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Abstract. We define the notion of effective stiffness and show that it can used to design algo-
rithms for solving linear systems arising from finite-element discretizations of PDEs. In particular,
we show that sampling O(n logn) elements according to probabilities derived from effective stiff-
nesses yields an high quality preconditioner that can be used to solve the linear system efficiently.
Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress
in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite
elements problems is of considerably more interest than the solution of SDD linear systems, since
the finite element method is frequently used to numerically solve PDEs arising in scientific and
engineering applications. Unlike SDD systems, which are relatively easy to precondition, there
has been limited success in designing fast solvers for finite element systems. Contrary to previous
attempts, which usually target discretization of limited class of PDEs like scalar elliptic or 2D
trusses, our method targets a very wide range of finite element discretizations, utilizing only some
basic algebraic-combinatorial properties of the matrices arising from such discretizations.

1. Introduction

We explore the sparsification of finite element matrices using effective stiffness sampling. The
goal of the sparsification is to reduce the number of elements in the matrix so that it can be
easily factored and used as a preconditioner for an iterative linear solver. We show that sampling
non-uniformly O(n log n) elements produces a matrix that is with high probability spectrally close
to the original matrix, and therefore an excellent preconditioner. The sampling probability of
an element is given by the largest generalized eigenvalue of the element matrix and the effective
stiffness matrix of the element.

Effective stiffness generalizes the notion of effective resistance, a key ingredient in much of the
recent progress in nearly optimal symmetric diagonally dominant (SDD) linear solvers [8, 2, 9].
Solving finite elements problems is of considerably more interest than the solution of SDD linear
systems, since the finite element method is frequently used to numerically solve PDEs arising in
scientific and engineering applications.

Unlike SDD systems, which are relatively easy to precondition, there has been limited success in
designing fast solvers for finite element systems. Efforts to generalize combinatorial preconditioners
to matrices that are not weighted Laplacians followed several paths, and started long before recent
progresses. Gremban showed how to transform a linear system whose coefficient matrix is a
signed Laplacian to a linear system of twice the size whose matrix is a weighted Laplacian. The
coefficient matrix is a 2-by-2 block matrix with diagonal blocks with the same sparsity pattern
as the original matrix A and with identity off-diagonal blocks. A different approach is to extend
Vaidya’s construction to signed graphs [3]. The class of symmetric matrices with a symmetric
factorization A = UUT where columns of U have at most 2 nonzeros contains not only signed
graphs, but also gain graphs, which are not diagonally dominant [4]; it turns out that these
matrices can be scaled to diagonal dominance, which allows graph preconditioners to be applied
to them [7].
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The matrices that arise in finite-element discretization of elliptic partial differential equations
(PDEs) are positive semi-definite, but in general they are not diagonally dominant. However,
when the PDE is scalar (e.g., describes a problem in electrostatics), the matrices can sometimes
be approximated by diagonally dominant matrices. In this scheme, the coefficient matrix A is
first approximated by a diagonally-dominant matrix D, and then GD is used to construct the
graph GB of the preconditioner B. For large matrices of this class, the first step is expensive, but
because finite-element matrices have a natural representation as a sum of very sparse matrices, the
diagonally-dominant approximation can be constructed for each term in the sum separately. There
are at least three ways to construct these approximations: during the finite-element discretization
process [5], algebraically [1], and geometrically [17]. A slightly modified construction that can
accommodate terms that do not have a close diagonally-dominant approximation works well in
practice [1].

Another approach for constructing combinatorial preconditioners to finite element problems is
to rely on a graph that describes the relations between neighboring elements. This graph is the
dual of the finite-element mesh; elements in the mesh are the vertices of the graph. Once the
graph is constructed, it can be sparsified much like subset preconditioners. This approach, which
is applicable to vector problems like linear elasticity, was proposed in [13]; this paper also showed
how to construct the dual graph algebraically and how to construct the finite-element problem
that corresponds to the sparsified dual graph. The first effective preconditioner of this class was
proposed in [6]. It is not yet known how to weigh the edges of the dual graph effectively, which
limits the applicability of this method. However, in applications where there is no need to weigh
the edges, the method is effective [14].

Unlike previous efforts, which usually target discretization of limited class of PDEs like scalar el-
liptic or 2D trusses, our method targets a very wide range of finite element discretizations, utilizing
only some basic algebraic-combinatorial properties of the matrices arising from such discretizations.

