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Abstract 

Data center networks today begin to confront the scalability 
problem, especially for the multi-tenant data centers sharing 
the flat address space for different users. Classical Ethernet 
protocols have fundamental limitations at scale, due to 
broadcast flooding and the inefficient Spanning Tree Protocol 
(STP). Software Defined Network (SDN)/OpenFlow provides 
enough agility to leverage network forwarding plane to be 
more efficient, however, it suffers from considerable control 
plane overhead and the risk of single-point-of-failure in the 
control plane. In this paper, we present CNA (Cloud Network 
Architecture), a scalable and agile data center network 
architecture, which achieves flat layer-2 network virtualization 
and agile user-defined network topology in a cost-effective 
way. The innovations cover through both data plane and 
control plane. For the data plane, benefiting from Internet 
experience, CNA adopts core-edge separation architecture to 
cost-effectively support overlay and SDN/OpenFlow, with 
virtual VLAN support. For the control plane, a novel hybrid 
control model is proposed to greatly mitigate control plane 
overhead and enhance the reliability. Through evaluation, 
CNA is proven to achieve fast data plane forwarding with very 
low control overhead. 

Index Terms—Network Virtualization, Overlay, SDN/OpenFlow, 
Core-edge, Hybrid control 

I. INTRODUCTION

he increasing demand of cloud services, especially high 
performance computing applications, such as Map-Reduce, 
Dryad, etc., are easy to saturate data center resources by the 

compute-bound applications which require to exchange data 
among lots of server nodes. These has stressed the ability of the 
network to scale in previously unimagined ways, and led to the 
rise of the mega multi-tenant data center, consisting of tens of 
thousands of servers, or even much more in the future. Amazon 
Elastic Compute Cloud (EC2) and IBM's Blue Cloud are the 
examples of public cloud offered by data center providers for 
massive multi-tenancy. 

Infrastructure as a Service (IaaS) is a widely accepted 
model to provide an overall virtualization for multi-tenant data 
centers which is considered to be cost effective, as well as better 
for availability and performance. Server and storage 
virtualization has been commercially applied, with quite a few 
sophisticated solutions, such as VMware, KVM, XEN. 
However, server virtualization on its own is not enough in 
today’s mega multi-tenant data center, since ensuring network 
performance and security for highly mobile virtual machines 
(VMs) will quickly become an operations nightmare [1]. A few 

recent literatures [2, 3] proposed to use non-blocking multi-root 
tree topology and centric controlled overlay (e.g. MAC-in-
MAC or IP-o-IP) to support tens of thousands of nodes in the 
mega data centers and provide a subset of capability of network 
virtualization, such as live VM migration, etc. 

Agile controlled network virtualization, as a superset of the 
agility provided by [2, 3], is attracting more attention recently. 
On one side, as the number of VMs grows with server amount 
rapidly, current layer-2 network protocols reach significant 
limitations, such as broadcast and VLAN tag number, on 
providing large scale flat layer-2 network. Meticulous designed 
network virtualization is able to overcome these problems, 
benefiting multi-tenant data center in the following features: 
“Plug-and-play” deployment could be achieved to minimize 
management cost; Live VM migration is enabled, meaning that 
the services and security policies over the VM are preserved 
without any reconfiguration inside the VM, and the network 
changes can converge fast enough without incurring exception 
of the applications; Other value added services such as Quality 
of Service (QoS) and Service Level Agreement (SLA) are easy 
to deploy. On the other side, though [2, 3] achieve considerable 
achievement in providing agility to data center network (DCN), 
it is still quite insufficient to sustain the emerging multi-tenant 
cloud-based services and business applications which require 
on-demand network topology and user-defined flow control 
policy. Since different tenants may have various expectations of 
the network topology, sharing the network infrastructure with 
overlay technology is not enough.  

In order to provide the capability of user-defined tenant 
network topology for the DCN users, more agile flow path 
control should be involved to build hierarchical logical 
topology over the flat layer-2 network. For example, two 
tenants may have VMs in the same physical server. Tanent#1 
wants the traffic to pass through an IDS/FW before comes into 
the VMs, while Tanent#2 does not. The traffic forwarding 
behavior for each tenant needs to be defined individually. 
Unfortunately, these requirements are hard to be fulfilled 
efficiently by today’s loosely structured control plane logic, 
which fragments network configuration into separate network 
elements. 

