
RC25190 (W1107-048) July 15, 2011
Computer Science

IBM Research Report

Object Initialization in X10

Yoav Zibin, Vijay Saraswat, David Cunningham, Igor Peshansky
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Object Initialization in X10

Abstract
X10 is an object oriented programming language with a sophisti-
cated type system (constraints, class invariants, non-erased gener-
ics, closures) and concurrency constructs (asynchronous activities,
multiple places). Object initialization is a cross-cutting concern that
interacts with all of these features in delicate ways that may cause
type, runtime, and security errors. This paper discusses possible de-
signs for object initialization, and the “hardhat” design chosen and
implemented in X10 version 2.2. Our implementation includes a
fixed-point inter-procedural (intra-class) data-flow analysis that in-
fers, for each method called during initialization, the setof fields
that are read, and those that are asynchronously and synchronously
assigned. Finally, we formalize the essence of initialization check-
ing with an effect system intended to complement a standard FJ
style formalization of the type system for X10. This system is sub-
stantially simpler than the masked types of [9]. To our knowledge,
this is the first formalization of a type and (flow-sensitive)effect
system for safe initialization in the presence of concurrency con-
structs. This formalization can be extended to cover all thefeatures
discussed in the first part of the paper.

1. Introduction
Constructing an object in a safe way is not easy: it is well known
that dynamic dispatch or leakingthis during object construction is
error-prone [1, 5, 10], and various type systems and verifiers have
been proposed to handle safe object initialization [3, 6, 9,11]. As
languages become more and more complex, new pitfalls are created
due to the interactions between language features.

X10 is an object oriented programming language with a sophis-
ticated type system (constraints, class invariants, non-erased gener-
ics, closures) and concurrency constructs (asynchronous activities,
multiple places). This paper shows that object initialization is a
cross-cutting concern that interacts with other features in the lan-
guage. We discuss several language designs that restrict these inter-
actions, and explain why we chose thehardhatdesign for X10.

Hardhat was termed in [5] and it describes a design that pro-
hibits dynamic dispatch or leakingthis (e.g., storingthis in the
heap) during construction. A hardhat design limits the userbut also
protects her from future bugs (see Fig. 1 below for two such bugs).
X10’s hardhat design is even stricter due to additional language fea-
tures such as concurrency, places, and closures.

On the other end of the spectrum, Java and C# allow dynamic
dispatch and leakingthis. However, they still maintain type and
runtime safety by relying on the fact that every type has a default

value (also called zero value, which is either 0,false, or null), and
all fields are zero-initialized before the constructor begins. As a
consequence, a half-baked object can leak before all its fields are
set. Phrased differently, when reading a final field, one can read
the default value initially and later read a different value. Another
source of subtle bugs is due to the synchronization barrier at the
end of a constructor [8] after which all assignments to final fields
are guaranteed to be written. The programmer is warned (in the
documentation only!) that immutable objects (using final fields) are
thread-safe only ifthis does not escape its constructor. Finally, if
the type-system is augmented, for example, with non-null types,
then a default value no longer exists, which leads to complicated
type-systems for initialization [3, 9].

C++ sacrifices type-safety on the altar of performance: fields are
not zero-initialized. (X10 has both type-safety and the performance
for not zero-initializing fields.) Therefore ifthis leaks in C++,
one can read an uninitialized field resulting in an arbitraryvalue.
Moreover, method calls are statically bound during construction,
which may result in an exception at runtime if one tries to invoke a
virtual method of an abstract class (see Fig. 4 below). (Determining
whether this happens is intractable [4].) We believe a design for
object initialization should have these desirable properties:

Cannot read uninitialized fields One should not be able to read
uninitialized fields. In C++ it is possible to read uninitialized
fields, returning an unspecified value which can lead to unpre-
dictable behavior. In Java, fields are zero initialized before the
constructor begins to execute, so it is possible to read the default
or zero value, but never an unspecified value.

Single value for final fields Final fields can be assigned exactly
once, and should be read only after assigned. In Java it is possible
to read a final field before it was assigned, therefore returning its
default value.

Immutable objects are thread-safeImmutable classes are a com-
mon pattern where fields are final/const and instances have no
mutable state, e.g.,String in Java. Immutable objects are often
shared between threads without any explicit synchronization, be-
cause programmers assume that if another thread gets a handle
to an object that that thread should see all assignments donedur-
ing initialization. However, weak memory models today do not
necessarily have this guarantee and immutable objects could be
thread-unsafe! Fig. 1 below will show that this can happen in
Java ifthis escapes from the constructor [8].

Simple The order of initialization should be clear from the syn-
tax, and should not surprise the user. Dynamic dispatch during
construction disrupts the order of initialization by executing a
subclass’s method before the superclass finished its initialization.
This is error-prone and often surprises the user.

Flexible The user should be able to express the common idioms
found in other languages with minor variations.

Type safeThe language should continue to be statically type-safe
even if it has rich types that do not have a default or zero value,
such as non-null types (T{self!=null} in X10’s syntax). Type-

class A {
static HashSet INSTANCES = new HashSet();
final int a;
A() {
a = initA(); // dynamic dispatch!
System.out.println(toString()); //again!
INSTANCES.add(this); // leakage!

}
int initA() { return 1; }
public String toString() { return "a="+a; }

}
class B extends A {

int b = 2;
int initA() { return b+42; }
public String toString() {
return super.toString()+",b="+b; }

public static void main(String[] args) {
new B(); // prints: a=42,b=0

}
}

Figure 1. Two initialization pitfalls in Java: leakingthis and dy-
namic dispatch during construction.

safety implies that reading from a non-null type should never
returnnull. Adding non-null types to Java [2, 3, 9] has been a
challenge precisely due to Java’s relaxed initialization rules.

We took the ideas of prohibiting dynamic dispatch or leaking
this during construction from [5], and materialized them into a set
of rules that cover all aspects of X10 (type-system, closures, gener-
ics, properties, and concurrent and distributed constructs). This
hardhat design in X10 (version 2.2) has the above desirable prop-
erties, however they come at a cost of limiting flexibility: it is not
possible to express cyclic immutable structures in X10. We chose
simplicity over flexibility in our design choices, e.g., X10prohibits
creating an alias ofthis during object construction (whereas a more
flexible design could track aliases via alias-analysis, at the cost of
sacrificing simplicity). Alternative designs for initialization are de-
scribed in Sec. 3, such as theproto design (which was part of X10
version 2.0) that allows cyclic immutable structures at thecost of a
more complicated design. To our knowledge, X10 is the first object-
oriented (OO) language to adopt the strict hardhat initialization de-
sign.

The contributions of this paperare: (i) presenting a complete
and strict hardhat design in a full-blown advanced OO language
with many cross-cutting concerns (especially the concurrent and
distributed aspects), (ii) discussing alternative designs, such as the
proto design, (iii) implementation inside the X10 open-source com-
piler and converting the entire X10 code-base (+200K lines of code)
to conform to the hardhat principles, (vi) FX10 formalism which is
the first to present a flow-sensitive effect system with concurrency
constructs and a soundness theorem stating that one can never read
an uninitialized field in a statically correct program.

The remainder of this introduction presents error-prone sequen-
tial initialization idioms in Sec. 1.1, thread-unsafe immutable ob-
jects and serialization in Sec. 1.2, and common initialization pitfalls
in parallel X10 programs in Sec. 1.3.

1.1 Initialization pitfalls in sequential code

Fig. 1 demonstrates the two most common initialization pitfalls in
Java: leakingthis and dynamic dispatch. We will first explain the
surprising output due to dynamic dispatch, and then the lessknown
possible bug due to leakingthis.

Running this code printsa=42,b=0, which is surprising to most
Java users. One would expectb to be 2, anda to be either 1 or 44.
However, due to initialization order and dynamic dispatch,the user
sees the default value forb which is 0, and therefore the value of

a is 42. We will trace the initialization order fornew B(): we first
allocate a new object with zero-initialized fields, and theninvoke
the constructor ofB. The constructor ofB first callssuper(), and
only afterward it will run the field initializer which setsb to 2. This
is the cause of surprise, becausesyntacticallythe field initializer
comes beforesuper(), however it is executed after. (And writing
b=2;super(); is illegal in Java because calling super must be the
first statement). During thesuper() call we perform two dynamic
dispatches: the two calls (initA() and toString()) execute the
implementation inB (and recall thatb is still 0). Therefore,initA()
returns 42, andtoString() returnsa=42,b=0. This bug might seem
pretty harmless, however if we change the type ofb from int to
Integer, then this code will throw aNullPointerException, which
is more severe.

