≥ β,

obtained using the disjunction {x : x2 ≤ 0} ∪ {x : x2 ≥ 1}. As inequality (36) is a split cut for Q′ ⊇
QS([0, 1], 0), by Proposition 4.1, it is a cross cut for the original set Q.

4.2 An MIP based heuristic when one of the disjunctions is fixed

As discussed in Section 2.1, given (x̄, ȳ) ∈ PLP , finding a violated split cut is equivalent to finding an
implied equation of the form (3), such that the associated MIR cut (4) is violated by (x̄, ȳ). This is a difficult
computational task. Notice that when β̂ 6= 0, the MIR cut (4) can also be rewritten as

n1∑
i=1

(baic+ min(
âi

β̂
, 1))xi +

1

β̂

n2∑
i=1

max(ci, 0)yi ≥ dβe.

Therefore, for any positive ε ≤ β̂, the following approximate MIR cut

n1∑
i=1

daiexi +
1
ε

n2∑
i=1

max(ci, 0)yi ≥ dβe, (37)

is a weakening of (4) and hence it is also a split cut obtained from the disjunction (5). Also notice that
inequality (37) becomes the so-called pro-CG cut (see [13]) if all ci are non-positive. It is possible to write
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an MIP model for separating this approximate MIR cut and therefore separating approximate MIR cuts is
easier than separating actual MIR cuts. Clearly, the existence of a violated MIR cut does not guarantee
the existence of a violated approximated MIR cut. However, the MIP model would always return a base
inequality from which an MIR cut can be derived. Additionally, the associated split disjunction can be used
to obtain other split cuts using a separation LP (we note that this is the underlying idea used in [6] to separate
split cuts).

We next combine the idea of separating approximate MIR cuts with Proposition 4.1 to obtain a separation
MIP for cross cuts. In this model ε ∈ (0, 1) is a given constant and a, ã, c̃ are unknown row vectors with
n1, n1 and n2 components respectively.

min z = ãx̄ +
1
ε
c̃ȳ − (h + 1) (38)

subject to

a ≥ λ1A + α1π, h + ε ≤ λ1b + α1γ (39)

a ≥ λ2A− α2π, h + ε ≤ λ2b− α2(γ + 1) (40)

c̃ ≥ λiG for i = 1, 2 c̃ ≥ 0 (41)

αi ≥ 0 for i = 1, 2 (42)

ã ≥ a (43)

ã ∈ Zn1 , h ∈ Z (44)

ã, a, h, λ1, λ2 free. (45)

Consider a feasible solution for this model. Let c ∈ Rn2 be a vector defined by c = max{λ1G, λ2G} with
the maximum being taken componentwise. Then ax + cy ≥ h + ε is a valid inequality for PLP ∩ S1(π, γ)
and also for PLP ∩ S2(π, γ). Further,

ãx +
1
ε
c̃y ≥ h + 1 (46)

is an approximate MIR cut derived from ax + cy ≥ h + ε using the disjunction, say S(π′, γ′), in (5) with
β standing for h + ε. Therefore (46) is a cross cut for the cross disjunction C(π, π′, γ, γ′). Additionally,
even if the objective of this model is nonpositive we can still recover S(π′, γ′) and use the separation LP for
C(π, π′, γ, γ′) to obtain additional cross cuts.

5 Cross cuts from two tableau rows

In this section we report on our computational experiments with cross cuts that can be obtained from two-
row relaxations of the initial MIP formulation. We do not consider crooked cross cuts as our preliminary
computational experiments suggest that the additional gap closed by crooked cross cuts over cross cuts is
not significant; we quantify this more precisely in Section 6. Our aim here is to establish that cuts obtained
from two row relaxations are indeed stronger than cuts that are obtained from one row relaxations. On the
MIPLIB 3.0 problem set we observe that cuts from two rows increase the lower bound significantly.