Software-Defined Networking (SDN), promoted by the 
Open Networking Foundation (ONF), has the ability to provide 
agile flow based control for data center, the notion of which is 
to run global software based control and management functions 
independent with underlying switching/routing infrastructure. 
As a brilliant implementation of SDN sprit, the value of 
OpenFlow [4] has been recognized recently. It is incredibly 
important to define and build sophisticated SDN-based control 
plane architecture in large-scale data centers, not only because 
the data plane could be simpler and more efficient, separated 
from complex control logic, but also the network devices could 
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be configured under unified management to achieve agile 
functionalities. However, there are still several challenges in 
deploying SDN/OpenFlow in DCN. First, the controller [5] 
might easily become the performance bottleneck, when the 
software implementation got overloaded with bursty requests. 
Second, centralizing control plane into one global controller 
would lead to the risk of single-point-of-failure and reliability 
degradation. Finally, it is unpractical for existing data centers to 
replace the network devices to support SDN/OpenFlow all in 
once. 

Therefore, according to what have been discussed above, to 
build an agile and cost-efficient DCN, there are four objectives 
should be met: 

Objective 1: Layer-2 network virtualization: To assign 
any service to any one or a few servers, and to realize “plug-
and-play”, e.g. via DHCP, BOOTP, etc, usually require a flat 
networking scheme with layer-2 broadcast/multicast support. 
Furthermore, multi-tenant clouds require “VLAN support” to 
achieve secure virtual network isolation. Layer-3 network 
virtualization, such as IP-in-IP encapsulation, has obvious 
challenge to provide this. 

Objective 2: Agile and reliable network control: SDN 
provides high level network agility of making virtual 
connection inside network hardware, to construct user-defined 
logical topology over different kinds of tenants’ needs. 
However, the agility should not be achieved at the cost or risk 
of sacrificing reliability and/or efficiency. 

Objective 3: Universal compatibility: To sustain rapid 
growth of network scale and limit the capital/upgrading expense, 
a flexible DCN should be built with the physical devices which 
are universally backward compatible with the legacy or 
nowadays commodity.

Objective 4: Realizable deployment: Considering the 
deployment cost, it is impractical to replace all existing network 
devices to achieve the first two objectives, although, minimum 
amount of necessary hardware replacement could be tolerated. 

To meet all of the four objectives, we present CNA (Cloud 
Network Architecture), a scalable network architecture for 
multi-tenant cloud computing oriented data centers. Generally 
speaking, the contributions of this paper are three-fold. Firstly, 
borrowing the idea from the success of the Internet, the CNA 
data plane is implemented and optimized with two separated 
parts, the core and the edge, respectively. The division inspires 
from the observation that date center users care mostly about 
end-to-end features such as network virtualization support, agile 
and user-defined flow sequence, etc., which typically is nothing 
to do with the network core. In contrast, data center switching 
fabric designers focus on network connectivity performance in 
the core side. The proposed core-edge separated network 
topology decouples the complex and intelligence from the 
design of performance oriented components. 

Secondly, the problem in providing network virtualization 
in cloud-computing oriented mega data centers is revisited. 
Generally, besides the requirement on the capability of 
infrastructure sharing and isolation for multi-tenant users as 
have been addressed in the prior-arts [2, 3, 6, 7], we argue that 
on-demand/workload-optimized logical network topology for 
individual tenant users is also essential. In CNA, we propose 
solutions on this new identified requirement, as well as 
optimizations for the other requirements. 

Thirdly, a hybrid architecture is proposed for the control 
plane to mitigate the design complexity increase and reliability 
degradation upon the adoption of SDN/OpenFlow. For the sake 
of seeking high reliability, we firstly remain a subset of static, 
simple but vital regular control functions, such as topology 
discovery and basic routing/forwarding, to the distributed 
control mechanism on the router/switch side. Further, to 
guarantee high scalability of the network, a hierarchical 
domain-based control scheme is adopted for the complicated 
control tasks, e.g. network virtualization and dynamic load 
balancing, etc. We propose to turn the control of individual 
switches into the control of groups of switches, which 
significantly lower down centric control overhead. Distributed 
real-time controls are deployed within a few pre-defined 
domains, respectively, while the centralized control setups per 
domain policies and coordinates among the domains in a 
loosely coupled manner. 