The second pitfall is leakingthis before the object is fully-
initialized, e.g.,INSTANCES.add(this). Note that we leak a partially-
initialized object, i.e., the fields ofB have not yet been assigned and
they contain their default values. Suppose that some other thread it-
erates overINSTANCES and prints them. Then that thread might read
b=0. In fact, it might even reada=0, even though we just assigned 42
to a two statements ago! The reason is that this write is guaranteed
to be seen by other threads only after an implicit synchronization
barrier that is executed after the constructor ends. Sec. 1.2 further
explains final fields in Java and the implicit synchronization barrier.

The hardhat design in X10 (described in Sec. 2) prevents both
pitfalls, because its rules prohibit leakingthis, and they only allow
calling private or final methods (which cannot be overridden). It is
possible to annotate a method with@NoThisAccess, which allows
overriding but prohibits any access tothis. This can be useful, e.g.,
if you want to subclass and override a factory method to change
the concrete type of the object constructed, when the original class
uses the factory method in its constructor. It is possible tofix the
bugs in this example by following the hardhat initialization rules
in the following way: (i) Instead of leakingthis in the constructor,
we should add factory methods to create instances ofA andB, and
add the new fully-initialized instance toINSTANCES in the factory
methods. (ii) We should markinitA as @NoThisAccess, and so it
can be overridden inB, but cannot access fieldb. (iii) We need to
define a private or final methodtoStringOnlyA; this method cannot
be overridden so it can be called during construction; the public
non-final methodtoString could delegate totoStringOnlyA.

The hardhat design of X10 guarantees that a field can be read
only after it was written. Therefore, there is no need to zero-
initialize all fields before executing the constructor (as done in Java).

1.2 Final fields, Concurrency, and Serialization

We will start with an anecdote: suppose you have a friend that
playfully removed all the occurrences of thefinal keyword from
your legal Java program. Would your program stillrun the same?
On the face of it,final is used only to make thecompiler more
strict, i.e., to catch more errors at compile time (to make sure a
method is not overridden, a class is not extended, and a field or
local is assigned exactly once). Aftercompilation is done,final
should not change theruntimebehavior of the program. However,
this is not the case due to interaction between initialization and
concurrency: a synchronization barrier is implicitly added at the
end of a constructor [8] ensuring that assignments tofinal fields are
visible to all other threads. (Assignments to non-final fields might
not be visible to other threads!)

The synchronization barrier was added to the memory model of
Java 5 to ensure that the common pattern of immutable objectsis
thread-safe. Without this barrier another thread might seethe de-
fault value of a field instead of its final value. For example, it is
well-known thatString is immutable in Java, and its implementa-
tion uses three final fields:char[] value, and twoint fields named

offset andcount. The following code "AB".substring(1)
will return a new string"B" that shares the samevalue array as"AB",
but with offset andcount equal to 1. Without the barrier, another
thread might see the default values for these three fields, i.e.,null
for value and 0 foroffset andcount. For instance, if one removes
thefinal keyword from all three fields inString, then the follow-
ing code might printB (the expected answer), or it might printA or
an empty string, or might even throw aNullPointerException:
final String name = "AB".substring(1);
new Thread() { public void run() {

System.out.println(name); } }.start();

A similar bug might happen in Fig. 1 becausethis was leaked
into INSTANCES before the barrier was executed. Consider another
thread that iterates overINSTANCES and reads fielda. It might read
0, because the assignment of 42 toa is guaranteed to be visible to
other threads only after the barrier was reached.

Therefore, when creating an immutable class, Java’s documen-
tation recommends using final fields and avoid leakingthis in the
constructor. However,javac does not even give a warning if that
recommendation is violated. X10 rules prevent any leakage of this,
thus making it safe and easy to create immutable classes.

To summarize, final fields in Java enable thread-safe immutable
objects, but the user must be careful to avoid the pitfall of leaking
this.

Moreover, there are two other features in Java that are incom-
patible with final fields:custom serializationand clone. (These
two features are conceptually connected, because a clone can be
made by serializing and then de-serializing.) For example,below
we will explain why adding custom serialization toString would
have forced us to removefinal from all its fields, thus making it
thread-unsafe! Similarly, these two features prevent us from adding
final to theheader field in LinkedList (even though this field is
never re-assigned).

1.2.1 Custom serialization and immutability

Default serializationin Java of an objecto will serialize the en-
tire object graph reachable fromo. Default serialization is not al-
ways efficient, e.g., for aLinkedList, we only need to serialize the
elements in the list, without serializing the nodes with their next
and prev pointers. (It is possible to mark a field withtransient
to exclude it from serialization. However, markingnext andprev
as transient would simply create nodes that are disconnected upon
deserialization).

Custom serializationis done by defining a pair of methods
calledwriteObject andreadObject that handle serializing and de-
serializing, respectively. For example,readObject in LinkedList
de-serializes the list’s elements and rebuilds a new list; in the pro-
cess, it assigns to fieldheader. This field could have beenfinal
because it points to the same dummy header node during the en-
tire lifetime of the list. However, it is re-assigned in twomethods:
readObject and clone (see Sec. 1.2.2), and final fields can only
be assigned inconstructors. It is possible to use reflection in Java
to set a final field, and the new memory model (Java’s spec, Sec-
tion 17.5.3) even considers this:
“In some cases, such asdeserialization, the system will need to
change the final fields of an object after construction.”
“Freezes of a final field occur both at the end of the constructor in
which the final field is set, and immediately after each modification
of a final field via reflection or other special mechanism.”
(The “other special mechanism” is default serialization that has the
privilege of assigning to final fields.)

As another example, consider serializing the empty string
aVeryLongString.substring(0,0). The default serialization in Java
will serialize the very longchar[] with a zerooffset andcount. If
one would have wanted to write a custom serializer forString, then
she would have to remove thefinal keyword (making it thread-

unsafe!), or use reflection to set final fields (making it inefficient).
To summarize, custom serialization in Java is incompatiblewith
final fields.

On the other hand, X10 de-serializes an object by calling a
constructorwith aSerialData argument (as opposed toreadObject
in Java which is amethod). Therefore, de-serialization in X10 can
assign to final fields, without using reflection and without special
cases in the memory model (i.e., a freeze only happens at the end
of a constructor).

Currently, theCustomSerialization interfaces only specify the
serializer method:

def serialize():SerialData; // for serialization
There is an RFC (for a future version of X10) for adding static
method and constructor signatures to interfaces; with thatfeature,
the CustomSerialization interface would not be (partly) magical,
because it will also contain the de-serializer signature:

def this(data:SerialData); // for de-serialization
The X10 compiler currently auto-generates these two entities
(method and constructor) for every class (all classes are serializable
by default in X10), unless the user implementedCustomSerialization
and wrote these two methods herself.

1.2.2 Cloning and immutability

Cloning in Java has the same incompatibility with final fieldsas
serialization:clone is a method and therefore it cannot assign to
final fields. However,immutableobjects (such as strings) have no
use for cloning, because you only need to clone an object if you
plan tomutatethe object or the clone. Therefore, cloning is less
problematic than serialization with respect to immutability.

Unlike Java, X10 has no magic clone method. Instead, the user
can (deeply) clone an object using the serialization mechanism,
which is invoked when a final variable is copied to another place
(Sec. 1.3 talks aboutat and places in X10). So, currently clone can
be defined as:

def clone[T](o:T) { return at (here) o; }
Using serialization is less efficient than directly cloningan ob-

ject, and future work is planned to add cloning support to X10that
would be compatible with final fields (in a way similar to serializa-
tion) by defining an interfaceCloneable with:

def this(cloneFrom:CloneSource);
whereCloneSource is a struct that references the target object we
wish to clone.

1.3 Parallelism and Initialization in X10

X10 supports parallelism in the form of both concurrent and dis-
tributed code. Next we describe parallelism in X10 and its interac-
tion with object initialization.

Concurrent codeuses asynchronous un-named activities that
are created with theasync construct, and it is possible to wait for
activities to complete with thefinish construct. Informally, state-
mentasync S executes statementS asynchronously; we say that the
newly created activitylocally terminatedwhen it finished executing
S, and that itglobally terminatedwhen it locally terminated and any
activity spawned byS also globally terminated. Statementfinish S
blocks until all the activities created byS globally terminated.