5.1 One-row vs two-row relaxations

Given a mixed-integer program of the form

min{cT x : Ax = b, l ≤ x ≤ u, xk ∈ Z ∀k ∈ S},
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where S contains the indices of the integer variables, it is possible to obtain a reformulation by using an
optimal basis of the LP-relaxation:

min{cT x : xB + A−1
B ANxN = A−1

B b, l ≤ x ≤ u, xk ∈ Z ∀k ∈ S},

where xB and xN denote the basic and non-basic variables and AB and AN denote the submatrix of A
corresponding to the the basic and non-basic variables, respectively. Using this reformulation, one can
define one-row relaxations of the feasible region:

Pi = {x : xBi +
∑
k∈N

āikxk = b̄i, l ≤ x ≤ u, xk ∈ Z ∀k ∈ S},

one for each basic, integral variable xBi (i ∈ {1, . . . ,m}, Bi ∈ S) where b̄i is fractional.
It is well-known that the Gomory mixed-integer (GMI) cut derived from the ith row of the simplex

tableau is a valid inequality for Pi. Following Balas et. al. [5], we refer to the step of generating one GMI
cut from each Pi and simultaneously adding all violated ones as a round of GMI cuts. In [5], the authors
demonstrate that adding all violated GMI cuts is more effective than adding a fraction of the violated cuts.

It has been computationally established for a number of practical MIP instances that adding one round
of GMI cuts has the same effect as adding all possible inequalities that are valid for some Pi. Subsequent to
the work in [21] and [30] comparing the effectiveness of one round of GMI cuts to different classes of ”one-
row” cuts, Fukasawa and Goycoolea [31] showed that for most MIPLIB 3.0 problems adding all (knapsack)
cuts based on the relaxations Pi does not yield improved bounds over that obtained by adding one round of
GMI cuts. Thus, they essentially show that no additional cuts from individual rows of an optimal simplex
tableau are useful over and above GMI cuts from these rows for some practical problems.

Therefore, a natural question is whether one can obtain useful valid inequalities by using pairs of simplex
tableau rows that give relaxations of the form:

Pij = {x : xBi +
∑
k∈N

āikxk = b̄i, xBj +
∑
k∈N

ājkxk = b̄j , l ≤ x ≤ u, xk ∈ Z ∀k ∈ S},

where i, j ∈ {1, . . . ,m}, Bi, Bj ∈ S, and both b̄i and b̄j are fractional. Clearly Pij = Pi ∩ Pj . In this
section we do not attempt to generate all valid inequalities for Pij but instead, restrict our attention to those
that can be generated as cross cuts.

5.2 Computational approach and separation

Given a mixed-integer program, our first step is to relax integrality and solve the LP relaxation to obtain
an optimal solution and basis. Using this optimal solution, we first identify the rows of the tableau that
lead to violated GMI cuts (i.e., the rows i such that Bi ∈ S and b̄i is fractional). To avoid numerical
difficulties, we ignore tableau rows which have max{|aik|/|ail| : k, l ∈ N} > 109. We then construct
the two-row relaxations Pij for pairs of tableau rows such that (i) the GMI cuts derived from both Pi and
Pj are violated by the initial LP solution, (ii) the defining equations for Pi and Pj have common non-basic
variables with non-zero coefficients, and (iii) i > j (to avoid repetition). Notice that we ignore all pairs
i, j where the associated tableau rows do not have any variables in common. The motivation for this is that
both split cuts from such Pij are implied by split cuts (and cross cuts) from Pi and Pj , and the experimental
work by Fukasawa and Goycoolea [31] suggests that cuts in addition to the GMI cuts from individual rows
are unlikely to be useful. In our experiments, we observe that the number of pairs to be considered often
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drops significantly leading to much faster computation times, without a noticeable decrease in final bounds
obtained.

The following is a summary of our cross cut separation algorithm:

Cross cut separation from pairs of tableau rows:

Solve PLP and for selected tableau rows, construct Pij from all row pairs.
Add one round of GMI cuts to PLP to obtain P̄ , resolve, and let x̄ be its solution.
Repeat

for all Pij

Generate a list of cross cuts for Pij ;
if ( x̄ violates some of the cuts) then

update P̄ , x̄ by adding violated cuts to P̄ ;
exit the for loop;

end if
end for

Until (no violated cuts are found by the for loop above)

It is clear that we may consider a relaxation Pij for some fixed i and j many times in order to generate cuts,
which differs from the approach described in [24] and [8]; we also do not restrict the number of cuts added.

For a given Pij , we generate a list of cross cuts using the ideas presented in Section 4.1. Let P i
ij be

obtained by augmenting Pij by the GMI cut derived from Pi and define P j
ij similarly. After creating the sets

P i
ij and P j

ij we invoke the rank-1 GMI heuristic of Dash and Goycoolea [20] for each of them, in particular,
by invoking the FEAS, SPARSE and RANDOM heuristics; see [20, Table 4]. By the discussion in Section 4.1,
the resulting rank-2 split cuts are also cross cuts for Pij . We refer to this separation method as Cross.def.
In an alternate implementation, we invoke the cross cut separation LP in Section 3 with the input problem
being Pij , and the cross disjunction being defined by the split disjunctions associated with the GMI cuts
from Pi and Pj . This separation method is called Cross.LP1.