Before stepping into the design details, in Section II, let’s 
firstly go through the observations and design principles to get 
the overview and the primitive idea of the proposed work. 

II. DESIGN CONCEPTS

Network planes are divided into forwarding plane (data 
plane) and control plane. With the appearance of 
SDN/OpenFlow, data plane is enlarged to the devices that 
perform operations according to rules, which are disseminated 
by control elements. Though the division of planes simplifies 
network design without losing reliability and scalability, it also 
needs elaborate design for DCN, because an unnatural division 
of control/data plane functionality causes complexity and 
inefficiency. To make DCN network more efficient and 
enhance agility by SDN/OpenFlow supporting with low cost, 
we explain our design philosophy for data plane and control 
plane, respectively. 
A. Core-edge architecture in data plane 

As mentioned before, flat layer-2 networks bring many 
advantages for DCN. It is not an exaggerated metaphor that 
considers DCN as a “big switch” from the perspectives of the 
resources being interconnected inside the data center. However, 
the “big switch” has several fundamental problems 
overwhelming current Ethernet devices and protocols. One is 
the limited memory and embedded CPU capacity which makes 
commodity switch hard to handle hundreds of thousands flat 
MAC addresses in a data center. Another problem is the 
performance and security degradation caused by the Ethernet 
flooding traffic. The third is the very inefficient STP protocol, 
which avoids network loop by disabling redundant links. To 
achieve Objective 1, these problems need to be solved. Some 
recent researches [8, 9] modify network protocols among the 
switches, losing protocol compatibility stated in Objective 3. 
Some other works try to build new DCN architecture, in 
research [2, 3, 10] or industry area such as QFabric, FabricPath, 
however, all of which have relatively strong hardware and/or 
topology assumption, failed to meet Objective 3&4. 

In this paper, borrowing the idea from the hierarchical 
model of Internet, which is still under use today, we divide the 
“big switch” into two parts, the edge and the core. The core is 
designed to be simple and efficient which care only about 
connectivity and efficiency. It will be a forward-only network 
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where the packets will not be modified or encapsulated. In the 
proposed experimental implementation, the core is an efficient 
underlay IP network, without any other pre-assumptions. Either 
the commodity Layer 3 switches (OSPF/ECMP supported) or 
the emerging efficient switch fabric such as QFabric/FabricPath 
can be leveraged. The core benefits the overall performance by 
providing, natively, topology discovery and loop-free 
forwarding mechanisms, as well as the standard packet interface 
and link-level load balancing solutions, which has universal 
compatibility with existing technologies (Objective 3). 
Meanwhile, the edge contains all the intelligent components 
required for the cloud-computing oriented DCN (Objective 
1&2). The observation is that, the intelligential network 
operations (such as those related to network virtualization, fine-
grained flow-control or server load balance, etc.,) can be 
achieved only with the control of network edge, without the 
participant of the network core. Hence the construction costs 
are greatly reduced by deploying simpler and performance 
oriented network core, or continue using the legacy devices 
(Objective 4). 

B. Hybrid control plane 
In several recent literatures, to achieve Objective 2, the 

powerful centralized control plane model is revisited [11, 12]. 
Researchers claim that with the progress of the supporting 
technique, single-node performance becomes strong and 
powerful enough to handle the network control and make 
decision for every details of the network, especially DCN; and 
only when it is with a centric control mechanism can the 
network provides the agility and flexibility that required for the 
modern cloud computing applications. Everything tends to be 
centralized, including topology discovery, routing decision, 
flow-control, traffic engineering etc. The centric controllers are 
thought to be powerful and overwhelming. 

We argue that, completely rely on centralized control to 
meet the agility needs might not be scalable or efficient enough. 
Meanwhile, having every decision made centralized may lead to 
either performance or reliability issues, as well. As in the case 
of the Openflow-Nox [6] architecture which falls into the 
“powerful center” category, the switches will have to forward 
all unknown packets to the controller, which makes the 
architecture eventually not scalable. As the network scale goes 
up, the switches can hardly keep all rules (including basic 
routes), installed by the controller, in the expensive flow-table 
on the switch (implemented with TCAM usually), so that the 
controller will become performance bottleneck upon a certain 
portion of the traffic being considered unknown by the dump 
switches. And also note that the centric approaches will always 
face the single-point-of-failure problem. 

