
RC25181 (D1107-003) July 5, 2011
Computer Science

IBM Research Report

Application-Agnostic Generation of Synthetic Task Graphs
for Stream Computing Applications

Deepak Ajwani, Shoukat Ali, John P. Morrison
IBM Research

Smarter Cities Technology Centre
Mulhuddart

Dublin 15, Ireland

Research Division
Almaden - Austin - Beijing - Cambridge - Dublin - Haifa - India - T. J. Watson - Tokyo -
Zurich

Application-Agnostic Generation of Synthetic Task

Graphs for Stream Computing Applications

Deepak Ajwani Shoukat Ali John P. Morrison

Abstract

In order to process massive amounts of streaming data in real time,
high-performance computing systems and software platforms are be-
ing developed. However, the pool of available streaming applications
is small and really large streaming applications are even more scarce.
As such, there is a need for synthetic generators of task graphs for per-
formance evaluation and comparative analysis of various algorithmic
techniques and hardware parameters.

In this paper, we identify the key properties of stream-computing
graphs that are shared by most (if not all) streaming graphs, irre-
spective of their specific application domain. We then propose a new
approach to generate task graphs and show that the generated graphs
satisfy the identified properties.

1 Introduction

Many applications such as real-time analysis of financial and medical data
[6], audio/video applications [8, 9], continuous database queries [1] and in-
telligent transportation systems [3], consists of processing continuous, high-
volume data-streams in real time. To satisfy the requirements of these appli-
cations, high-performance stream computing systems are being developed.
The design of such systems involve choosing between various algorithmic
techniques for creating the software platform as well as choosing the right
set of hardware parameters. Such choices are based on performance mea-
surements collected from a large number of simulations. Ideally, these simu-
lations should be based on the real application data. However, since stream
computing is still a nascent technology, the pool of mature applications is
small. The number of really large applications (for evaluation of stream
computing applications at scale) is even smaller. As such, there is a need
for generating large scale synthetic data-sets that emulate the properties
of the real streaming data. This paper focusses on generating synthetic
computational task graphs for stream computing applications.

Streaming Graphs In the computational task graphs of streaming ap-
plications (hereafter referred as streaming graphs), vertices denote the var-
ious operations being performed on the data streams (such as sampling,

1

filtering, copying etc.) and the edges represent the data streams. The
weight of a vertex is proportional to the computational load associated with
it and the weight of an edge denotes the relative rate of the corresponding
stream. More formally, we select the average streaming rate of an arbitrary
input stream (from an external source) as a base rate. For an edge e of the
streaming graph, its weight w(e) is the ratio between the average rate of
the stream corresponding to e and the base rate. Similarly, we assign the
average number of operations required to process one element in the steady
state as a base and let the weight of a vertex v denote the ratio between
the average number of operations required for the kernel corresponding to
v and the base.

A major challenge in designing application-agnostic generators for stream-
ing graphs is to determine the key properties that a typical instance of a
streaming graph should satisfy and to gather the relevant statistics to fill up
the specifications. There is little work so far on understanding the proper-
ties of streaming graphs. In order to generate synthetic graphs that emulate
the properties of real streaming graphs, we first need to characterize these
properties. In Section 3, we record the key properties of streaming graphs
that form the basis of our generator. Our simple framework for generat-
ing synthetic streaming graphs is described in Section 4. In Section 5, we
show that the generated graphs indeed satisfy the properties observed in
Section 3.

2 Related Work

There is a large body of work related to generation of random graphs sat-
isfying various constraints. While some of this can be useful for generat-
ing graphs with one or more properties of real streaming graphs, we are
interested in generating random graphs that emulate most observed prop-
erties. The most relevant work in this direction is the work of Ajwani et
al. [2]. However, their generation framework relies on application-specific
input from the user such as degree distribution, the mix of kernel types,
and number and length of cycles and then uses sophisticated techniques to
meet these additional constraints. In contrast, our graph generators are
application-agnostic, i.e., the graph generation framework does not rely on
any domain-specific information from the user. Also, our approach is sim-
pler and by not focusing on matching the exact numbers of kernel types
and degree distribution, it matches the main properties of streaming graphs
much better.