Note that when we obtain a rank-1 GMI cut for P i
ij , the associated split disjunction (say S′

i) can be
different from the split disjunction associated with the GMI cut from Pi (say Si) or from Pj (say Sj).
Further, this rank-1 GMI cut is a cross cut obtained from the pair of disjunctions Si and S′

i. We save S′
i in

a list associated with Si and in a separation method called Cross.LP2, we solve the cross cut separation LP
for Pij with the input cross disjunction defined by the split disjunctions Si and S′

i. The motivation for doing
so is that not all cross cuts from a cross disjunction can be obtained as rank-2 split cuts. It is well-known
that a type 1 triangle cut is a cross cut but has infinite split rank.

Our final way of obtaining cross cuts from Pij is via the MIP based heuristic described in Section 4.2
which starts with a fixed disjunction and finds a second one to generate a violated cut. We refer to the
associated algorithm as Cross.IP.

We also separate split cuts from the same collection of two-row relaxations Pij . Our separation proce-
dure for split cuts is same as the one we use for cross cuts except the word “cross” in the fifth line is replaced
by the word “split”, and we apply the rank-1 GMI heuristic above to Pij . We call this algorithm Split.sep.
As we discuss later, we observe that split cuts from two-row relaxations yield significantly better bounds
than one round of GMI cuts. Clearly the bound after adding cross cuts should be better than that from split
cuts and this is indeed the case, though not by a very large amount.
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5.3 Computational Environment

Our computational results are obtained on a 2.93 GHz Intel Xeon machine running the Linux operating
system. We solve linear programs and auxiliary integer programs (in Cross.IP) with IBM ILOG CPLEX
12.2. We do not report our computing times for the algorithms Cross.LP1, Cross.LP2, and Cross.IP; our
implementation of these routines is not competitive with the code for Split.sep and Cross.def.

5.4 Computational Experiments

In Table 1, we discuss the integrality gap closed with two combinations of algorithms for 54 out of 65
instances from MIPLIB 3.0. The discarded instances have no integrality gap after GMI cuts are added, or
no integrality gap is closed after extensive generation of split cuts as reported in [6, 23]); they are dsbmip,
enigma, noswot, air03, 10teams, mod010, markshare1, markshare2, pk1, stein27, and stein45. Further,
we replace free variables in any remaining instance with the difference of two nonnegative variables. The
problem name is given in the column titled “problem”. The next two columns give the average gap closed
by one round of GMI cuts, and the number of violated GMI cuts. In the subsequent two columns we give
the gap closed by invoking Cross.def, and the number of cuts added. We only invoke Cross.def after first
invoking Split.sep. In the last two columns (under the heading ALL), we give the gap closed and cuts
added by invoking all of the separation algorithms discussed above. We invoke them in the following order:
Split.sep, Cross.def, Cross.LP2, Cross.LP1, Cross.IP.

Note that for many problems we obtain a significant increase over the gap closed by one round of GMI
cuts by adding a small number (about the same order of magnitude as the number of GMI cuts) of cuts
generated from two tableau rows with Cross.def. The numbers for the gesa problems, for example, are
especially striking, as the gap closed increases by more than 30% with the addition of a small number of
cuts. The additional gap closed as we move from Cross.def to ALL is not as striking, as can be seen in the
averages in Table 2.

In Table 2, we compare the average gap closed (in the second column) for the 54 MIPLIB 3.0 problems
in our testbed via the different cuts and separation methods (in the first column). In the fourth row, we
show that the gap closed with Cross.def is 37.10% as opposed to 25.80% with GMI cuts alone across all
problems, and is thus a nontrivial improvement. However, in the third row, we see that split cuts from
pairs of tableau rows provide a good amount of this improvement. From the fourth row onwards we add
separation methods one at a time on top of the previous ones to measure their marginal impact. The fifth
row indicates whether the disjunctions from which we obtain our cross cuts as rank-2 split cuts in Cross.def
can yield much stronger cross cuts. Clearly this is not the case as the gap closed increases from 37.10% to
37.63%. This is not shocking as the relaxations Pij have only two rows, and we would expect a few cuts
to give a good approximation to the integer hull. Observe that the gap closed by Cross.LP1 is much less
than Cross.def (and Split.sep); this means that the disjunctions found by Cross.def are useful, and the the
disjunctions associated with the first round of GMI cuts are not enough to improve the bounds a lot. On the
other hand, these disjunctions improve the gap closed by Cross.def + Cross.LP2 to 38.05% in the sixth row.
Finally, Cross.IP obtains additional useful disjunction and improve the gap closed to 38.39%.