Actually, a “high priority centralized control” is good 
enough to dynamically control the network on demand. In this 
paper, we propose a hybrid control plane model which consists 
of a high priority centralized control panel and a low priority 
distributed control mechanism. We argue that, the network 
activities and traffic should be treated differently. The 
observation is that basic control functions such as topology 
discovery and basic routing are not only simple but also vital 
and static. The majority of the traffic which is considered none-
interesting can be handled by the low priority distributed 
routing mechanism on the switches when no pre-defined rules, 
installed by the controller, are matched (which is under the 

awareness of the centric controller). This gets rid of the 
reliability risks while remains the full control of the centric 
controller, since it always has higher priority control. 
Meanwhile, from performance and scalability perspective, the 
spirit of P2P/DHT can also be leveraged in DCN control plane 
[13]. The control targets, e.g. traffic or devices, can be grouped 
and managed autonomously according to a few policies 
dynamically generated by the centric controller, which also acts 
as the coordinator among the groups. This prevents the centric 
controller from being a bottleneck against the growing load 
with the network scale. And this also remains the full control of 
the centric controller, since the distributed P2P control 
mechanisms simply follow the policies pushed by the centric 
controller. The controller can deploy either fine-grained policies 
(e.g. for a specific switch) or coarse-grained ones (e.g. for a 
specific group of switches) on demand. 

 Let’s take the human biologic system for a simile. The 
brain is a centric power of the body which can take the control 
of most of the body actions so as to express our emotion or 
reflect our internal idea; however meanwhile, we also have 
several auto-sub-systems, such as the circulation system, 
respiratory system, alimentary system etc, which do not rely on 
the conscious brain decision and can function well 
automatically even when we loss our conscious or become a 
human vegetable. Imagine the case when we have to “think” 
about every details of our breath or have to be conscious about 
the details of how the food are digested, how can we be possible 
to come up with the innovative and creative idea? 

III. CNA ARCHITECTURE AND IMPLEMENTATIONS

A. Core-edge separated topology 
The widely adopted multi-tenant data center infrastructure 

consists of three parts: host servers provide computing resource, 
which is shared with several VMs by hypervisor running on 
each server; storage devices provide fast and reliable data store 
for VMs; hierarchical network devices interconnect servers and 
storages. In the CNA architecture, the three parts are grouped 
into network edge and network core, as depict in Figure 1. 
Network edge consists of all the servers, storages and the “last-
mile” edge switches, which is defined as the enhanced “smart 
switches” close to the server side (think the Tag Edge 
Routers/TERs in MPLS [14]). Network core consists of all the 
interconnect devices except the “last-mile” switches. For the 
sake of simplicity, we denote the smart “last-mile” switches as 
Edge switch in the following contents. 

Figure 1. Physical infrastructure of CNA. 
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In the prototyping of CNA implementation, the intelligent 
edge switches are deployed on special virtual appliances, more 
specifically, the hypervisor domain (Dom0) [15] similar to Xen, 
which have privileges to access the hardware and forward 
traffic pass through the physical servers. Note that the edge 
switch could be also deployed either in the physical Top of Rack
(ToR) switches or the virtual switches inside the hypervisor. 
The reason for deploy in Dom0 is that such an approach is 
independent with network devices and hypervisor, having the 
most universal compatibility and lowest realizing cost to meet 
Objective 3&4. 

The network intelligence is provided by the 1) virtual 
SWitch Module (vSWM), following rules either from a local 
DHT (Distributed Hash Table) based mechanism or a 
centralized virtual SWitch Controller (vSWC), and 2) the 
OpenFlow enabling mechanism, following rules from 
OpenFlow Controller (OFC). In the next subsection, the hybrid 
control model of CNA is introduced. 

B. Hybrid control model 
Classical network control is distributed into individual 

network device via management interfaces. SDN/OpenFlow 
uses a generic centralized controller, with global view of the 
whole network. It pushes rules into the dump network devices, 
which only operate according to the rules without any 
intelligence. However, as for the data center scale, neither the 
pure distributed control nor the pure centralized control model 
is practical enough. As the number of devices growth, distribute 
control causes considerable performance/management overhead 
in synchronizing all network devices; centralized control may 
also become performance bottleneck to handle rules for huge 
amount of network devices which require real-time interactions 
with the controller. 