Regarding the characterization of streaming graph properties, a closely
related work is that of characterizing stream programs from the StreamIT
benchmark [11] in the context of language and compiler design. Some char-
acteristics observed for these sub-routines can easily be generalized to whole

2

applications such as the relative proportion of kernel mixes with different
weights. But in general, the global properties of these programs need not
hold for entire streaming applications. Also, the StreamIT framework re-
stricts the streaming graphs to be series-parallel and this limitation “makes
code often unnatural and sometimes infeasible” [10]. Streaming graphs from
real applications do not necessarily satisfy this constraint. Therefore, we do
not restrict our framework to generate only series-parallel graphs, although
we do ensure that our graphs have a large series-parallel subgraph.

3 Key Characteristics of Streaming Graphs

In this section, we record the key properties of the streaming graphs. Based
on various discussions with researchers who have first-hand experience with
streaming applications, we conjecture that most streaming graphs will sat-
isfy these properties. However, at the moment, the pool of available stream-
ing applications is too small to obtain statistically relevant measurements
supporting these properties. A subset of these properties have also been
noted in a recent paper [2]. The statistics on kernel mixes are based on the
characterization of StreamIT benchmark [11, 10].

1. Streaming graphs are very sparse. Since each edge represents a high-
volume, continuous data-flow, a large number of edges imply commu-
nication of massive amount of data. This is quite likely a result of a
poor design choice.

2. There are no vertices with more than 1 in-degree and more than 1
out-degree. All vertices fall into one of the three types:

• Filters: Vertices with in-degree 1 and out-degree 1. In general,
filters can do any kind of data transformation including but not
restricted to sampling, filtering, sliding window computations. A
special case of identity filters merely pass the data as they receive
it.

• Split: Vertices with in-degree 1 and out-degree greater than 1.
The splits are subdivided into following categories: Copy splits
that copy the input stream to output streams; Round-robin or
If-else distributors that distribute the input stream into output
streams.

• Join: Vertices with in-degree greater than 1 and out-degree 1

3. A large majority of the vertices are filters. Around 35% of splits are
copy splits – they copy the input stream to output streams. The
remaining splits are mostly distributing splits – they distribute the
input stream (in a round-robin way, based on value of elements etc.)

3

into the output streams. Most joins merge the input streams in some
way, i.e., their output stream rate is the sum of input stream rates.

4. Streaming graphs are mostly acyclic. Note that there may be cycles
involving control signals that are short data-flows, but we do not model
them as edges in our computational task graph. The edges in our
definition of streaming graphs strictly correspond to continuous, high-
volume data streams.

5. For any vertex pair (x, y), all paths from x to y have roughly the same
length, where the length is defined as the number of edges in the path
independent of the weights on the constituent edges.

6. In a typical stream computing application, computationally intensive
tasks are usually performed towards the end of the computation pro-
cess after the initial kernels have sampled and reduced the data volume
significantly. In other words, the weights on nodes closer to the sink
are significantly higher than those that are closer to the source. On
the other hand, the weight of edges that reflect the data-flow volume,
decreases as we traverse from sources to sink in the directed acyclic
graphs. In particular, the filter vertices in the early part of the com-
putation process significantly reduce the data rate.

7. There are more splits than joins close to the sources and there are
more joins than splits closer to the sinks.

4 Synthetic Graph Generation Framework

In this section, we describe the general framework for generating the stream-
ing graphs emulating the above properties. As our generation framework is
application-agnostic, the only user parameter it takes is n – the number of
vertices in the generated graph. The output is a graph in either the dot
format [5] or in the format of 10th DIMACS implementation challenge [4],
which is also the format for partitioning libraries such as METIS [7]. It can
generate both the directed and the corresponding undirected versions of the
graph.

Our framework first generates the “core” of the streaming graph with
Θ(n

1

3) vertices. To create this core, we first generate an acyclic series-parallel

multi-graph with Θ(n
2

3) edges and then add Θ(n
1

3) random edges, preserving
the acyclicity of the multi-graph. This ensures that the final graph has a
big series-parallel subset, though it is not series-parallel itself.