We note that the average gap closed for 53 out of these 54 problems considered in Louveaux and Poirrier
[34] (they have numerical difficulties with dano3mip) is 32.38%. For these problems, the respective values
for GMI + Split.sep and Cross.Def are 36.44% and 37.80%. However, the experiments are not comparable,
as Louveaux and Poirrier do not fix the tableau but update it up to five times, and also consider only a subset
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GMI Cross.def ALL GMI Cross.def ALL
problem % gap cuts % gap cuts % gap cuts problem % gap cuts % gap cuts % gap cuts
air04 6.71 292 12.71 195 12.71 195 misc03 7.24 18 10.34 12 11.55 17
air05 4.64 224 8.80 154 8.80 154 misc06 29.40 13 30.77 2 31.31 11
arki001 29.26 56 46.77 99 55.13 580 misc07 0.72 26 0.72 12 0.72 12
bell3a 60.43 32 67.15 3 67.15 3 mitre 80.76 796 88.64 115 88.64 115
bell5 14.53 25 17.41 4 17.78 12 mkc 1.21 70 23.72 241 27.11 822
blend2 16.36 6 18.07 23 21.62 58 mod008 20.89 5 61.61 58 65.56 106
cap6000 41.65 2 62.73 28 63.76 144 mod011 17.11 16 17.20 6 18.73 73
dano3mip 0.02 97 0.03 15 0.03 15 modglob 15.10 30 35.33 82 35.44 105
danoint 1.74 52 1.74 12 1.74 97 nw04 62.27 6 68.44 6 68.92 7
dcmulti 43.08 49 52.21 43 54.62 83 p0033 54.60 6 64.91 19 66.80 49
egout 55.93 40 58.45 7 58.85 9 p0201 18.24 20 24.42 7 24.42 14
fast0507 1.68 306 1.89 3 1.89 4 p0282 3.70 26 33.54 213 40.68 533
fiber 65.02 41 76.49 27 78.87 226 p0548 39.46 47 68.70 461 73.49 3971
fixnet6 10.87 60 11.51 32 11.71 57 p2756 0.46 36 0.54 13 2.63 81
flugpl 11.74 10 13.70 9 14.10 13 pp08a 52.88 51 68.84 44 70.28 57
gen 61.62 43 79.10 22 79.10 22 pp08aCUTS 30.07 41 41.75 48 42.47 64
gesa2 27.19 58 64.32 42 65.00 68 qiu 1.99 36 1.99 1 2.60 46
gesa2 o 30.21 73 63.10 42 63.20 69 qnet1 12.73 49 28.92 142 29.40 321
gesa3 45.87 85 82.69 36 83.01 44 qnet1 o 30.71 11 34.43 61 36.49 284
gesa3 o 50.57 100 85.25 30 85.32 35 rentacar 29.05 16 29.05 0 29.15 2
gt2 67.72 11 69.90 47 77.09 3314 rgn 4.49 16 24.67 45 27.92 80
harp2 8.69 10 13.70 68 14.78 628 rout 0.32 29 4.01 169 4.03 504
khb05250 74.91 19 88.06 18 88.56 20 set1ch 38.11 138 60.86 218 60.86 218
l152lav 1.55 51 26.08 122 26.09 124 seymour 8.39 598 10.11 12 10.11 12
lseu 48.42 12 57.23 34 59.81 321 swath 17.66 45 33.38 10 33.38 10
mas74 6.67 12 9.46 101 9.82 156 vpm1 9.45 15 11.15 6 11.15 6
mas76 6.42 11 10.26 68 11.83 476 vpm2 12.58 30 26.50 51 26.63 64

Table 1: gap closed with two row cuts on MIPLIB problems

of all tableau row pairs.
In Table 3, we give the average gap closed (in the second column) and geometric means of computations

times in the third column for different variants of Cross.def. The time for an algorithm is the sum of the time
to find cuts and the time to reoptimize after adding cuts. First notice that Split.sep takes about 100 times the
computing time of a round of GMI cuts. For only about 1.34% extra gap closed, Cross.def takes more than
twice the time as Split.sep.