2. Preliminaries

2.1. Sums of Random Matrices. Approximating a matrix using random sampling can be
viewed as a particular case of sums of random matrices. In the last few years there has been
significant literature on showing concentration bounds on such sums [12, 11, 16]. We use the
following bound from [10].

Theorem 2.1. [10, Theorem 1.1] Let A1, A2, . . . be i.i.d matrix-valued random variables. Assume
that the Ais are real and symmetric with ‖E(Ai)‖2 ≤ 1 and ‖Ai‖2 ≤ γ almost surely. Let 0 < ε < 1
and let M = Ω(γ log(γ/ε2)/ε2). If every value in the support of Ai has rank at most M then

Pr

(∥∥∥∥∥ 1

M

M∑
i=1

Ai − E(Ai)

∥∥∥∥∥
2

> ε

)
≤ 1

poly(M)
.

2.2. Generalized eigenvalues, analysis of iterative methods and sparsification bounds.
A well known property of many iterative linear solver, including the popular conjugate gradient
and the theoretically convenient Chebyshev iteration, is that their convergence rate depends on
the distribution of the eigenvalues of the coefficient matrix (its spectrum). The rate depends on
how much the spectrum is clustered, but it is hard to form a concise bound. A simple and useful
theoretical bound for symmetric positive semidefinite matrices depends only on the ratio between
the largest and smallest eigenvalue. When using preconditioned methods convergence is governed
by the generalized eigenvalues.

Definition 2.2. Given two matrices A and B in R with the same null space N, a finite generalized
eigenvalue λ of (A,B) is a scalar satisfying Ax = λBx for some x 6∈ N. The generalized finite
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spectrum Λ(A,B) is the set of finite generalized eigenvalues of (A,B), and the generalized condition
number κ(A,B) is

κ(A,B) =
max Λ(A,B)

min Λ(A,B)
.

We define the trace of (A,B) (denoted by trace(A,B)) as the sum of finite generalized eigenvalues
of (A,B).

(This definition can be generalized to the case of different null spaces, but this is irrelevant for
this paper.) We will denote by Λ(A) the set of finite non-zero eigenvalues of A (which is equal to
Λ(A,PA), where PA is a projection onto the range of A).

We are mainly interested in bounds on the smallest and largest generalized eigenvalues (which
we denote λmin(·, ·) and λmax(·, ·) respectively), since they tell us two important properties on the
pair (A,B). First, for every unit norm vector x we have

λmin(A,B) · xTBx ≤ xTAx ≤ λmax(A,B) · xTBx .

Second, when B is used as a preconditioner for A, a vector x satisfying ‖x−A+b‖A ≤ ε‖A+b‖A is

found in at most O(
√
κ(A,B) · log(1/ε)) iterations where ‖x‖2A = xTAx.

In many cases it is easier to reason about non-generalized eigenvalues. The following result
from [1] relates generalized eigenvalues with regular eigenvalues of a different matrix.

Lemma 2.3. Let A = UUT and B = V V T , where U and V are real valued with the same number
of rows. Assume that A and B are symmetric, positive semidefinite and (A) = (B). We have

Λ (A,B) = Σ2
(
V +U

)
and

Λ (A,B) = Σ−2
(
U+V

)
.

In these expressions, Σ(·) is the set of nonzero singular values of the matrix within the parenthe-
ses, Σ` denotes the same singular values to the `th power, and V + denotes the Moore-Penrose
pseudoinverse of V .

2.3. Effective resistance sampling. Recent progress of in fast SDD solvers [8, 2, 9] is based
on effective resistance sampling, first suggested in [15]. Solving SDD systems can be reduced to
solving a Laplacian system. Given a weighted undirected graph G = ([n], E, w) the Laplacian
L is given by L = D − A where A is the weighted adjacency matrix Aij = wij and D is the
diagonal matrix of weighted degrees given by Dii =

∑
j 6=iwij . The effective resistance Re of an

edge e = (u, v) is given by

Re = (eu − ev)TL+(eu − ev)

where eu and ev are identity vectors and L+ is the Moore-Penrose pseudoinverse of L. The quantity
is named effective resistance because Re is equal to the potential difference induced between u and
v when a unit of current is injected at u and extracted at v, when G is viewed as an electrical
network with conductances given by w.