In order to generate a series-parallel multigraph, we start with two ver-
tices and O(n

1

3) edges from one to another. We then repeatedly add vertex

pairs till we have Θ(n
1

3) vertices. Adding a vertex pair (x, y) is done by se-
lecting an existing edge (u, v) uniformly at random, removing (u, v), adding

4

(u, x), (y, v) a single time and the edge (x, y) with a multiplicity l. The

number l is chosen between 1 and 2n
1

3 , uniformly at random.
Next, we decompose the vertices with multiple in and multiple out-edges

into a split-join pair. For each vertex v with indegree and outdegree greater
than 1, we decompose it into a split vertex x and a join vertex y such that
all in-edges to v become in-edges to x, all out-edges from v become out-
edges from y and there is an edge from x to y. In the resultant graph, let
L(v) be the longest path from a source vertex (with in-degree 0) to v ∈ V ′

and let D(e) = L(v) − L(u) for an edge e = (u, v). We then replace each
edge e = (u, v) by a path P (e) from u to v of length proportional to D(e)
consisting of newly created filter vertices. This ensures that in the resultant
graph, all paths between two vertices have roughly the same length. As we
show in Section 5, this also ensures that a large majority of vertices in the
graph are filter vertices. We then sort the edges in the resultant graph and
remove duplicates.

We then assign weights to vertices and edges. Let L′(v) be the longest
path to v in the generated topology. We assign the weight of each vertex
v to be L′2(v) + 1. Next, we divide the splits and joins into sub-categories
and assign weights to edges. Based on the statistics observed in [11] for
StreamIT benchmark sub-routines, we mark 35% of splits as copying splits
and the remaining as distributor splits. For the copying splits, the weight of
output edges is the same as the weight of the input edge. For the distributor
splits, the input weight is equally divided among the output edges. All joins
add the weights of in-edges to the out-edge. The weight of the out-edge of a
filter v is half that of its in-edge with probability 1/(α ·L′(v)+1) (for a small
constant α < 1) and equal to its in-edge with the remaining probability. For
the source vertices with a single out-edge, we assign it a weight of 1. For a
source vertex v with multiple out-edges, we declare the weight of out-edges
to be 1 with probability 0.35 and 1/out degree(v) with probability 0.65.
As we show in Section 5, this edge assignment results in edge weights that
decrease with the length of longest paths to its tail.

5 Experiments

In this section, we report our experiments for generating graphs with 10,000
vertices, averaged over 1000 runs. The generated graphs have an average of
9999.59 vertices, thereby getting very close to the user specification. The
average number of edges is 10262.3, which implies that the generated graphs
are extremely sparse (with an average out-degree of 1.026) satisfying prop-
erty 1. Since we decompose the multi-input and multi-output vertices into
split-join pairs and introduce only filter vertices afterwards, we do not have
any vertex with more than 1 in-degree and 1 out-degree in our graph, satis-
fying property 2. Out of 9999.59 vertices, 9937.59 are filters, 29.73 are joins

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

A
v
e
ra

g
e
 w

e
ig

h
t
o
f
th

e
 e

d
g
e

Longest path length to edge tail

Weight of edges as the computation progresses

Figure 1: Weight of edges as computation progresses

and 30.27 are splits. There is only 1 source vertex in all the graphs. Out
of the 30.27 splits, 10.65 (35.18%) are copy splits and 19.61 are distribute
splits. All joins are merging joins. This satisfies the statistics observed
in property 3. The generation process ensures that the generated graph is
acyclic (property 4).

In order to verify that the property 5 is satisfied by our generated graphs,
we measure the difference between longest and shortest path from a source
to an internal vertex. Consider a vertex pair (u, v) with a big path difference.
The longest path from a source to v has to be lengthier than the path from
source to u followed by the longest path from u to v, while the shortest
path has to be shorter than the path from source to u and shortest path
from u to v. Thus, the difference between longest and shortest path to v
will be greater than the maximum difference between the lengths of various
paths from u to v. We observe that over all vertices, the average difference
between longest and shortest path is only 1.65, compared to the average
longest path length of 72.78. This implies that the average path difference
between vertex pairs is smaller than 1.65.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