It is natural to ask whether we can obtain the gap closed by Cross.def by choosing only a subset of GMI
cuts, and generating cuts from associated pairs of rows, or by carefully choosing pairs of rows. After all,
in Cross.def, often many pairs of rows have to be examined before cuts are found. We attempt to answer
this question by the computational experiments summarized in Table 4. In all algorithms considered in
this experiment (except in Cross.def.nosort), each time we start the for loop in Section 5.2, we first sort
the GMI cuts in decreasing order of dual values assigned to these cuts in the previous (strengthened) LP
relaxation. Our purpose here is to distinguish between more and less important GMI cuts. For example,
Cross.def x 30% means that we generate cross cuts from pairs of rows associated with the top 30% of
GMI cuts only. The next two rows have a similar meaning. In addition, in the for loop, the sets Pij are
considered in decreasing order of sums of dual values for the associated GMI cuts. For example, the first set
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Cut Separation Method gap closed
GMI 25.80
GMI + Cross.LP1 32.70
GMI + Split.sep 35.76
Previous + Cross.def 37.10
Previous + Cross.LP2 37.63
Previous + Cross.LP1 38.05
Previous + Cross.IP 38.39

Table 2: Comparison of different algorithms

Cut Separation Method gap closed time
GMI 25.80 0.02
Split.sep 35.76 1.90
Cross.def 37.10 4.26

Table 3: Comparison of different methods

Pij considered for cross cut separation would be the set associated with the two rows that give the two “most
important” GMI cuts (provided that they have common non-basic variables). The time taken by Cross.def x
30% is only 10 times the time to compute GMI cuts, but it does not close too much more gap. As more pairs
of rows are considered for cross cut separation, more of the gap is closed but at a cost of higher computation
time. Cross.def.nosort means we do not sort the GMI cuts by dual values, and simply consider them in the
order they appear in the tableau and a pair (i1, j1) < (i2, j2) if the first pair is lexicographically less then
the second one. It does seem to take noticeably more time than Cross.def to close essentially the same gap
(this relationship also holds between the sorted and non-sorted variants of Cross.def x 30% etc.). Thus our
heuristic to order pairs seems useful, but our heuristic to drop pairs altogether seems less so. Finally, we can
get the same gap as Cross.def, but in less time if we only consider pairs of tableau rows which have common
variables that are basic in the current relaxation; this is given in Cross.def.basici.

Cut Separation Method gap closed time
Cross.def 37.10 4.26
Cross.def x 30% 29.47 0.11
Cross.def x 50% 32.31 0.47
Cross.def x 70% 34.56 1.57
Cross.def.nosort 36.81 6.08
Cross.def.basici 36.94 3.65

Table 4: Comparison of different variants of Cross.def

6 Bounds on cross and crooked cross cut closures

In this section we report on our computational experiments with cross and crooked cross cuts that are ob-
tained using the full formulation of a MIP as opposed to using only two-row relaxations. Our aim in this
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section is to establish that cross and crooked cross cuts give better lower bounds than split cuts on practical
problem instances, namely on the MIPLIB 3.0 problem set. In earlier experiments with split cuts, Balas
and Saxena [6] and Dash, Günlük, and Lodi [23] present separation models that, at least in principle, can
optimize over the split closure to any degree of precision. We do not propose any such mechanism for the
cross or crooked cross cut closure; instead, we use a collection of heuristics to obtain effective cuts.

We present two computational experiments below. The first experiment compares the effect of split cuts
with the effect of cross and crooked cross cuts for a given list of split disjunctions. To this end, we construct
a (short) list of split disjunctions and compare the lower bound obtained after adding all possible split cuts
from this list with the lower bound obtained after adding all possible cross and crooked cross cuts generated
using pairs of split disjunctions from the same list. In the second experiment, we use cross cut heuristics
which generate new cross disjunctions. With our heuristics, we are able to obtain better bounds than the
best known split closure bounds for a number of problem instances suggesting that cross cuts are potentially
valuable for solving mixed-integer programs.

6.1 Experiments with GMI disjunctions

In our first experiment, we obtain all violated GMI cuts (which are also split cuts) from the optimal simplex
tableau together with the split disjunctions associated with them, which we refer to as the GMI disjunctions.
(As in the previous section, we ingore tableau rows where the ratio of two coefficients is too large.) Let
these disjunctions be S(πi, γi) for i ∈ I . Let zS be the lower bound obtained after adding all split cuts from
the GMI disjunctions. We compare the associated integrality gap closed with the gap closed after adding the
GMI cuts, and with the gap closed by all cross cuts that can be derived from pairs of GMI disjunctions.