In CNA, a hybrid control architecture is proposed, which 
combines the distributed control and centralized control to take 
benefits from both. The control plane is divided into many 
small control domains, in which distributed control protocols 
are deployed to make each domain autonomous. A centralized 
controller is deployed on top of the distributed control domains, 
which had the authority to install/update/delete policies to the 
distributed control mechanism, on demand, and this is called 
“hyper-control”. For each control task, the two types of control 
elements are coordinated in a hierarchical model as follows: 
The distributed control mechanism is only responsible for the 
inner-domain control tasks and only share states among the 
peers within the domain, avoiding significant synchronization 
overhead. The centralized controller takes charge of the inter-
domain coordination. It also has the privilege to control the 
interesting flows with the highest priority against the distributed 
control mechanism. 

 In the next two subsections, a functional oriented control 
mechanism of agile layer-2 network virtualization and a 
performance oriented control mechanism of dynamical network 
load balancing are explained in details to demonstrate how the 
hybrid control architecture is deployed for practical control 
tasks. 

C. Agile Layer-2 Network Virtualization via Hybrid Control 
On top of the physical infrastructure mentioned in Section 

III.A, CNA provides agile controlled network virtualization for 
multiple tenants through three phrases. First, flatten and 

formalize the network with the MAC-o-IP overlay. Second, 
isolate the logical tenant network and slice their subnets 
respectively using a virtual VLAN service realized on top of the 
overlay. Third, further define the corresponding logical 
topology using virtual connection. Figure 2 depicts the 3 
phrases through which two example tenants define different 
network topologies on the same hardware infrastructure, 
respectively. In this example, Tenant#1 and Tenant#2 require 
different logical topology based on the same network 
infrastructure. In the following parts, the three steps are 
explained in details, respectively. 

Figure 2. The 3 phrases of agile layer-2 network virtualization 

1) Flatten & Formalize the network with MAC-o-IP overlay 
CNA flattens the network address by deploying a MAC-o-IP 

overlay network, through which the network edge is connected 
with a “big switch”. To adopt hybrid control, the network edge 
is grouped into control domains, containing one or more Edge 
switches. For a given VM h, the corresponding mapping 
between the logical overlay address and the physical underlay 
address, i.e.  <underlay_IP, overlay_MAC> is stored in both 
the centralized controller (i.e. vSWC) and the DHT of one of 
the distributed controllers in the same control domain with h.

The centralized controller vSWC learns the address 
information for all the VMs in DCN. When a newcomer VM 
broadcasts an ARP request, the corresponding vSWM will 
intercept that request, and then send out an update message to 
vSWC, telling it the mapping <vSWM IP, VM MAC>. As for 
the distributed controller, DHT learns address information in 
the same way, but for each DHT, it follows DHT protocols as 
distributed control mechanism to only store the partition of the 
mapping used in its control domain. 

As for the traffic forwarding through MAC-o-IP overlay, the 
hybrid control model is implemented as follows: The edge 
switch searches the DHT within the corresponding domain first. 
In the case when the destination is inside the control domain, 
the address information should be found in the DHT, so the 
edge switch (vSWM) do not need to query the centralized 
controller (vSWC). In the case when the destination is outside 
the control domain, the edge switch will query vSWC, 
encountering a DHT searching miss. In this model, the control 
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domain can be defined intentionally and re-defined 
dynamically to avoid the centralized controller (vSWC) from 
becoming a performance bottleneck. 

Figure 3 depicts an example, in which 3 operations are 
performed for the layer-2 packet forwarding from Client to 
T2V1 (i.e. VM#1 in the Tenant#2 network). 

Figure 3. Layer-2 packet forwarding 

2) Subnet slicing by virtual VLAN 
After “connecting” all related devices or virtual devices to 

the “big switch”, it is also necessary to isolate different tenants 
for security reasons and provide subnet partitioning within a 
tenant. In the example shown in Figure 3., Tenant#1 and 
Tenant#2 should be invisible to each other, though they are 
sharing the same underlying network and may even share the 
same overlay address space. Furthermore, the two subnets of 
Tenant#1 are also need to be layer-2 isolated. Classical VLAN 
provides layer-2 isolation in the switch level. However, scale 
current VLAN into data center will meet fundamental problems.  
For example, the total VLAN tag number (4096) is too limited 
comparing with the amount of tenants and servers required.  
And it was designed under the assumption that the network 
configuration is mostly static. Although some extended 
technologies such as QinQ, PVLAN, etc., try to mitigate these 
problems, they have strong hypervisor dependency, suffering 
from even more management overhead in the large scale data 
center containing different types of hypervisors. 