Distributed codeis run over multipleplacesthat donot share
memory, therefore objects are (deeply) copied from one place to
another. The expressionat(p) E evaluatesp to a place, then copies
all captured references inE to placep, then evaluatesE in placep,
and finally copies the result back to the original place. Notethat
at is a synchronous construct, meaning that the current activity is
blocked until theat finishes. This construct can also be used as a
statement, in which case there is no copy back (but there is still a
notification that is sent back when theat finishes, in order to release
the blocked activity in the original place).

class Fib {
val fib2:Int, fib1:Int, fib:Int;
def this(n:Int) {
finish {
async {
val p = here.next();
fib2 = at(p) n<=1? 0 : new Fib(n-2).fib;

}
fib1 = n<=0? 0 : n<=1? 1 : new Fib(n-1).fib;

}
fib = fib2+fib1;

}
}

Figure 2. Concurrent and distributed Fibonacci example. Concur-
rent code is expressed usingasync andfinish: async starts an asyn-
chronous activity, andfinish waits for all spawned activities to fin-
ish. Distributed code usesat to shift betweenplaces; here denotes
the current place.at(p) E evaluates expressionE in placep, and fi-
nally copies the result back; any final variables captured inE from
the outer environment (e.g.,n) are first copied to placep. Possible
initialization pitfalls: (i) forget to usefinish, and read fromfib2
before its write finished, (ii) write to fieldfib2 in another place, i.e.,
at(p) this.fib2=..., which causesthis to be copied top so one
writes to a copy ofthis.

Fig. 2 shows how to calculate the Fibonacci numberfib(n) in
X10 using concurrent and distributed code. The keywordsval and
var are modifiers that correspond to final and non-final variables, re-
spectively. Note howfib(n-2) is calculated asynchronously at the
next place (next() returns the next place in a cyclic ordering of all
places), while simultaneously recursively calculatingfib(n-1) in
the current place (that will recursively spawn a new activity, and so
on). Therefore, the computation will recursively continueto spawn
activities at the next place untiln is 1. When both calculations glob-
ally terminate, thefinish unblocks, and we sum their result into
thefinal field fib.

We note that usingfinal local variablesfor fib2 and fib1 in-
stead of fields would have made this example more elegant, how-
ever we chose the later because this paper focuses onobjectinitial-
ization. X10 has similar initialization rules for final locals and final
fields, but it is outside the scope of this paper to present allforms
of initialization in X10 (including local variables and static fields).
Details of those can be found in X10’s language specificationat
x10-lang.org.

There are two possible pitfalls in this example. The first is
a concurrency pitfall, where we forget to usefinish, and there-
fore we might read from a field before its assignment was defi-
nitely executed. Java has definite-assignment rules (usingan intra-
procedural data-flow analysis) to ensure that a read can onlyhap-
pen after a write; The hardhat design in X10 adopted those rules
and extended them in the face of concurrency to support the pat-
tern of asynchronous initializationwhere anasync must have an
enclosingfinish (using an intra-class inter-procedural analysis, see
Sec. 2.11).

The second is a distributed pitfall, where one assigns to a field of
a copy ofthis in another place (instead of assigning in the original
place). Leakingthis to another place before it is fully initialized
might also cause bugs in custom serialization code (see Sec.2.10).

The rest of this paper is organized as follows. Sec. 2 presents
the hardhat initialization rules of X10 version 2.1 using examples,
by slowly adding language features and describing their interaction
with object initialization. Sec. 3 describes alternative designs for
object initialization (one was implemented in X10 version 2.0 and
another was under consideration for 2.1), weighing the prosand
cons of each. Sec. 4 presents Featherweight X10 (FX10), which is
a formalization of core X10 that includesfinish, async, and flow-

class A {
val a:Int;
def this() {
LeakIt.foo(this); //err
this.a = 1;
val me = this; //err
LeakIt.foo(me);
this.m2(); // so m2 is implicitly non-escaping

}
// permitted to escape
final def m1() {
LeakIt.foo(this);

}
// implicitly non-escaping because of this.m2()
final def m2() {
LeakIt.foo(this); //err

}
// explicitly non-escaping
@NonEscaping final def m3() {
LeakIt.foo(this); //err

}
}
class B extends A {
val b:Int;
def this() {
super(); this.b = 2; super.m3();

}
}

Figure 3. Escapingthis example.Definition of raw: this and
super are raw in non-escaping methods and in field initializers.
Definition of non-escaping: A method isnon-escapingif it is a
constructor, or annotated with@NonEscaping or @NoThisAccess, or
a method that is called on a rawthis receiver.Rule 1: A raw
this or super cannot escape or be aliased.Rule 2: A call on a
raw super is allowed only for a@NonEscaping method. (final and
@NoThisAccess are related to dynamic dispatch as shown in Fig. 4.)

sensitive type-checking rules. Sec. 5 summarizes previouswork in
the field of object initialization. Finally, Sec. 6 concludes.

2. X10 Initialization Rules
X10 is an advanced object-oriented language with a complex type-
system and concurrency constructs. This section describeshow ob-
ject initialization interacts with X10 features. We begin with object-
oriented features found in mainstream languages, such as construc-
tors, inheritance, dynamic dispatch, exceptions, and inner classes.
We then proceed to X10’s type-system features, such as constraints,
properties, class invariants, closures, (non-erased) generics, and
structs, followed by the parallel features of X10 for writing concur-
rent code (finish andasync), and distributed code (at). Next we
describe the inter-procedural data-flow analysis that ensures that a
field is read only after it has been assigned. Finally, we summarize
the virtues and attributes of initialization in X10.

2.1 Constructors and inheritance

Inheritance is the first feature that interacts with initialization: when
classB inherits fromA then every instance ofB has a sub-object that
is like an instance ofA. When we initialize an instance ofB, we
must first initialize itsA sub-object. We do this in X10 by forcing
the constructors ofB to make a super call, i.e., call a constructor of
A (either explicitly or implicitly).

Fig. 3 shows X10 code that demonstrates the interaction be-
tween inheritance and initialization, and explains by example why
leakingthis during construction can cause bugs. In all the exam-
ples, all errors issued by the X10 compiler are marked with//err
(and if there is no such mark then the code is correct).

We say that an object israw (also called partially initialized)
before its constructor ends, and afterward it iscooked(also called

abstract class A {
val a1:Int, a2:Int;
def this() {
this.a1 = m1(); //err1
this.a2 = m2();

}
abstract def m1():Int;
@NoThisAccess abstract def m2():Int;

}
class B extends A {
var b:Int = 3; // non-final field
def m1() {
val x = super.a1;
val y = this.b;
return 1;

}
@NoThisAccess def m2() {
val x = super.a1; //err2
val y = this.b; //err3
return 2;

}
}

Figure 4. Dynamic dispatch example.Rule 3: A non-escaping
method must be private or final, unless it has@NoThisAccess. Rule
4: A method with @NoThisAccess cannot accessthis or super
(neither read nor write its fields).

fully initialized). Note that when an object is cooked, all its sub-
objects must be cooked as well. X10 prohibits any aliasing or
leaking ofthis during construction, therefore onlythis or super
can be raw (any other variable is definitely cooked).

Object initialization begins by invoking a constructor, denoted
by the method definitiondef this(). The first leak would cause a
problem because fielda was not assigned yet. However, even after
all the fields ofA have been assigned, leaking is still a problem
because fields in a subclass (fieldb) have not yet been initialized.
Note that leaking is not a problem ifthis is not raw, e.g., inm1().

We begin with two definitions: (i) when an object israw, and
(ii) when a method isnon-escaping. (i) Variablesthis andsuper
are raw during the object’s construction, i.e., in field initializers
and in non-escaping methods (methods that cannot escape or leak
this). (ii) Obviously constructors are non-escaping, but you can
also annotate methodsexplicitly as @NonEscaping, or they can be
inferred to beimplicitly non-escaping if they are called on a raw
this receiver.

For example,m2 is implicitly non-escaping (and therefore can-
not leakthis) because of the call tom2 in the constructor. The user
could also markm2 explicitly as non-escaping by using the annota-
tion @NonEscaping. (Like in Java,@ is used for annotations in X10.)
We recommend explicitly marking public methods as@NonEscaping
to show intent, as done on methodm3. Without this annotation the
call super.m3() in B would be illegal, due to rule 2. (We could infer
that m3 must be non-escaping, but that would cause a dependency
from a subclass to a superclass, which is not natural for people used
to separate compilation.) Finally, we note that all errors in this ex-
ample are due to rule 1 that prevents leaking a rawthis or super.

2.2 Dynamic dispatch

Dynamic dispatch interacts with initialization by transferring con-
trol to the subclass before the superclass completed its initialization.
Fig. 4 demonstrates why dynamic dispatch is error-prone during
construction: callingm1 in A would dynamically dispatch to the im-
plementation inB that would read the default value.