A
v
e
ra

g
e
 w

e
ig

h
t
o
f
th

e
 e

d
g
e

Longest path length to edge tail

Weight of edges as the computation progresses

Figure 2: Weight of edges as computation progresses: Zoomed Initial part

To verify property 6, we first define the tail distance of an edge (u, v) to
be the length of the longest path from a source in the DAG to the tail u.
Intuitively, the tail distance measures where the edge belongs in the compu-
tation process. A smaller tail distance means that the edge is very close to
the source and a larger tail distance means that the data-flow corresponding
to the edge happens at a later stage in the computation process. Figure 1
shows how the weight of edges varies with the tail distance. The weight of
edge represents the total weight of all the edges with the same tail-distance
in all the 1000 runs of this experiment, divided by the number of such edges.
As depicted in Figure 2 (which shows the early part of Figure 1 in greater
detail), the averaged weight drops significantly very early in the computa-
tion process and then stays at around 1% of the early weight, even as the
joins in the later part aggregate the weights of their in-edges. Thus, our
generated graphs also satisfy property 6. Note that the shape of the curve
can be partly controlled by the parameter α that determines the probability
of a filter vertex to reduce the data-rate. The curve in Figure 1 is obtained
using α = 0.25.

7

As for property 7, we sorted the vertices by their shortest path from the
source and considered the first 5% vertices. We found that 1.2% of these
vertices were splits and only 0.2% were joins as compared to 0.3% splits
and 0.29% joins overall. Similarly, we sorted the vertices by their shortest
path from the sinks and considered the first 5% vertices. We found 0.6% of
these vertices to be joins and 0.08% to be splits, thereby showing that in
the generated graphs, there are significantly more splits than joins closer to
sources and more joins than splits closer to sinks.

6 Conclusion

We have proposed a simple framework for generating application-agnostic
streaming graphs. Our graphs emulate the properties expected of real
streaming graphs quite well. We expect our framework to fill the need for
synthetic streaming graphs for making software and hardware design choices
related to the design of stream-computing systems. In particular, we intend
to use our framework for designing a graph partitioning software for stream
computing systems.

Acknowledgements

The authors would like to thank Dilma M Da silva, Qi Liu, Yoonseo Choi,
Abhirup Chakraborty and Rolf Riesen for many helpful discussions and
valuable feedback on an earlier version of the draft. The research of the first
author is partially supported by an EPS grant from IRCSET and IBM.

References

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul,
and Stan Zdonik. Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120–139, 2003.

[2] Deepak Ajwani, Shoukat Ali, Kostas Katrinis, Cheng-Hong Li, Alfred J.
Park, John P. Morrison, and Eugen Schenfeld. A flexible workload gen-
erator for simulating stream computing systems. In MASCOTS’11:
Proceedings of the ninteenth annual IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2011.

[3] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier,
Anurag S. Maskey, Esther Ryvkina, Michael Stonebraker, and Richard
Tibbetts. Linear road: a stream data management benchmark. In

8

VLDB ’04: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, pages 480–491. VLDB Endowment, 2004.

[4] 10th DIMACS implementation challenge - Graph partitioning and
graph clustering. http://www.cc.gatech.edu/dimacs10/.

[5] Dot tutorial and specification. http://www.graphviz.org/

Documentation.php.

[6] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
Myungcheol Doo. Spade: the System S declarative stream processing
engine. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, pages 1123–1134, New
York, NY, USA, 2008. ACM.

[7] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1999.

[8] B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J. Namkoong, J.D.
Owens, B. Towles, A. Chang, and S. Rixner. Load distributing for
locally distributed systems. IEEE Micro, 21(2):35–46, March 2001.

[9] S. Rixner. Stream processor architecture. Kluwer Academic Publishers,
2002.

[10] William Thies. Language and Compiler Support for Stream Programs.
PhD thesis, Massachusetts Institute of Technology, 2009.

[11] William Thies and Saman P. Amarasinghe. An empirical characteriza-
tion of stream programs and its implications for language and compiler
design. In 19th International Conference on Parallel Architecture and
Compilation Techniques (PACT), pages 365–376, 2010.

9