Spielman and Srivastava [15] showed that sampling sufficiently enough edges, where the prob-
ability of sampling an edge is proportional to weRe yields an high-quality sparsifier for G, which
can be translated to an high-quality preconditioner. Koutis et al. [8, 2, 9] show that even crude
approximations to the accurate effective resistances suffice, and they show how such an approxi-
mation can be computed efficiently. The asymptotically fastest solver [9] solves an n-by-n SDD
linear system in time O(m log n log(1/ε)) where m is the number of non-zeros in the matrix and ε
is the accuracy of the solution.
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3. Finite Element Matrices and Their Factored Form

A finite element discretization of a PDE usually leads to an algebraic system of equations
Kx = b. The matrix K has certain properties that stem from the PDE and the specifics of
how it was discretized. To make our results more general and easier to understand by a wide
audience, we use the algebraic-combinatorial formulation developed in [13] rather than a PDE-
derived formulation.

The matrix K ∈ Rn×n is called a stiffness matrix, and it is a sum of element matrices, K =∑m
e=1Ke. Each element matrix Ke corresponds to a subset of the domain called a finite element.

The elements are disjoint except perhaps for their boundaries and their union is the domain. We
assume that each element matrix Ke is symmetric, positive semidefinite, and zero outside a small
set of ne rows and columns. In most cases ne is uniformly bounded by a small integer. We denote
the set of nonzero rows and columns of Ke by Ne. We denote the restriction of a matrix A to
indices I by A(I), and denote the K̃e = Ke(Ne). K̃e is the essential element matrix of e. Typically,
in finite element discretizations both the stiffness matrix (K) and the essential element matrices

(K̃es) are singular. We denote the dimension of the null space of K̃e by de = dim((K̃e)) and the

rank of K̃e by re = ne−de. For simplicity, we will assume the rank (and dimension of null space) of
all the elements is the same and equal to r (d for null space dimension). The results can be easily
extended for non uniform element ranks. The null space of K is denoted by N and we assume that
its dimension is d as well.

Most, if not all, theoretical results on sampling matrices are on rectangular matrices, and their
usefulness rely on the aspect ratio being high. Finite element matrices, according to our definition,
are square. Luckily, K can be written as K = F TF where F has more rows than columns. The
key is obtaining a factored form of Ke = F Te Fe where Fe is r × n. We can then write

F =

 F1
...
Fm

 ∈ Rmr×n

and K = F TF . Many finite-element discretization techniques actually generate the element ma-
trices in a factored form. Even if the elements are not generated in a factored form, a factored
form can be easily computed. One way to do so is using the eigendecomposition K̃e = VeΣeV

T
e .

Define F̃e = Σ
1/2
e V̄ T

e where V̄e is obtained by taking the r columns of Ve associated with non-zero

eigenvalues, and let Fe be obtained by expanding the number of columns of F̃e to n by adding zero
columns for columns not in Ne. It is easy to verify that Ke = F Te Fe and that Fe is r × n.

Typically, the element matrices are compatible with the null space of K [13], meaning that the

null space of K̃e is the restriction of the null space of K to Ne. When all the element matrices
are compatible with the null space of K, the matrices involved have useful properties [13] that we
use in theorems as needed. In the Appendix we elaborate on the issue of null-space compatibility
and explain why finite element matrices typically have the properties assumed in the theoretical
analysis.

The main property we assume is that the rank deficiency of the factor F is minimal.

Definition 3.1. A matrix F ∈ Rm×n has minimal rank deficiency if every set of n − dim((F ))
columns of F is independent.

Note that if the rank deficiency of F is minimal then every leading l × l minor of K is non-
singular, as long as l ≤ n− d.
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4. Effective Stiffness of an Element

We now define the effective stiffness of an element. The stiffness matrix of an element describes
the physical properties (elasticity, electrical conductivity, thermal conductivity, etc) of a piece of
material called an element by showing how that piece of material responds to a load (current,
mechanical force, etc) placed on the element. The effective stiffness matrix shows how the entire
structure responds to a load that is placed on one element. Intuitively, if the stiffness matrix and
the effective stiffness matrix of an element are similar, the element is important; removing it from
the structure may significantly change the behavior of the overall structure. On the other hand, if
the effective stiffness element has a much larger norm than the element matrix, then the element
does not contribute much to the strength (or conductivity) of the overall structure, so it can be
removed without changing much the overall behavior.

Algebraically, the effective stiffness matrix of e is obtained by eliminating from K all columns
not associated with e.