X10 prevents dynamic dispatch by requiring that non-escaping
methods must be private or final (so overriding is impossible). For
example,err1 is caused by rule 3 becausem1 is neither private nor
final nor@NoThisAccess.

class B extends A {
def this() {
try { super(); } catch(e:Throwable){} //err

}
}

Figure 5. Exceptions example: if a constructor ends normally
(without throwing an exception), then all preceding constructor
calls ended normally as well.Rule 5: If a constructor does not call
super(...) or this(...), then an implicitsuper() is added at the
beginning of the constructor; the first statement in a constructor is
a constructor call (eithersuper(...) or this(...)); a constructor
call may only appear as the first statement in a constructor .

However, sometimes dynamic dispatch is required during con-
struction. For example, if a subclass needs to refine initialization
of the superclass’s fields. Such refinement cannot have any ac-
cess tothis, and therefore such methods must be marked with
@NoThisAccess. For example,err2 anderr3 are caused by rule 4
that prohibits accessthis or super when using@NoThisAccess.
@NoThisAccess prohibits any access tothis, however, one could
still access the method parameters. (If the subclass needs to read
a certain field of the superclass that was previously assigned, then
that field can be passed as an argument.)

In C++, the call tom1 is legal, but at runtime methods are
statically bound, so you will get a crash trying to call a purevirtual
function. In Java, the call tom1 is also legal, but at runtime methods
are dynamically bound, so the implementation ofm1 in B will read
the default values ofa1 andb.

2.3 Exceptions

Constructing an object may not always end normally, e.g., building
a date object from an illegal date string should throw an exception.
Exceptions combined with inheritance interact with initialization in
the following way: a cooked object must have cooked sub-objects,
therefore if a constructor ends normally (thus returning a cooked
object) then all preceding constructor calls (eithersuper(...) or
this(...)) must end normally as well. Phrased differently, in a
constructor it should not be possible to recover from an exception
thrown by a this or super constructor call. This is one of the reason
why a constructor call must be the first statement in Java; failure to
verify this led to a famous security attack [1].

Fig. 5 shows that it is an error to try to recover from an exception
thrown by a constructor call; the reason for the error is rule5 that
requires the first statement to besuper().

2.4 Inner classes

Inner classes usually read the outer instance’s fields during con-
struction, e.g., a list iterator would read the list’s header node.
Therefore, X10 requires that the outer instance is cooked, and pro-
hibits creating an inner instance when the receiver is a rawthis.

Fig. 6 shows it is an error in X10 to create an inner instance if
the outer is raw (from rule 6), but it is ok to create an instance of a
static nested class, because it has no outer instance.

In fact, it is possible to view this rule as a special case to the
rule that prohibits leaking a rawthis (because when you create an
inner instance on a rawthis receiver, you created an alias, and now
you have two raw objects:Inner.this andOuter.this). We wish to
keep the invariant that only onethis can be raw.

In our rules, we assume that there is a singlethis reference,
because we can convert all inner, anonymous and local classes into
static nested classes by passing the outer instance and all other
captured variables explicitly as arguments to the constructor.

We now turn our attention to X10’s sophisticated type-system
features not found in main-stream languages: constraints,proper-
ties, class invariants, closures, (non-erased) generics,and structs.

class Outer {
val a:Int;
def this() {
// Outer.this is raw
Outer.this. new Inner(); //err
new Nested(); // ok
a = 3;

}
class Inner {
def this() {

// Inner.this is raw, but
// Outer.this is cooked
val x = Outer.this.a;

}
}
static class Nested {}

}

Figure 6. Inner class example: the outer instance is always cooked.
Rule 6: a rawthis cannot be the receiver ofnew.

class A {
val i0:Int; //err
var i1:Int;
var i2:Int{self!=0}; //err
var i3:Int{self!=0} = 3;
var i4:Int{self==42}; //err
var s1:String;
var s2:String{self!=null}; //err
var b1:Boolean;
var b2:Boolean{self==true}; //err

}

Figure 7. Default value example.Definition of has-zero: A type
has-zeroif it contains the zero value (which is eithernull, false,
0, or zero in all fields for user-defined structs) or if it is a type
parameter guarded withhaszero (see Sec. 2.8).Rule 7: A var field
that lacks a field initializer and whose type has-zero, is implicitly
given a zero initializer.

2.5 Constraints and default/zero values

X10 supports constrained types using the syntaxT{c}, wherec is
a boolean expression that can use final variables in scope, literals,
properties (described below), the special keywordself that denotes
the type itself, field access, equality (==) and disequality (!=). There
are plans to add arithmetic inequality (<, <=) to X10 in the future,
and one can plug in any constraint solver into the X10 compiler.

As a consequence of constrained types, some types do not have
a default value, e.g.,Int{self!=0}. Therefore, in X10, the fields of
an object cannot be zero-initialized as done in Java. Furthermore, in
Java, a non-final field does not have to be assigned in a constructor
because it is assumed to have an implicit zero initializer. X10
follows the same principle, and a non-final field is implicitly given
a zero initializerif its type has-zero. Fig. 7 defines when a typehas-
zero, and gives examples of types without zero. Note thati0 has to
be assigned because it is a final field (val), as opposed toi1 which
is non-final (var).

2.6 Properties and the class invariant

Properties are final fields that can be used in constraints, e.g.,Array
has asize property, so an array of size 2 can be expressed as:
Array{self.size==2}. The differences between a property and a
final field are both syntactic and semantic, as seen in classA of
Fig. 8. Syntactically, properties are defined after the class name,
must have a type and cannot have an initializer, and must be ini-
tialized in a constructor using a property call statement written as
property(...). Semantically, properties are initialized before all
other fields, and they can be used in constraints with the prefix self.

class A(a:Int) {
def this(x:Int) {
property(x);

}
}
class B(b:Int) {b==a} extends A {
val f1 = a+b, f2:Int, f3:A{this.a==self.a};
def this(x:Int) {
super(x);
val i1 = super.a;
val i2 = this.b; //err
val i3 = this.f1; //err
f2 = 2; //err
property(x);
f3 = new A(this.a);

}
}

Figure 8. Properties and class invariant example: properties (a and
b) are final fields that are initialized before all other fields using
a property call (property(...); statement). If a class does not
define any properties, then an implicitproperty() is added after the
(implicit or explicit) super(...). Field initializers are executed in
their declaration order after the (implicit or explicit) property call.
Rule 8: If a constructor does not callthis(...), then it must have
exactly one property call, and it must be unconditionally executed
(unless the constructor throws an exception).Rule 9: The class
invariant must be satisfied after the property call.Rule 10: The
super fields can only be accessed aftersuper(...), and the fields of
this can only be accessed afterproperty(...).

class A {
var a:Int = 3;
def this() {
val closure1 = ()=>this.a; //err
at(here.next()) closure1();
val local_a = this.a;
val closure2 = ()=>local_a;

}
}

Figure 9. Closures example.Rule 11: A closure cannot capture a
rawthis.

When using the prefixthis, you can access both properties and
other final fields. The difference betweenthis andself is shown
in field f3 in Fig. 8: this.a refers to the propertya stored inthis,
whereasself.a refers toa stored in the object to whichf3 refers. (In
the constructor, we indeed see that we assign tof3 a new instance
of A whosea property is equal tothis.a.)

Properties must be initialized before other fields because field
initializers and field types can refer to properties (see initializer
for f1 and the type off3). The superclass’s fields can be accessed
after the super call, and the other fields after the property call; field
initializers are executed after the property call.

Theclass invariant({b==a} in Fig. 8) may refer only to proper-
ties, and it must be satisfied after the property call (rule 9).

2.7 Closures

Closures are functions that can refer to final variables in the enclos-
ing scope, e.g., they can refer to final method parameters, locals,
andthis. When a closure refers to a variable, we say that the vari-
able iscapturedby the closure, and the variable is thus stored in
the closure object. Closures interact with initializationwhen they
capturethis during construction.

Fig. 9 shows why it is prohibited to capture a rawthis in
a closure: that closure can later escape to another place which
will serialize all captured variables (including the rawthis, which

class B[T] {T haszero} {
var f1:T;
val f2 = Zero.get[T]();

}
struct WithZeroValue(x:Int,y:Int) {}
struct WithoutZeroValue(x:Int{self!=0}) {}
class Usage {
var b1:B[Int];
var b2:B[Int{self!=0}]; //err
var b3:B[WithZeroValue];
var b4:B[WithoutZeroValue]; //err

}

Figure 10. haszero type predicate example.Rule 12: A type must
be consistent, i.e., it cannot contradict the environment;the envi-
ronment includes final variables in scope, method guards, and class
invariants..

should not be serialized, see Sec. 2.10). The work-around for using
a field in a closure is to define a local that will refer only to the
field (which is definitely cooked) and capture the local instead of
the field as done inclosure2.