To compute zS , we first solve PLP , add all violated GMI cuts, and obtain the collection of disjunctions
I associated with these cuts. We then repeatedly execute the following pseudocode until no more violated
split cuts can be found.

Split cut separation from GMI disjunctions:
for i ∈ I

Solve the split cut separation LP for S(πi, γi);
if (a violated cut is found) then add it to the cut pool;
if (the cut pool contains 10 cuts or more) then exit the for loop;

end for
add all cuts in the cut pool to the current LP relaxation and resolve;

Similarly, let zC denote the lower bound obtained after adding all cross cuts obtained from pairs of
GMI disjunctions. We compute zC by repeatedly executing the following pseudocode until no more violated
cuts can be found.

Cross cut separation from GMI disjunctions:
Separate all split cuts from GMI disjunctions;
for i, j ∈ I

Solve the cross cut separation LP for C(πi, πj , γi, γj);
if (a violated cut is found) then add it to the cut pool;
if (the cut pool contains 5 cuts or more) then exit the for loop;

end for
add all cuts in the cut pool to the current LP relaxation and resolve;
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Cuts separated % gap closed
GMI cuts 26.25
Split cuts from GMI disjunctions 41.42
Cross cuts from GMI disjunctions 43.96
Crooked cross cuts from GMI disjunctions 45.15
Best split closure bound 79.89

Table 5: Experiments with GMI disjunctions on MIPLIB problems

Notice that we start separating cross cuts only after all violated split cuts are added to the formulation.
Also note that once some violated cross cuts are found, we again look for violated split cuts before we
proceed with cross cut separation. In other words, to speed up the computation, we go back to finding
violated split cuts whenever a small number of cross cuts is found. Finally, we find all possible crooked
cross cuts from every pair of GMI disjunctions, using a code similar to the one above for cross cuts, except
that we have to consider eight different crooked cross disjunctions (and associated LPs) for any pair of split
disjunctions. We use the ideas described in Section 3.4 to avoid solving LPs whenever possible and thus
speed up computation. We next briefly describe how, without solving the LP, we decide that the separation
LP for a class of cuts cannot yield a violated cut.

Consider the split cut separation algorithm described above and notice that a point p̄ violates a split cut
from the disjunction S(πi, γi) only if p̄ 6∈ S(πi, γi). In other words, if the point satisfies the disjunction,
then it satisfies all the split cuts that can be generated using that disjunction and therefore there is no need
to solve the split cut separation LP. Furthermore, as discussed in Section 3.4, for each disjunction S(πi, γi)
for which we have solved the split cut separation LP and failed to find a violated cut, we obtain a pair
(qi

1, q
i
2) of (good) friends of p̄. When we consider a subsequent split disjunctions to separate p̄, we know

that only disjunctions that do not contain p̄ and at least one of qi
1, q

i
2 have the potential to produce violated

cuts. Similarly, when we separate cross cuts (and this happens only after all split cut separation LPs fail
to produce a violated cut) we use the list of friends generated by the split cut separation LPs. We solve a
separation LP for the cross disjunction C(πi, πj , γi, γj) for some i, j ∈ I only when it does not contain
p̄ and it does not contain at least one of qk

1 and qk
2 for each pair of friends (qk

1 , qk
2 ) for k ∈ I . With this

idea we are able to check a large number of cross disjunctions for the potential to generate violated cuts in
reasonable time. We use the same idea for testing crooked cross disjunctions.

In Table 5 we report on the average integrality gap closed in this fashion for 53 out of the 65 MIPLIB
3.0 problems. We consider the same 54 instances discussed in the previous section, but discard fast0507
here (and in all other experiments in this section) as we have numerical difficulties with this instance. The
rows of the table from the second one onwards give the gap closed by, respectively, the first round of GMI
cuts, split cuts from the GMI disjunctions, cross cuts from the GMI disjunctions, crooked cross cuts, and the
best known split closure bounds from [6, 23, 20].