Definition 4.1. Let K̄ be obtained from K by an arbitrary symmetric reordering of the row
and columns of K such that the last ne rows and columns of K̄ are Ne and they are ordered in
ascending order (i.e., the ordering in K̄ of the columns in Ne is consistent with their order in K).
Suppose that K̄ is partitioned

K̄ =

(
K̄11 K̄12

K̄T
12 K̄22

)
where K̄1 ∈ R(n−ne)×(n−ne), K̄12 ∈ R(n−ne)×ne and K̄22 ∈ Rne×ne . If K̄11 is non singular we say
that element e is supported . The effective stiffness Se of element e is

Se =

{
K̄22 − K̄T

12K̄
−1
11 K̄12 e is supported

K̃e otherwise
.

It is easy to verify that the the effective stiffness is well defined in the sense that any ordering
that respects the conditions of the definition gives the same Se. Note that if the factor F has
minimal rank deficiency then all elements are supported.

Before proceeding to discuss effective stiffness sampling, and stating our main result, we first
show that indeed effective stiffness generalizes effective resistance by showing that effective resis-
tance is a particular case of effective stiffness.

The Laplacian of a weighted graph G = ([n], E, w) is, in fact, a finite element matrix per our
definition in section 3. Given an edge e = (u, v) define Ke = we(eu − ev)(eu − ev)T . It is easy to
verify that L =

∑
e∈EKe. It is well-known that if the if the graph is connected the rank deficiency

is d = 1 and the null space N is all-ones vector. L can also be written in factor form L = F TF
where F ∈ R|E|×|V |. Each edge e = (u, v) correspond to row in F given by Fe =

√
we(eu − ev)T .

If the graph is connected the factor F has minimal rank deficiency, so all elements (edges) are
supported.

Lemma 4.2. Let F be the factor of a graph G. If G is connected then F has minimal rank
deficiency.

Proof. Suppose there is a non-independent size n − 1 subset of F ’s columns. Let F̄ be a reorder
of F ’s columns such that those n − 1 columns are the first n − 1 columns. Since the first n − 1
columns of F̄ are linearly dependent there is a vector x 6= 0 such that

F

(
x
0

)
= 0 .

The vector
(
xT 0

)T
is not spanned by 1n. This contradicts our assumption that G is connected

since the null space of the Laplacian of a connected graph is always span{1n}. �
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Simple calculation shows that Se12 = 0 and (e1 − e2)TSe(e1 − e2) = R−1e . This implies that
Se = R−1e (eu − ev)(eu − ev)T .

Graph sparsification by effective resistance [15] and near-linear time linear solvers [8, 2, 9] relay

on sampling edges with probability relative to weRe. It is easy to verify that weRe = λmax(K̃e, Se).

Our main result shows that sampling probabilities should be relative to λmax(K̃e, Se) for general
finite element matrices, and not only for Laplacians.

5. Effective Stiffness Sampling

The main theorem of this writeup shows how to use the effective stiffness to sample finite element
matrices.

Theorem 5.1. Let K = F TF =
∑m

e=1Ke be an n-by-n finite element matrix. Assume that the

factor F has minimal rank deficiency and null(Se) = null(K̃e) for every element e. Let

pe =
λmax(K̃e, Se)∑m
i=1 λmax(K̃i, Si)

and let T1, . . . , TM be a i.i.d random matrices defined by

Ti = p−1Ji KJi

where J1, . . . , JM are random integers between 1 and m which takes value e with probability pe. In
other words, Ti is a scaled version of one of the Kes, selected at random, with a scaling that is
proportional to the inverse of pe. For M = Ω(n log(n)) we have

Pr

(
κ(K,

1

M

M∑
i=1

Ti) > 2

)
≤ 1

poly(M)
.

To prove Theorem 5.1 we need the following Lemma.

Lemma 5.2. Let U ∈ Rmr×n be any matrix whose columns form an orthonormal basis of range(F ).
Let Ue ∈ Rr×n be the rows of U corresponding to element e. Assume that the factor F has minimal
rank deficiency and null(Se) = null(K̃e). The set of non-zero eigenvalues (including multiplicity)

of UeU
T
e and the set of finite generalized eigenvalues of (K̃e, Se) are the same. In particular,

λmax(UeU
T
e ) = λmax(K̃e, Se)

and

trace(UeU
T
e ) = trace(K̃e, Se) .