2.8 Generics and Structs

Structsin X10 are header-less inlinable objects that cannot inherit
code (i.e., they canimplementinterfaces, but cannotextendany-
thing). Therefore an instance of a struct type has a known size and
can be inlined in a containing object. Java’s primitive types (int,
byte, etc) are represented as structs in X10. Structs, as opposedto
classes, do not contain the valuenull.

Generics in X10 are reified, i.e, not erased as in Java. For
example, instances ofBox[Byte] andBox[Double] would have the
same size in Java but different sizes in X10. Although generics are
not a new concept, the combination of generics and the lack of
default values leads to new pitfalls. For example, in Java and C#, it
is possible to define an equivalent to

class A[T] { var a:T; }
However, this is illegal in X10 because we cannot be sure thatT
has-zero (see Fig. 7), e.g., if the user instantiatesA[Int{self!=0}]
then fielda cannot be assigned a zero value without violating type-
safety. Therefore X10 has a type predicate writtenX haszero that
evaluates to true if typeX has-zero. Usinghaszero in a constraint
(e.g., in a class invariant or a method guard), makes it possible to
guarantee that a type-parameter will be instantiated with atype that
has-zero.

Fig. 10 shows an example of a generic classB[T] that constrains
the type-parameterT to always have a zero value. According to
rule 7, fieldf1 has an implicit zero field initializer. It is also possible
to write the initializer explicitly (as done in fieldf2) by using
the static methodZero.get[X]() (that is guarded byX haszero).
Next we see two struct definitions: the first has two properties that
has-zero, and the second has a property that does not have zero.
According to the definition of has-zero in Fig. 7, a struct has-zero if
all its fields has-zero, thereforeWithZeroValue haszero is true, but
WithoutZeroValue haszero is false. Finally, we see an example of
usages ofB[T], where two usages are legal and two are illegal (see
rule 12).

We now turn our attention to the parallel features of X10 for con-
current programming (finish andasync) and distributed program-
ming (at). Sec. 1.3 already explained how parallel code is written in
X10, and what are the common pitfalls of initialization in parallel
code. Next we present the rules that prevent these pitfalls.

2.9 Concurrent programming and Initialization

Fig. 11 shows how to asynchronously assign to fields. Recall that
we wish to guarantee that one can never read an uninitializedfield,
therefore rule 13 ensures that all fields are assigned at least once.

class A {
var f1:Int; // note: var field
val f2:Int; // note: val field
val f3:Int;
def this() {//err: f2 was not definitely assigned
async f1 = 1; async f2 = 2;
finish { async f3 = 3; }

}
}

Figure 11. Concurrency in initialization example: asynchronously
assign to a field.Rule 13:A constructor must finish assigning to all
fields at least once.Rule 14: A final field can be assigned at most
once.

class A {
val f:Int;
def this() { //err: f was not definitely assigned
// Execute at another place
at (here.next())
this.f = 1; //err: this escaped

}
}

Figure 12. Distributed initialization example.Rule 15:a rawthis
cannot be captured by anat.

All three fields inA are asynchronously assigned, however, only
f2 is not definitely assigned at the end of the constructor. Assigning
to f3 has an enclosingfinish, so it is definitely assigned. Fieldf1
is also definitely assigned, because it is non-final so from rule 7 it
has an implicit zero field initializer. However, fieldf2 is final so
it does not have an implicit field initializer. Moreover,f2 is only
asynchronously assigned, and the constructor does not haveto wait
for this assignment to finish, thus violating rule 13. (The exact data-
flow analysis to enforce rule 13 is described in Sec. 2.11.) Rule 14
is the same as in Java: a final field is assignedat mostonce (and,
combined with rule 13, we know it is assignedexactlyonce).

2.10 Distributed programming and Initialization

X10 programs can be executed on a distributed system with mul-
tiple places that have no shared memory. Objects are copied from
one place to another when captured by anat. Copying is done
by first serializing the object into a buffer, sending the buffer to
the other place, and then de-serializing the buffer at the other
place. As in Java, one can write custom serialization code in
X10 by implementing theCustomSerialization interface, and
defining the methodserialize():SerialData and the constructor
this(data:SerialData).

Fig. 12 shows a common pitfall where a rawthis escapes to
another place, and the field assignment would have been done on
a copy ofthis. We wish to de-serialize only cooked objects, and
therefore rule 15 prohibitsthis to be captured by anat. Conse-
quently, we also report that fieldf was not definitely assigned.

2.11 Read and write of fields

We now present a data-flow analysis for guaranteeing that a field is
read only after it was written, and that a final field is assigned ex-
actly once. Java performs anintra-procedural data-flow analysis in
constructorsto calculate when afinal field is definitely-assigned
and definitely-unassigned. In contrast, X10 performs aninter-
procedural (fixed-point) data-flow analysis in allnon-escaping
methods(and constructors) to calculate when a field (both final
and non-final) is definitely-assigned,definitely-asynchronously-
assigned, and definitely-unassigned. The details are explained us-
ing examples (Fig. 13) by comparison with Java; the full analysis
is described in X10’s language specification.

class A {
val a:Int;
def this() {
readA(); //err1
finish {
async {

a = 1; // assigned={a}
readA();

} // asyncAssigned={a}
readA(); //err2

} // assigned={a}
readA();

}
private def readA() { // reads={a}
val x = a;

}
}
class B {
var i:Int{self!=0}, j:Int{self!=0};
def this() {
finish {
asyncWriteI(); // asyncAssigned={i}

} // assigned={i}
writeJ();// assigned={i,j}
readIJ();

}
private def asyncWriteI() { // asyncAssigned={i}
async i=1;

}
private def writeJ() { // reads={i} assigned={j}
if (i==1) writeJ(); else this.j = 1;

}
private def readIJ() { // reads={i,j}
val x = this.i+this.j;

}
}

Figure 13. Read-Write order for fields. We infer for each method
three sets: (i) fields it reads (i.e., these fields must be assigned be-
fore the method is called), (ii) fields it assigns, (iii) fields it assigns
asynchronously. The data-flow maintains these three sets before
and after each statement;assigned becomesasyncAssigned
after anasync, andasyncAssigned becomesassigned after a
finish. In this example, we omitted empty sets.Rule 16: A field
may be read only if it is definitely-assigned.Rule 17: A final field
may be written only if it is definitely-unassigned.

X10, like Java, allowswriting to a final field only when it is
definitely-unassigned, and it allowsreadingfrom a final field only
when it is definitely-assigned. X10 also has the same read restric-
tion on non-final fields (recall that rule 7 adds a field initializer if
the field’s type has-zero).

Consider first only final fields. They are easier to type-check
because they can only be assigned in constructors. X10 extends
Java rules, by calculating for each non-escaping methodm the set
of final fields it reads, and callingm is legal only if these fields have
been definitely assigned. For example, in classA, methodreadA
reads fielda and therefore cannot be called beforea is assigned
(e.g.,err1). Note that Java does not perform this check, and it
is legal to callreadA which will return the zero value ofa. X10
also adds the notion ofdefinitely-asynchronously-assignedwhich
means a field was definitely-assigned within anasync (so it cannot
be read, e.g.,err2), but after an enclosingfinish it will become
definitely-assigned (so it can be read). The flow maintains three
sets:reads, assigned, andasyncAssigned. If a method reads
an uninitialized field, then we add it to itsreads set; however, if a
constructor reads an uninitialized field, then it is an error. Phrased
differently, thereads set of a constructor must be empty.

Now consider non-final fields. They can be assigned and read in
methods, thus requiring a fixed-point algorithm. For example, con-
sider methodwriteJ. Initially, reads is empty, whileassigned
andasyncAssigned are the entire set of fields. In the first itera-
tion, we addi to reads, and when we join the two branches of the
if, assigned is decreased to onlyj. The fixed-point calculation,
in every iteration, increasesreads and decreasesassigned and
asyncAssigned, until a fixed-point is reached.

2.12 Static initialization

Unlike Java, X10 does not support dynamic class loading, andall
static fields in X10 are final. Thus, initialization of staticfields is
a one-time phase that is done before themain method is executed.
Reading a static field in this phasewaitsuntil the field is initialized,
which may lead to dead-lock. However, in practice, deadlockis rare,
and usually found quickly the first time a program is executed.