We make a few immediate observations based on Table 5. The list of disjunctions associated with the
first round of GMI cuts does not yield a good approximation of the split closure on the average. However,
separating additional split cuts from these disjunctions can significantly improve the bound obtained by
one round of GMI cuts. Cross cuts based on pairs of these disjunctions do yield a non-trivial yet not very
substantial improvement in the bound from split cuts. The improvement in bound due to crooked cross cuts
is a bit misleading as all the improvement is due to the extra gap closed for two problems, namely gesa2
(about 29%) and modglob (about 16%). Without these two instances, the extra gap closed is very small on
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the average, and we therefore do not try to separate crooked cross cuts in subsequent experiments.
The bound obtained with cross cuts is still very far from the best split closure bound. Note that this also

means that we cannot conclude that the cross cuts from these disjunctions have split rank larger than 1 with
respect to P (of course, we would need additional disjunctions to derive these cross cuts as split cuts for P ).

6.2 Experiments with cross cuts from heuristic disjunctions

In this section we describe our efforts to exceed the best known elementary split closure bounds using cross
cuts. As reported by various authors (see [6, 23, 20]), the elementary split closure provides very good bounds
for MIPs in the MIPLIB 3.0 library. Therefore, it is desirable to start with a collection of split cuts (and the
associated disjunctions) that give a reasonable approximation of the split closure bounds and then generate
cross cuts. To this end, we use a slightly modified version of the code of Dash and Goycoolea [20] that
generates rank-1 split cuts by heuristically generating (possibly infeasible) bases of the LP relaxation, and
the associated tableau rows and GMI cuts. We use their default heuristic DEF, and we modify their code
to store the split disjunctions whenever a violated cut is found. We will call this heuristic the DG heuristic
from now on. In addition, to control computation time, we terminate the DG heuristic when the number of
generated cuts (and therefore disjunctions) exceeds 1000.

In [20], the split cuts generated by the heuristic DEF close 61.90% of the integrality gap for the 53
MIPLIB 3.0 problems presented in Table 5; if we terminate the DG heuristic after 1000 cuts, we get a
weaker bound in some cases. Compared to the best known gap closed by all split cuts, which is 79.89%,
this is a reasonable number as it sometimes takes many hours to obtain the split closure bounds, see [6].

Let {S(πi, γi) : for i ∈ Ī} be the list of split disjunctions associated with the split cuts returned by
the DG heuristic; this collection has up to 1000 disjunctions. We then run the split cut separation algorithm
described in Section 6.1 with this list of disjunctions instead of the GMI disjunctions only. This gives
a reasonably good bound compared with the split closure bounds. While generating split cuts, we keep
track of which cuts are generated using which disjunction. More precisely, for disjunction S(πi, γi) for
i ∈ Ī , we create a list of cuts Ki generated using that disjunction. Unlike our experiments with the
GMI disjunctions discussed earlier, we do not proceed to the cross cut separation via LPs right away with
pairs of split disjunctions associated with Ī . Instead, we proceed with the separation heuristics described
in Sections 4.1 and 4.2. To find rank-2 split cuts that are also cross cuts we use the following heuristic
repeatedly until no cuts can be found.

Cross cut separation using rank-2 split cuts:
for i ∈ Ī

Obtain ApxPS(πi, γi) by adding Ki to PLP ;
Use the DG heuristic to find violated rank-1 split cuts for ApxPS(πi, γi);
if (violated cuts are found) then

add the associated disjunctions to Di;
add the cuts to the current LP relaxation and resolve;
exit the for loop;

end if
end for

When separating cross cuts using this heuristic, notice that we also build a list of split disjunctions
Di associated with each input disjunction S(πi, γi) for i ∈ Ī . Remember that any violated split cut for
ApxPS(πi, γi) generated using the disjunction S(π, γ) ∈ Di is also a cross cut for P derived from the cross
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disjunction C(πi, π, γi, γ). Therefore the pair of disjunctions S(πi, γi) and S(π, γ) is a “good pair” for
separating cross cuts. We implicitly save this pair and solve an associated cross cut separation LP later on
as described below in order to get cross cuts not obtainable in line 3 of the heuristic above (recall that some
cross cuts have infinite split rank).

Cross cut separation using “good pairs” of disjunctions:
for i ∈ Ī

for S(π, γ) ∈ Di

Solve the cross cut separation LP for C(πi, π, γi, γ);
if (a violated cut is found) then add it to the cut pool;
if (the cut pool contains 5 cuts or more) then exit the outer for loop;

end for
end for
add all cuts in the cut pool to the current LP relaxation and resolve;

We use our MIP based separation heuristic to get cross cuts as follows.