In this phrase, CNA realizes the global virtual VLAN 
service, based on the layer-3 IP multicasting mechanism (on the 
underlay) and layer-2 802.1q VLAN (on the overlay). First, 
802.1q compatible VLAN service is provided by the smart 
Edge switches for the local VMs interconnecting or isolating 
with each other, which is called the Local virtual VLAN
(LvVLAN), the scope of which is limited within the hypervisor. 
Second, to further accommodate the need to include VMs with 
different physical locations to the same virtual VLAN, the term 
Global virtual VLAN (GvVLAN) is introduced. A dynamic 
mapping will be therefore setup between LvVLANs and 
GvVLANs, as Figure 4 depicts. Further, to realize the transition 

between the overlay virtual network and the underlay physical 
network, dynamic mappings are built between the underlay IP 
multicasting groups and GvVLAN IDs. vSWC is responsible 
for maintaining the mapping and replying to the queries to 
resolve the mappings. 

Figure 4. Dynamic virtual VLAN mapping. 

Once a VM belong to a certain tenant is attached to the 
hypervisor with LvVLAN ID configured, the related vSWM 
queries its GvVLAN ID from vSWC and attend the 
corresponding underlay multicast group by sending IGMP 
message to the core layer-3 switch it is attached. The 
multicasting routing protocol, e.g. RIM, among core switches 
ensure the multicast packet can be delivered to each vSWM 
attending the same multicast group. At the same time, vSWM 
searches for the existing LvVLAN ID for the attending VM, or 
allocates from the available pool if no existing LvVLAN is 
found. The destination vSWM also maintains the mapping of 
GvVLAN ID to the LvVLAN IDs on its side, so it can mark the 
incoming packet with correct destination LvVLAN ID. With 
the mechanism introduced above, Global VLAN-wise services, 
such as broadcasting, can be achieved with backward 
compatibility to the IEEE 802.1q standard. 

Note that, it is important to provide the isolation between 
different virtual VLANs. On one side, the packets from 
different tenants need to be restricted within the GvVLAN. This 
can be achieved by defining restrict rules on the vSWC. The 
query request includes the source address of the packet as well 
as the destination, from which vSWC could verify whether the 
source and destination are in the same Global VLAN. If not, the 
deny response is replied, and the vSWM would block the traffic. 

On the other side, the isolation is also needed within a 
tenant for agile subnet partitioning. This can be achieved by the 
user-defined mapping between LvVLAN and GvVLAN. For 
each subnet, LvVLAN ID is used to divide subnet within each 
hypervisor, which is allocated automatically by the virtual 
switch in the hypervisor. 

The proposed virtual VLAN solution has the following 
advantages: 1) Total amount of GvVLANs supported by a data 
center is extended to the number of multicast groups supported 
by the underlying network (IPv4 28bits, IPv6 112bits), which is 
much more than classical VLAN tag capacity of 4096 (14bits); 
2) Compatible with most existing hypervisors with only basic 
VLAN support, making it easy and efficient to implement; 3) 
The centralized VLAN configuration in vSWC reduces the 
management overhead for socializing Local VLAN IDs (on 
different location and belong to the same GvVLAN). 
3) Define logical topology through virtual connection 

With the overlay and VLAN configuration, multi tenants 
share the same network infrastructure without aware of each 
other. However, it is also an important requirement that tenants 
need to define the network logical topology as they want. It is 
hard to define hierarchical topology under the big switch 
scheme, because all the ports are flatly connected by the 
physical hardware. Fortunately, SDN/OpenFlow enabled switch 
has the ability to build logical topologies by setting up virtual 
connection between end hosts. Virtual connection is a user-
defined end-to-end traffic path, customized in every passing 
switch through flow-based control policies. 