2.13 Virtues and attributes of initialization in X10

We assume there is a singlethis variable, because all nested
classes can be converted to static, as described in Sec. 2.4.There-
fore, initialization in X10 has the following attributes: (i) this
(and its aliassuper) is the only accessible raw object in scope
(rule 1), (ii) only cooked objects cross places (rule 15), (iii) only
@NoThisAccess methods can be dynamically dispatched during con-
struction (rule 3), (iv) all final field assignments finish by the time
the constructor ends (rule 13), (v) it is not possible to readan unini-
tialized field (rule 16), and (vi) reading a final field always results
in the same value (rule 17 combined with attribute (v)).

3. Alternative Initialization Designs
3.1 Default values design

Java first initializes fields with either 0,false, or null (depending
on the field type) and then runs the constructor to initializethe
fields according to the programmer’s wishes. If every X10 type
had a default value that was statically known, then Java’s object
initialization scheme could be used in X10. This would have the
advantage of familiarity for Java programmers that are learning
X10. The disadvantages are that that observing final fields changing
value is nonintuitive, and that reading the field before initialization
is prone to undetectable errors.

Unfortunately, it is hard to reconcile the notion of a default value
with X10’s type system, because a programmer can define a type
which does not contain a default value. In the X10 type system,
one can define a type with no values at all, by using a constraint
that yields a contradiction.

This could be addressed by extending the X10 types to require
that the programmer define a new constant value for any type that
has been constrained enough that the original default valueis no
longer a member of the type. This means that every field can be
initialized to the value defined in its type. The disadvantage of this
approach is that the type system becomes more complex and more
type annotations are required. We decided that this, in combination
with the disadvantages given above, was too problematic to justify
the advantages of Java-style object initialization.

For example, consider a fieldbirthday that cannot benull, i.e.,
it does not have a default value:

class Person { val birthday:Date{self!=null}; ...}

Then in this design the programmer would have to specify a default
value for this field, e.g.,Date.MIN DATE. The field would be initial-
ized with this default value, and its final value would be assigned
only later. Specifying default values seems like a cumbersome de-
sign.

class C {
val next : C {self!=null};
var fld : C;
def this(n : proto C{self!=null}) {
//Console.OUT.println(n.next); //err1
//n.f(); //err2
this.next = n;

}
def this() {
//Console.OUT.println(this.next); //err3
//this.f(); //err4
val c = new C(this);
//Console.OUT.println(c.next.next); //err5
this.next = c;

}
def f() {
Console.OUT.println(this.next);

}
def this(c : C, Int) {
//c.m(this); //err6
Console.OUT.println(c.fld.next);
this.next = c;

}
void m (n : proto C) proto {
this.fld = n;

}
static def test() {
val c:C{self!=null} = new C();
assert c.next.next==c;

}
}

Figure 14. An immutable cycle of heap references, usingproto.

3.2 Proto Design

If we want to allow some of the programs that the Hardhat design
rejects, such as immutable cycles in the object graph, but wedo
not want to burden the type system with default value annotations,
then one solution is to allowthis to escape in certain cases while
still preventing reads from uninitialized fields. This can be achieved
by annotating reference types with a keywordproto to indicate
that the referenced object is partially constructed. Readsof fields
where the target object isproto are not allowed because a par-
tially constructed object may not have initialized its fields yet. The
advantage of this approach is that it allows a set of partially con-
structed objects to establish themselves as a mutually referential
cycle of objects in the heap, which would not otherwise be possi-
ble. The disadvantage is that it requires an additional typeannota-
tion, although this annotation is only required in code thatcreates
immutable cyclic heap structures. Also note that there are no ad-
ditional space or runtime overheads since these extra type system
mechanisms are for static checking only.

An example of an immutable cycle of two nodes is given in
Fig. 14. A more practical but less concise example would be an
immutable doubly-linked list. Let us assume that we would like
to optimize away any null reference checks, so we constrain all
references to exclude the null value. The commented out lines
indicate code that would be rejected by the type system.

In all constructors,this is a reference to a partially constructed
object. If the type ofthis were to be explicit, it would beproto
C{self!=null}. Theproto element of the type forbids any field
reads. It also prevents the reference being leaked (e.g. into f()),
except into variables ofproto type where it follows that there is
protection from uninitialized field reads.

The first constructor’sn parameter takes aproto reference to
the originalC instance. It is limited in what it can do withn, e.g. it
cannot readn.next, but it can initialize its ownnext field with the
passed-in value. When the second constructor returns, bothobjects

are fully constructed with all fields initialized. Thus, thetype of
the variablec does not have a proto annotation and the field read
c.next is allowed.

If a type has theproto keyword, then its fields (both var and
val) may have partially constructed objects assigned to them, but
fields may not be read. Conversely, the absence ofproto means
that the fields may be read but var fields may not have partiallycon-
structed objects assigned to them. This means thatproto C andC
are not related by sub-typing. In other words,proto C means defi-
nitely partially constructed andC means definitely fully constructed.
Consequently it makes no sense to allow casting between the two
types, and one may not extend or implement a proto type. The only
sources ofproto typed objects are via thethis keyword in a con-
structor and via method parameters ofproto type. The only way a
type can lose itsproto is by becoming fully constructed.

Considererr5 in Fig. 14. If we had inferred the type ofc
to be non-proto, then we could have read the uninitialized field
this.next. To solve this problem, we must ensure that the whole
cycle becomes fully constructed together. This can be arranged
by changing the type ofnew C(...) to beproto C if one of its
arguments is ofproto type. This does not affect the assignment
this.next = c becausethis is proto.

We do not allow fields to haveproto type. This is because the
referenced object will eventually be fully constructed andthen there
would be a variable ofproto type pointing to a fully constructed in-
stance. This admits the possibility of someone assigning a partially
constructed object to a field of the fully constructed object, just as
was done in the first constructor in Fig. 14. Then, one could acciden-
tally read an uninitialized field from the partially constructed object
by going through the fully constructed object. Disallowingproto
in fields avoids this problem. However local variables are safe be-
cause of lexical scoping, since they will go out of scope before the
constructor returns and the object becomes fully constructed.

There would be an issue calling other instance methods onthis
from a constructor, because the type ofthis in those methods
would need to beproto since the target is still partially constructed.
We support this by allowing theproto keyword to also be used
on a method as an effect annotation, i.e. it must be preserved
by inheritance. Such methods are calledproto methods and can
be called on partially constructed targets. The type ofthis then
subjects the body of the method to the same restrictions as wehave
already seen in constructor bodies.

However in some cases we would like to avoid code duplication
by allowing some methods to be callable on bothproto and non-
proto targets. This violates our principle that the two kinds of
objects enjoy different privileges and are completely distinct. The
error err6 in Fig. 14 shows how we could potentially read an
uninitialized field if we allowed this relaxation.

To address this, we only allow the method to be called on non-
proto targets if there are noproto parameters to the method. No
such parameters means the only partially constructed object in
scope isthis. In the case where the method is called on a non-
proto target there is therefore no partially constructed object in
scope, and no harm can be done.

While we believe this type system is correct and usable for writ-
ing real programs in the X10 language, we had to decide whether
the additional type system complexity and annotations werea rea-
sonable price to pay for the additional expressiveness (i.e. the abil-
ity to construct immutable heap cycles). We ultimately decided that
immutable heap cycles are too rare in practice to justify including
these extra mechanisms in the language.

4. Formalism: FX10
Featherweight X10 (FX10) is a formal calculus for X10 intended to
complement Featherweight Java (FJ). It models imperative aspects

of X10 including the concurrency constructsfinish and async.
FX10 models the heart of the field initialization problem: a field
can be read only after it is definitely assigned.

The basic idea behind the formalization is very straightforward.
We break up the formalization into two distinct but interacting
subsystems, atype system(Sec. 4.2) and aneffectsystem (Sec. 4.3).
The type system is completely standard – think the system of FJ,
adapted to the richer constructs of FX10.

The effect system is built on a very simplelogic of initializa-
tion assertions. The primitive formula+x (+p.f) asserts that the
variablex (the fieldf of p) is definitely initialized with a cooked ob-
ject, and the formula−p.f asserts thatp.f is being initialized by a
concurrent activity (and hencep.f will be definitely initialized once
an enclosingfinish is crossed).1 An initialization formulaφ or ψ
is simply a conjunction of such formulasφ ∧ ψ or an existential
quantification∃x.φ. An effects assertionφ S ψ (for a statementS)
is read as a partial correctness assertion: when executed ina heap
that satisfies the constraintφ, Swill on termination result in a heap
that satisfiesψ. Since we do not modelnull, our formalization can
be particularly simple: variables, once initialized, stayinitialized,
henceSwill also satisfyφ.