Cross cut separation using MIP-based heuristic:
for i ∈ Ī

Use the MIP heuristic to find the most violated approximate GMI cut for PS(πi, γi);
Obtain the associated split disjunction S(π′, γ′);
Solve the cross cut separation LP with the cross disjunction C(πi, π′, γi, γ′) as input;
if (a violated cut is found) then

add it to the the current LP relaxation and resolve;
exit the for loop;

end if
end for

Our final heuristic solves LPs to generate cross cuts from pairs of disjunctions associated with the list Ī
in exactly the same way as the heuristic “Cross cut separation from GMI disjunctions” generates cuts from
the list I . We combine the heuristics discussed in this section in the following manner:

1. Run the DG heuristic to obtain the list Ī with up to 1000 split cuts and disjunctions.

2. Separate split cuts via a separation LP for each i ∈ Ī .

3. Separate rank-2 split cuts for each i ∈ Ī; if successful go to Step 2.

4. Separate cross cuts using the MIP-based heuristic for each i ∈ Ī; if successful go to Step 2.

5. Separate cross cuts from “good pairs” of disjunctions; if successful go to Step 2.

6. Separate cross cuts from all pairs of disjunctions associated with Ī; if successful go to Step 2.

6.3 Computational results

It is known from earlier work that the split closure bound can be very strong for some of the MIPLB 3.0
problems. In our computational experiments we exclude all instances where at least 99% of the integrality
gap is closed by split cuts. For these instances it is very hard to exceed the split closure bound and one can
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rank-1 rank-2 split
problem GMI GMI split cuts split cuts cross cuts closure time (sec)
bell5 14.5 25.9 86.2 92.7 99.8 92.9 300
cap6000 41.7 62.4 63.6 65.3 66.1 65.2 +
gesa3 45.9 90.9 94.9 95.4 96.6 95.8 +
gesa3 o 50.6 91.3 95.2 95.5 97.4 95.2 +
gt2 67.7 96.6 96.7 98.3 99.2 98.4 200
mas76 6.4 10.7 18.8 19.3 29.1 26.5 9500
modglob 15.1 81.3 88.3 93.1 99.6 92.2 +
p0033 54.6 84.1 86.2 90.3 100.0 87.4 40
p0201 18.2 69.5 73.9 93.9 97.0 74.9 +
pp08a 52.9 94.1 95.1 97.0 97.8 97.0 +
qiu 2.0 21.8 78.1 78.1 78.1 77.5 +
rentacar* 29.1 39.9 46.9 46.9 46.9 44.9 +
set1ch 38.1 86.7 87.6 96.9 96.9 89.7 +
mkc* 1.2 4.1 51.5 51.5 51.5 49.3 +

Table 6: Gap closed with cross cuts on MIPLIB problems

argue that there is also not much point in attempting to do so. In addition, we also exclude all instances
where the integrality gap closed via the best split closure bound is 1% or less. After this, we are left with
32 out of 65 MIPLIB 3.0 instances. We next report on the best bounds we obtained with our heuristics with
a time limit of 10 hours. In Table 6, we report on 14 out of these 32 instances, where we exceed the best
known split closure bound, taken from [6, 23, 20] (given in the seventh column), by at least 0.5%. In the
first column, we give the problem name. In the second, third and forth columns, we give the bound obtained
by GMI cuts from the initial tableau, split cuts using the DG heuristic and split cuts using the disjunctions
found by the DG heuristic. The next two columns report on the bound obtained, respectively, by cross cuts
which are rank-2 split cuts, and by all cross cuts. The last column reports on the overall computation time
and the symbol “+” means that the code reached the time limit.

For three problems qiu, rentacar and mkc, we were not able to complete separating split cuts within the
time limit and we report on better split closure bounds for these problems using our heuristics and simply
repeat the same bound in the remaining columns. In the remaining 11 instances, the bound we obtain using
split cuts is worse than the split closure bound. For example, for mas76, our initial list of split disjunctions
closes less than 19% of the integrality gap, whereas the split closure bound is 26.5%. We are able to exceed
the split closure bound for these instances using cross cuts. In particular, note that for the problem p0033,
87.4% of the integrality gap is closed by split cuts (and this number is close to the best split closure bound)
and cross cuts close all the remaining integrality gap within 40 seconds. Also note that for most of the
instances, the algorithm terminated due to the time limit of 10 hours.

Our results show that cross cuts can yield an improvement over split cuts for some MIPLIB problems.
We also note that our procedure is computationally intensive and more work is needed to make it more
efficient.
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[22] S. Dash and O. Günlük, Valid Inequalities Based on Simple Mixed-integer Sets, Mathematical Pro-
gramming, 105 (2006) 29–53.
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