LvVLAN IDs GvVLAN ID Multicast IP Group

Operation 1. Encapsulation. 
1-1) Client sends packets to T2V1, through vSWM#1. 
1-2) If vSWM#1 do not cache the mapping of (vSWM#2 IP, T2V1 MAC), 

it requests to DHT for the mapping, first. 
1-3) If not found in DHT, vSWM#1 requests to vSWC, then. 
1-4) vSWM#1 caches the mapping of (vSWM#2 IP, T2V1 MAC). 
1-5) vSWM#1 encapsulates each layer-2 packets with vSWM#2 IP. 
1-6) vSWM#1 sends the packets into the underlay network. 
Operation 2. Transportation. 
2-1) Network core transports the packets to destination vSWM#2, through 

legacy IP layer protocols. 
Operation 3. Decapsulation. 
3-1) vSWM#2 decapsulates the underlay packets. 
3-2) vSWM#2 sends the original overlay packets to T2V1. 
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Return to the example, Tenant#2 requires the flat topology, 
with no need for flow based control. For Tenant#1, the subnet1 
and IDS/FW require a hierarchical topology that all traffic of 
subnet1 must go through the IDS/FW. The OpenFlow rules in 
this example are as follows: 

Through the three steps mentioned above, agile layer-2 
network virtualization is fulfilled. The network infrastructure is 
flattened via MAC-o-IP, isolated for multi-tenants and then 
subnet partitioned inside each tenants, respectively. By the 
virtual VLAN service, it is also equipped with the distinct 
support for user-defined network topology. 

D. Dynamical Network Load-Balance via Hybrid Control 
In this subsection, we take Dynamical Network Load 

Balancing (DNLB) as an example of performance oriented 
hybrid control model. 

1) Scenario description and existing solution 
For most applications in data center, there are usually many 

service elements which provide the same service, e.g., 
MapReduce application such as web search, as is shown in 
Figure 5 (a). A user query is decomposed into several meta-
tasks and then sent to a set of mappers to process, respectively. 
After that all the search records (e.g. web pages) are sent to 
corresponding reducer to further proceed and aggregate. Here 
the challenges we focus on is how to design a scalable and 
efficient control plane of the DCN which can co-operate with 
the MapReduce master node to balance the workload among the 
mappers and the reducers. 

(a) MapReduce 

(b) Security check 
Figure 5. Examples of LB in data center 

Another representative example of load balancing in DCN is 
interactive policy-enforcing and dynamic load-balancing, as 
mentioned in LiveSec [16]. As shown in Figure 5 (b), in 
LiveSec the controller forwards the packets to one of the 
security service elements to have security check when a user 
tries to access the Internet. There are usually a certain number 
of servers providing such security service, and, a centric 
controller takes charge of balancing the security checking load, 
e.g. policy check, deep packet inspection (DPI) in LiveSec. 

In order to provide the intuition of the DNLB problem and 
have quantifiable discussion, here we model the DNLB 
problem with formal terms as following. 

Given a set with n  computing nodes which perform the 
same functions (e.g. in the case of MapReduce, it is the set of 
mappers, and in LiveSec, it is the set of security service 
elements), term 1 2=( , )nG g g g  is used to denote the set, 
where

ig  denotes the thi  node (server) in the set. The resource 
(computational and/or communicational) of 

ig  is abstracted 
and defined as 

iR , and we use 
iL  to refer to the current 

workload in 
ig  (In MapReduce applications 

iL  represents the 
computation or search workloads which are being processed or 
queuing for processing, and in LiveSec it represents the traffic 
loads of security service element). Then we use 

iu  to refer to 
the utilization ratio of 

ig , which is defined as /i i iu L R . The 
average utilization ratio of the whole set is denoted as u , which 
can be computed with ease as, 

= / /
i i i i

i i i i i
g G g G g G g G

u L R R u R .

Traditional load balance mechanism adopts either 
distributed or centralized control manner. In the case of 
distributed control, typical schemes, e.g. OSPF-ECMP and 
VLB [2], usually adopt simple and efficient algorithm such as 
simple hashing or random node selection. In general, they have 
O(1) temporal complexity. But the traditional distributed 
control mechanism usually has no feedback information 

iu
because the communication cost will be significantly 
insufferable when the data center scales up. From this point of 
view, existing distributed control algorithms are based on 
statistical regularity, so they may be inefficient when working 
on unpredictable workload or in a highly dynamic environment. 

In the case of centralized control, as described in LiveSec, 
the controller makes decision for every traffic flow which tries 
to access the Internet. Let’s take the simple Shortest Queue 
First (SQF) algorithm, which is usually adopted by the centric 
controller, as an example. The temporal complexity of SQF is 
O(n)  (where n  is the number of nodes). Therefore, as the size 
of the data center scales up, e.g. to tens of thousands of nodes, 
the controller may become the performance bottleneck, and on 
the other hand might become a single-point-of-failure. 