Another feature of our approach is that, unlike Masked Types[9],
the source program syntax does not permit the specification of ini-
tialization assertions. Instead we use a standard least fixed point
computation to automatically decorate each methoddef m(x : C){S}
with pairs(φ,ψ) (in the free variablesthis,x) such that under the
assumption that all methods satisfy their corresponding assertion
we can show thatφ S ψ.2 This computation must be sensitive to
the semantics of method overriding, that is a method with deco-
ration (φ,ψ) can only be overridden by a method with decoration
(φ′,ψ′) that is “at least as strong as”(φ,ψ) (viz, it must be the
case that (φ ⊢ φ′ andψ′ ⊢ ψ). Further, if the method is not marked
@NonEscaping, thenφ is required to entail+this (that is,this is
cooked), and if it marked@NoThisAccess then φ,ψ cannot have
this free.

By not permitting the user to specify initialization assertions
we make the source language much simpler than [9] and usable
by most programmers. The down side is that some initialization
idioms, such as cyclic initialization, are not expressible.

For reasons of space we do not include the (standard) details
behind the decoration of methods with initialization assertions. We
also omit many extensions (such as generics, interfaces, constraints,
casting, inner classes, overloading, co-variant return types, private/-
final locals, field initializers etc.) necessary to establish the sound-
ness of initialization for the full language discussed in the first half
of the paper. FX10 also does not model places because the language
design decision to only permit cooked objects to cross places means
that the rules forat are routine.

We use the usual notation ofx to represent a vector or set
of x1, . . . ,xn. A programP is a pair of class declarationsL (that
is assumed to be global information) and a statementS.

Overview of formalism Sec. 4.1 presents the syntax of FX10.
Sec. 4.2 briefly describes the type system. Sec. 4.3 defines the
flow-sensitive rules for (φ S ψ), while Sec. 4.4 gives the reduction
rules for statements and expressions (S,H S′,H′ | H′ ande,H
l,H′). Finally Sec. 4.5 presents the main formal result (soundness
theorem).

1 There is no need for the formula−x since local variables declared within
anasync cannot be accessed outside it.
2 Note that this approach permits a formalx to a method to be “uncooked”
(φ does not entail+x or+x.f for any fieldf) or partially cooked (φ does not
entail+x but may entail+x.f for some fieldsf). As a result of the method
invocation the formal may become more cooked.

4.1 Syntax

P ::= L,S Program.
L ::= class C extends D { F; M } cLass declaration.
F ::= varf : C Field declaration.
M ::= G def m(x : C) : C{S} Method declaration.
G ::= @NonEscaping | @NoThisAccess Method modifier.
p ::= l | x Path.
e ::= p.f | new C Expressions.
S ::= p.f= p; | p.m(p); | val x = e;S

| finish S | async S | S S Statements.

Figure 15. FX10 Syntax. The terminals are locations (l), param-
eters andthis (x), field name (f), method name (m), class name
(B,C,D,Object), and keywords (new, finish, async, val). The pro-
gram source code cannot contain locations (l), because locations
are only created during execution/reduction inR-NEW of Fig. 17.

Fig. 15 shows the syntax of FX10. Expressionval x = e;S
evaluatese, assigns it to a new variablex, and then evaluatesS. The
scope ofx is S.

The syntax is similar to the real X10 syntax with the following
difference: FX10 does not have constructors; instead, an object
is initialized by assigning to its fields or by calling non-escaping
methods.

4.2 Type system

The type system for FX10 checks that every parameter and variable
has a type (a type is the name of a class), and that a variable oftype
C can be assigned only expressions whose type is a subclass ofC,
and can only be the receiver of invocations of methods definedin
C. The type system is formalized along the lines of FJ. No compli-
cations are introduced by the extra features of FX10 – assignable
fields, local variable declarations,finish andasync. We omit de-
tails for lack of space and because they are completely routine.

In the rest of this section we shall assume that the program being
consideredL,S is well-typed.

4.3 Effect system

We use a simple logic of initialization for our basic assertions. This
is an intuitionistic logic over the primitive formulas+x (the vari-
able or parameterx is initialized),+p.f (the fieldp.f is initialized),
and−p.f (the field p.f is being concurrently initialized). We are
only concerned with conjunctions and existential quantifications
over these formulas:φ,ψ::=true | +x | +p.f | −p.f | φ∧ψ | ∃x.φ

The notion of substitution on formulasφ[x/z] is specified in a
standard fashion.

The inference relation is the usual intuitionistic implication over
these formulas, and the following additional proof rules: (1) φ ⊢
+p.f if φ ⊢ +p; and (2) if theexactclass ofx is C, andC has the
fieldsf, thenφ ⊢+p if φ ⊢ p.fi , for eachi. (We only know theexact
class for a localx whenval x = new C;S.)

A heap is a mapping from a given set of locations toobjects.
An object is a pairC(u) whereC is a class (the exact class of the
object), andu is a partial map from the fields ofC to locations. We
say the object istotal/cookedif its map is total.

An annotation Nfor a heapH maps eachl ∈ dom(H) to a pos-
sibly empty set of fieldsa(H(l)) of the class ofH(l) disjoint from
dom(H(l)). (These are the fields currently being asynchronously
initialized.) The logic of initialization described aboveis clearly
sound for the obvious interpretation of formulas over annotated
heaps. For future reference, we say that that a heapH satisfiesφ
if there is some annotationN (and some valuationv assigning lo-
cations in dom(H) to free variables ofφ) such thatφ evaluates to
true.

φ ⊢+p.f ∃x.φ,+x S ψ
φ val x = p.f;S ∃x.ψ (T-ACCESS)

∃x.φ S ψ
φ val x = new C();S ∃x.ψ (T-NEW)

φ ⊢+q
φ p.f= q +p.f

(T-ASSIGN)

φ S ψ
φ finishS +ψ
φ asyncS −ψ

(T-FINISH,ASYNC)
φ S1 ψ1 φ,ψ1 S2 ψ2

φ S1S2 ψ1,ψ2
(T-SEQ)

m(x) :: φ′ ⇒ ψ′ φ ⊢ φ′[p/this,p/x]
φ p.m(p) ψ′[p/this,p/x]

(T-INVOKE)

Figure 16. FX10 Effect System (φ S ψ)

The proof rules for the judgementφ S ψ are given in Figure 16.
They use two syntactic operations on initialization formulas defined
as follows.+ψ is defined inductively as follows:+true = true,
++x=+x,+±p.f=+p.f,+(φ∧ψ) = (+φ)∧(+ψ) and+∃x.φ=
∃x.+ φ. −ψ is defined similarly:−true = true, −+ x = true,
−±p.f=−p.f, −(φ∧ψ) = (−φ)∧ (−ψ) and−∃x.φ = ∃x.−φ.3

The rule(T-ACCESS) can be read as asserting: ifφ entails the field
p.f is initialized, and with the assumption∃x.φ (together with+x
which states thatx is initialized to a cooked object), we can estab-
lish that execution ofS satisfies the assertionψ then we can es-
tablish that execution ofval x = p.f;S in (a heap satisfying)φ
establishes∃x.ψ. Here we must take care to projectx out ofψ since
x is not accessible outside its scopeS; similarly we must take care
to projectx out ofφ when checkingS. The rule (T-NEW) can be read
in a similar way except that when executingS we can make no as-
sumption thatx is initialized, since it has been initialized with a raw
object (none of its fields are initialized). Subsequent assignments to
the fields ofx will introduce effects recording that those fields have
been initialized. The rule(T-ASSIGN) checks thatq is initialized to a
cooked object and then asserts thatp.f is initialized to a cooked ob-
ject. The rule(T-FINISH) can be understood as recording that after a
finish has been “crossed” all asynchronous initializationsψ can be
considered to have been performedφ. Conversely, the rule(T-ASYNC)

states that any initializations must be considered asynchronous to
the surrounding context. The rule(T-SEQ) is a slight variation of the
stadard rule for sequential composition that permitsφ to be used in
the antecedent ofS2, exploiting monotonicity of effects. Note the
effects recorded forS1S2 are a conjunction of the effects recorded
for S1 andS2. The rule(T-INVOKE) is routine.