Proof. We first show that we can prove the lemma by showing that it holds for a particular U . An
arbitrary orthonormal basis V is related to U by V = UZ, where Z is an n-by-n unitary matrix.
In particular, Ve = UeZ (Ve are the rows of V corresponding to element e) so VeV

T
e = UeZZ

TUTe =
UeU

T
e . We obtain U from the QR factorization of F̄ = ŪR and set U to be the first n−d columns

of Ū , where F̄ is obtained from F by reordering the columns in Ne to the end (consistently with
their ordering in F ).

The last ne columns of F̄ are Ne, and Fe is non-zero outside the indices of Ne.This implies that

F̄e =
[

0r×(n−ne) F̃e
]

Ue =
[

0r×(n−ne) Ũe
]

where Ũe, F̃e ∈ Rr×ne . Let us write

R =

(
R11 R12

0 R22

)
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where R11 ∈ R(n−ne)×(n−ne), R12 ∈ R(n−ne)×ne and R22 ∈ Rne×ne . Let us write K̄ = F̄ T F̄ and

K̄ =

(
K̄11 K̄12

K̄T
12 K̄22

)
where K̄11 ∈ R(n−ne)×(n−ne), K̄12 ∈ R(n−ne)×ne and K̄22 ∈ Rne×ne . Since R is the R-factor of F̄
and K̄ = F̄ T F̄ it is also the Cholesky factor of K̄. It also implies that RT22R22 is equal to the Schur
complement

RT22R22 = K̄22 − K̄T
12K̄

−1
11 K̄12 = Se .

The minimal rank deficiency of F implies that that the bottom d rows of R and R22 are zero.
Let R̄22 ∈ R(ne−d)×ne be the first ne − d rows of R22. It is still the case that R̄T22R̄22 = Se. We

have F̄ = ŪR, so F̄e = ŪeR22 = UeR̄22 which implies that F̃e = ŨeR̄22. Applying Lemma 2.3 we
find that

Λ(K̃e, Se) = Λ(F̃ Te F̃e, R
T
22R22)

= Σ2
(

(R̄T22)
+F̃ Te

)
= Σ2

(
(R̄T22)

+R̄T22Ũ
T
e

)
The minimal rank deficiency of F̄ implies that R22 is full rank, so RT22 is a full rank matrix with

more rows than columns (or equal), so (R̄T22)
+R̄T22 = Ine . This implies that (R̄T22)

+R̄T22Ũ
T
e = ŨTe so

Λ(K̃e, Se) = Σ2(ŨTe ) .

Σ2(ŨTe ) is exactly the set of non-zero eigenvalues of ŨeŨ
T
e . Therefore, the non-zero eigenvalues of

UeU
T
e are exactly the finite generalized eigenvalues of (K̃e, Se), so

λmax(UeU
T
e ) = λmax(K̃e, Se)

and

trace(UeU
T
e ) = trace(K̃e, Se) .

�

We can now prove Theorem 5.1.

Proof. (of Theorem 5.1) We express the matrix m
M

∑M
i=1 Ti as a normal form

1

M

M∑
i=1

Ti = (SF )T (SF )

where S ∈ RneM×nem is a random sampling matrix and F is the factor of the stiffness matrix
K = F TF . If we take S to be a block matrix with ne × ne blocks, its blocks defined by

Sie =

{√
1
M p
−1/2
e Ine×ne if Ti = p−1e Ke

0ne×ne otherwise,

then it is easy to verify that S indeed satisfies the identity above. Let F = Ū R̄ be a reduced QR
factorization of F . The minimal rank deficiency of F implies that that the bottom d rows of R are
zero. Let R ∈ R(n−d)×n be the first n−d rows of R̄, and U ∈ Rmr×(n−d) be the first n−d columns
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of Ū . It is easy to verify that F = UR and F TF = RTR. RT is full rank, so (RT )+RT = In.
Applying lemma 2.3 we have

κ(K,
1

M

M∑
i=1

Ti) = κ(F TF, (SF )T (SF ))

= κ(RTR, (SF )T (SF ))

= κ2
(
(RT )+F TST

)
= κ2

(
(RT )+RTUTST

)
= κ2(UTST )

= κ2((SU)T )

= κ2(SU)

= κ((SU)T (SU)) .

To bound κ((SU)T (SU)) with high probability we first bound
∥∥(SU)T (SU)− In×n

∥∥
2

with high
probability. Define the i.i.d random matrices Y1, . . . , YM by

Yi = p−1Ji U
T
JiUJi

where Ue is the rows corresponding to element e in U . It is easy to verify that

(SU)T (SU) =
1

M

M∑
i=1

Yi .