As an example, consider the following classes. Assertions are
provided in-line.
class A extends Object {
var f:Object; var g:Object; var h:Object;
@NonEscaping def build(a:Object) {
// inferred decoration: phi => psi
// phi= +this.g, +a
// psi= -this.h, +this.f
// checks phi implies +this.g
val x = this.g;
async this.h = x; // psi= -this.h
finish {

// checks phi implies +a
async this.f = a; // psi= -this.h,-this.f

} // psi= -this.h,+this.f
}

}
class B extends A { e:Object; }
Method build synchronously (asynchronously) initializes fields
this.f (this.h), and it assumes thatthis.g anda are cooked. The
following statement completely initializesb:
val b = new B();
val a = new Object(); // psi= +a
b.g = a; // psi= +a,+b.g

3 It turns out that expressions of the form−+x never arise sinceasync is a
scoping construct, hence a local variable declared within it never “crosses”
out.

finish {
b.build(a); // psi= +a,+b.g,+b.f,-b.h

} // psi= +a,+b.g,+b.f,+b.h
b.e = a; // psi implies +a,+b

4.4 Reduction

The reduction relation is described in Figure 17. An S-configuration
is of the formS,H whereS is a statement andH is a heap (represent-
ing a computation which is to executeS in the heapH), or H (repre-
senting terminated computation). An E-configuration is of the form
e,H and represents the computation which is to evaluatee in the
configurationH. The set ofvaluesis the set of locations; hence E-
configurations of the forml,H are terminaal.

Two transition relations are defined, one over S-configurations
and the other over E-configurations. ForX a partial function, we
use the notationX[v 7→ e] to represent the partial function which is
the same asX except that it mapsv to e. The rules defining these
relations are standard. The only minor novelty is in howasync is
defined. The critical rule is the last rule in(R-STEP) – it specifies
the “asynchronous” nature ofasync by permittingS to make a step
even if it is preceded byasyncS1. The rule (R-NEW) returns a new
location that is bound to a new object that is an instance ofC with
none of its fields initialized. The rule(R-ACCESS) ensures that the
field is initialized before it is read (fi is contained inf).

4.5 Results

We say a heapH is f-cookedif a field can point only to cooked
objects, i.e. for every objecto= C(u) in the range ofH and every
field f ∈ dom(u) it is the case thatu(f) ∈ dom(H) andH(u(f)) is a
total object. We shall only consider f-cooked heaps (valid programs
will only produce f-cooked heaps).

A heap typing Tis a mapping from locations to classes.H is
said to be typed byT if for each l ∈ dom(H), the class ofH(l) is
a subclass ofT(l). Since our treatment separates out effects from
types, and the treatment of types is standard, we shall assume that
all programs and heaps are typed.

We say thatS is annotable if there existsφ,ψ such thatφ S ψ can
be established.4

We say that a programP = LS is proper if it is well-typed and
each method inL can be decorated with pre-post assertions(φ,ψ),
andS is annotable. The decorations must satisfy the property that
under the assumption that every method satisfies its assertion (this
is for use in recursive calls) we can establish for every method
def m(x : C){S} with assertion(φ,ψ) that it is the case that the free
variables ofφ,ψ are contained inthis,x, and thatφ S ψ.

We prove the following theorems. In all these theorems the
background programP is assumed to be proper. The first theorem
is analogous to subject-reduction for typing systems.

Theorem 4.1. Preservation Let φ S ψ, H satisfyφ, (H f-cooked and
typed). (a) IfS,H H′ thenH′ is f-cooked and typed and satisfies

4 An example of a statement that isnot annotable is
val x = new C();val y = x.f;z.g = y where C has a fieldf. This
attempts to read a field of a variable initialized with a brand-new object.

S,H H′

finish S,H H′

async S,H H′

S;S′,H S′,H′

(R-TERM)

S,H S′,H′

finish S,H finish S′,H′

async S,H async S′,H′

S;S1,H S′;S1,H
′

async S1;S,H async S1;S′,H′

(R-STEP)
e,H l,H′

val x = e;S,H S[l/x],H′
(R-VAL)

l′ 6∈ dom(H)
new C,H l′,H[l′ 7→ C()]

(R-NEW)
H(l′) = C(. . .) mbody(m,C) = x.S

l′.m(l),H S[l/x,l′/this],H
(R-INVOKE)

H(l) = C(f 7→ l′)
l.fi ,H l′i ,H

(R-ACCESS)
H(l) = C(F)

l.f= l′,H H[l 7→ C(F[f 7→ l′])]
(R-ASSIGN)

Figure 17. FX10 Reduction Rules (S,H S′,H′ | H′ ande,H l,H′).

+ψ. (b) If S,H S′,H′ thenH′ is f-cooked and typed and there exists
a ψ′ such thatH′ satisfiesψ′ andψ′ Sφ.

Theorem 4.2. Progress Let φ S ψ, H satisfyφ, (H f-cooked and
typed). The configurationS,H is not stuck.

For proofs, please see associated technical report.
Because our reduction rules only allow reads from initialized

fields, a corollary is that a field can only be read after it was
assigned, and an attempt to read a field will always succeed.

5. Related Work
A static analysis [10], has been used to find some default value
reads in Java programs, and supports our belief that defaultvalue
reads can be found in real programs and should be considered er-
rors. Our approach is stronger (detecting all errors at the expense
of some correct programs) and considers additional language con-
structs that are not present in Java.

There has been a study on a large body [5] of Java code, showing
that initialization order issues pervade projects from thereal world.
A bytecode verification system for Java initialization has also been
explored [6].

An early work to support non-null types in Java [2] has the
notion of a type constructorraw that can be applied to object types
and means that the fields of the object (in X10 terminology) may
violate the constraints in their types. This simply disables the type-
system while an object is partially constructed while ensuring the
rest of the program is typed normally. Our approach preventserrors
during constructors as it does not disable the type-system,and
it also permits optimization of the representation of fieldswhose
types are very constrained, since they will never have to hold a
value other than the values allowed by their type constraint.

A later work [3, 9] allows to specify the time (in the type)
when the object will be fully constructed. Field reference types
of a partially constructed objects must be fully constructed by
the same time, which allows graphs of objects to be constructed
like our proto design. However the system is more complicated,
allowing the object to become fully constructed at a given future
time, instead of at the specific time when its constructor terminates.

Masked types [9] present types that describe the exact fields
that have not yet been initialized. Our type system is simpler but
less expressive.

There is also a time-aware type system [7] that allows the
detection of data-races, and understands the concept of shared
variables that become immutable only after a certain time (and can
then be accessed without synchronization). The same mechanisms
can also be used to express when an object becomes cooked.

Ownership types can be used to create immutable cycles [11].
This is comparable to ourproto design because it also allowsthis
to be linked from an incomplete object. However the ownership

structure is used to implement a broader policy, allowing code in
the owner to use a reference to its partially constructed children,
whereas we only allow code to use a reference to objects that
are being partially constructed in some nesting stack frame. Our
approach does not use ownership types.

6. Conclusion
The hardhat design in X10 is strict but it protects the user from
error-prone initialization idioms, especially when combined with
a rich type system and parallel code. This paper showed the inter-
action between initialization and other language features, possible
pitfalls in Java, and how they can be prevented in X10. It alsopre-
sented the rules of this design, the virtues of these rules, and pos-
sible design alternatives. The rules were incorporated in the open-
source X10 compiler, and are being used in production code.

References
[1] D. Dean, E. Felten, and D.S.Wallach. Java security: Fromhotjava to

netscape and beyond. InIEEE Symposium on Security and Privacy,
pages 190–200, 1996.

[2] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null
types in an object-oriented language. InOOPSLA’03, pages 302–312,
2003.

[3] M. Fähndrich and S. Xia. Establishing object invariants with delayed
types. InOOPSLA’07, pages 337–350, 2007.

[4] J. Gil and A. Itai. The complexity of type analysis of object oriented
programs. InECOOP’98, pages 601–634, 1998.

[5] J. Y. Gil and T. Shragai. Are we ready for a safer construction
environment? InECOOP’09, pages 495–519, 2009.

[6] L. Hubert, T. Jensen, V. Monfort, and D. Pichardie. Enforcing secure
object initialization in java. InESORICS’10, pages 101–115, 2010.

[7] N. D. Matsakis and T. R. Gross. A time-aware type system for data-
race protection and guaranteed initialization. InOOPSLA’10, pages
634–651, 2010.

[8] W. Pugh. JSR 133: Java memory model and thread specification
revision.http://jcp.org/en/jsr/detail?id=133, 2004.

[9] X. Qi and A. C. Myers. Masked types for sound object initialization.
In POPL’09, pages 53–65, 2009.

[10] S. Seo, Y. Kim, H.-G. Kang, and T. Han. A static bug detector for
uninitialized field references in java programs.IEICE - Trans. Inf.
Syst., E90-D:1663–1671, 2007.

[11] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership and
immutability in generic java. InOOPSLA’10, pages 598–617, 2010.