The expectation of the Yi’s is the identity matrix,

E(Yi) =
M∑
j=1

Pr(Ti = p−1j Kj)p
−1
j UTj Uj

=

M∑
j=1

pjp
−1
j UTj Uj

=
M∑
j=1

UTj Uj

= UTU = In−d×n−d

and their 2-norm is bounded by

‖Yi‖2 ≤ max
j
p−1j

∥∥UTj Uj∥∥2
= max

j
p−1j λmax(UjU

T
j )

= max
j
p−1j λmax(K̃j , Sj)

= max
j

( λmax(K̃j , Sj)∑m
i=1 λmax(K̃i, Si)

)−1
λmax(K̃j , Sj)


=

m∑
i=1

λmax(K̃i, Si) .
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We now bound this sum of maximal generalized eigenvalues

m∑
i=1

λmax(K̃i, Si) ≤
m∑
i=1

trace(K̃i, Si)

=

m∑
i=1

trace(UiU
T
i )

=

m∑
i=1

trace(UTi Ui)

= trace(
m∑
i=1

UTi Ui)

= trace(UTU) = n− d .

We showed that ‖E(Yi)‖2 = ‖In×n‖ = 1 and that ‖Yi‖2 ≤ n, so we can apply Theorem 2.1 to the
Yis with ε = 1/3 and γ = n. The application of the theorem shows that for M = Ω(n log(n)),

Pr

(∥∥∥∥∥ 1

M

M∑
i=1

Yi − In×n

∥∥∥∥∥
2

>
1

3

)
≤ 1

poly(M)
.

This bounds
∥∥(SU)T (SU)− In×n

∥∥
2

with high probability. Finally, we note that for every sym-

metric metric A, if ‖A− I‖2 ≤ t < 1 then κ(A) ≤ 1+t
1−t . Applying this to (SU)T (SU) with t = 1/3

we find that whenever
∥∥(SU)T (SU)− In×n

∥∥
2
≤ 1/3 (which happens with high probability), we

have κ((SU)T (SU)) ≤ 2. �

6. Sampling using approximate eigenvalues

Theorem 5.1 shows that the sampling probabilities that are proportional to λmax(K̃e, Se) are
effective for randomly selecting a good subset of elements to serve as a preconditioner. In practice
it may be possible to obtain only estimates for the true maximum eigenvalues. The following
generalization of Theorem 5.1 shows that even crude approximations to λmax(K̃e, Se) suffice to get
a low condition number with high probability.

Theorem 6.1. For every element e let λ̃e be (1 + δ)-approximations to λmax(K̃e, Se), that is∣∣∣λ̃e − λmax(K̃e, Se)
∣∣∣ ≤ δ · λmax(K̃e, Se)

We make the same assumptions and use the same notation as in Theorem 5.1 except that the
probabilities pe are now given by

pe =
λ̃e∑m
i=1 λ̃i

.

For M = Ω(nβ log(nβ)), where β = 1+δ
1−δ , we have

Pr

(
κ(K,

1

M

M∑
i=1

Ti) > 2

)
≤ 1

poly(M)
.
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Proof. The proof is identical to the proof of Theorem 5.1 except that the bound on ‖Yi‖2 needs to
be modified as follows:

‖Yi‖2 ≤ max
j
p−1j

∥∥UTj Uj∥∥2
= max

j
p−1j λmax(UjU

T
j )

= max
j
p−1j λmax(K̃j , Sj)

= max
j

( λ̃e∑m
i=1 λ̃i

)−1
λmax(K̃j , Sj)


≤ max

j

( (1− δ)λmax(K̃j , Sj)

(1 + δ)
∑m

i=1 λmax(K̃i, Si)

)−1
λmax(K̃j , Sj)


= β

m∑
e=1

λmax(K̃e, Se)

≤ nβ .

�
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Appendix: Null space compatibility and rigidity of finite element matrices

In this section we review facts from the algebraic-combinatorial theory of rigidity of finite-
element matrices developed in [13], and show that it implies typical finite-element matrices have
the properties assumed in the results. This section is not necessary for the validity of the theoretical
results, but it does relate them to the actual application.

Typically, the element matrices are compatible with the null space of K. We now define what
this means exactly.

Definition 6.2. Let A be an m-by-n matrix, let ZA be the set of its zero columns. We define the
essential null space of A (enull(A)) by

enull(A) = {x : Ax = 0 and xi = 0 for i ∈ ZA} .

Definition 6.3. Let N ⊆ Rn be a linear space. A matrix A is called N-compatible (or compatible
with N) if every vector in enull(A) has a unique extension into a vector in N, and if the restriction
of every vector in N to NA (setting indices outside NA to zero) is always in enull(A).

A particular discretization of a PDE yields element matrices (Kes) that are compatible with some
well-known null space N, which depends on the PDE; a translation in electrostatics, translations
and rotations in elasticity, and so on. Furthermore, it is usually desirable that the stiffness matrix
K be rigid with respect to N, which is equivalent to saying that the null space of K is exactly N.
For example, for matrix of a resistive network (the Laplacian) elements are compatible with the
span of the all-ones vector. The null space of the Laplacian is exactly the span of the all-ones (i.e.,
the matrix is rigid) if and only if the graph is connected.

Lack of rigidity often implies that the PDE has not been discretizied correctly, and it does not
make sense to solve the linear equations. This is an important scenario to detect (see [14]), but
it is not the subject of this paper. We will assume the matrix K is rigid with respect to the
prescribed and well know null space. The prescribed null space typically (that is, for real-life finite
element matrices) implies minimal rank deficiency, which has to be proved for each case. A simple
technique (which the proof of Lemma 4.2 implicitly uses) is based on the following lemma.

Lemma 6.4. Suppose that K = F TF ∈ Kn×n has null space range(N) where N ∈ Rn×d. If no
d× d submatrix of N is singular then F has minimal rank deficiency.

Proof. First notice that null(F ) = null(K) since null(F T ) = range(F )⊥. Suppose there is a set of
n − d columns of F which are not independent. Let F̄ be a reordering of the columns of F such
that those n− d columns are first. There is a vector x ∈ Rn−d such that

F̄

(
x

0d×1

)
= 0 .

Let N̄ be a reordering of the rows of N consistently with the reordering of the columns of F in

F̄ . The vector
(
xT 0

)T
is in the null space of F̄ so there must exist a vector y 6= 0 such that

N̄y =
(
xT 0

)T
. This implies that the bottom d rows of N̄ form a singular matrix. These rows

are also rows of N , which implies that N has a d × d singular submatrix, which contradicts our
assumption. �
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We already saw that this technique was used to show that the factor of a connected Laplacian
has minimal rank deficiency. We now show another example: elastic struts in two dimensions.
In [13] it is shown that given a collection P = {pi}ni=1of points in the plane, the null space of the
rigid finite element matrix representing a collection of elastic struts between the points is spanned
by the range of

N =



1 0 −y1
0 1 x1
1 0 −y2
0 1 x2
...

...
...

1 0 −yn
0 1 xn


.

The matrix N does not have singular 3-by-3 submatrix unless the points have some special proper-
ties (like three points with the same x coordinate), which they typically do not have. Even if such
a property is present, a slight rotation of the point set, an operation that does not fundamentally
change the physical problem, will remove it.

The minimal rank deficiency of F implies that all elements are supported. We now show that
null(Se) = null(K̃e) if K is rigid. To do so we need an additional definition and two lemmas
from [13].

Definition 6.5. A matrix A is rigid with respect to another matrix B if for every vector in
x ∈ enull(A) there is a unique vector y ∈ enull(B) such that xi = yi for all i ∈ NA ∩NB. The two
matrices are called mutually rigid if they are rigid with respect to each other.

Lemma 6.6. (Lemma 5.5 from [13]) Let N be a linear space, and let B be some matrix with no
zero columns whose null space is N. Another matrix A is N-compatible if and only if A and B are
mutually rigid.

Lemma 6.7. (part of Lemma 3.7 from [13]) Let A and B be n-by-n matrices of the form

A =

[
0 0
0 A22

]
, B =

[
B11 B12

B21 B22

]
.

Assuming that B has no zero columns, B11 is non-singular and A are mutually rigid we have
null(A22) = null(B22 −B21B

−1
11 B12).

It is easy to see that combining the last two Lemmas with minimal rank deficiency of F ensures
that null(Se) = null(K̃e) for every element e.

Lemma 6.8. Let K = F TF =
∑m

e=1Ke be an n-by-n finite element matrix with null space
N. Assuming that F has minimal rank deficiency, and that all element are N−compatible, then
null(Se) = null(K̃e) for every element e.