2) CNA dynamical load-balance using hybrid control 
As mentioned in section III.B, the motivation of the hybrid 

control model is to leverage the advantages of both centralized 
and distributed control while compensate the inadequacy of 
each other. 

For in_port=ouside, dst=subnet1, action=output:IDS/FW port_in 
For in_port=subnet1, dst=outside, action=output:IDS/FW port_in
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Generally speaking, in CNA, the network will be partitioned 
into a few load-balancing control domains in the initiation 
process. Each control domain includes one or more edge 
switches which act as the distributed controllers for the 
computing resources (e.g. servers) connected to the network 
through them, respectively. The distributed control mechanism 
contains: 1) designated algorithm deployed on the distributed 
controllers to re-compute the forward path for the sake of load 
balancing. 2) traffic control rules installed by the centralized 
controller acting as the coordinator among the domains, which 
tries to perform long term load balance on a large scale. The 
DNLB design is described as the following. 

a) Initialization 
As mentioned above, the centralized controller partitions the 

data center edge (e.g. all the nodes and the edge switches they 
connect to) into several domains during the initialization phrase, 
denoted as =

i

i
G G

G GU ,where ,i jG G i j . Each domain 

contains m  edge switches, e.g. 1 2=( , )i i i imG g g g . And then 
the centric controller will designate one of the edge switches 
randomly as the designated edge switch (DEdge) in each 
domain. 

b) The distributed part in hybrid control 
The edge switches act as the distributed controllers within 

the corresponding domain. As shown in Figure 6, all the edge 
switches in the same domain share a workload table (WLT ),
via a dedicated distributed protocol, Workload Table Update 
Protocol (WTUP). The workload table keeps the utilization 
ratio of each node in domain. 

Figure 6. Distributed control intra-domain 

The protocol procedure of synchronizing WLT  is as follows: 

Based on the workload table, the essential part of the 
algorithm is to find out a load-balanced forward path for 
arriving workload L  (meta-task for the mappers in MapReduce 
or traffic flows to access Internet in LiveSec. Note that, to avoid 
the out-of-order issue, the load balancing control is flow-
grained.). As we know, the ideal balancing results of utilization 
ratio of each node are, 

1 2( )= ( )= = ( )= =( ) /m i iE u E u E u u L L R               (1) 

However, in the practical cases, there may be some elephant 
flows or monolithic computing tasks with which the overall 
workload can hardly be divided evenly. So usually only 
approximation result can be obtained. For example, the 
traditional SQF algorithms always look for the minimal load 
node, and in these cases, the utilization ratio after balancing is 
given by 

min( ) / ......
( ) ..................

i i i i

i i

E u u L R u u

E u u others
.                                  (2) 

Here in the proposed load balance scheme, the intuition is to 
reduce the complexity of the distributed algorithms by limiting 
the distributed control within small domains, while avoiding the 
convergence issues by letting the centric controller act as 
merely a loosely-couple coordinator among the domains (i.e. it 
handles only long term balancing goal and works in a loosely-
coupled way with the distributed controllers, so that does not 
required to be responsive). Meanwhile, unlike the VLB 
algorithm which always chooses a forwarding path randomly, 
the forwarding path will be computed with feedback. To 
compensate to disadvantages of existing algorithms, a 
distributed LB algorithm is proposed based on a load-aware 
probability model, which is called Load-aware Probability 
based Load Balance (LPLB). The primitive observation is that, 
as the distributed control mechanisms are restricted within 
small domains respectively, the overhead to synchronize load 
information and utilization of the resources among the 
distributed is well bounded, not sacrificing scalability. 

In the proposed algorithm, the forwarding path computation 
is based on a probability model which is related to the current 
utilization ratio in workload table. The detail of algorithm is 
described as following. 

For each Edge switch 
ig , we design a transition probability 

1 2 m( , , , )i i i iP p p p  in which 
ijp  refer to the probability of 

forwarding workload from ig to jg . The computation of 
iP  is 

shown below. 
i

i

1.................
(1 ) / (1 )..........ii

i

u u
p

u u u u                                   (3) 

0.....................................................

(1 ) ( ) / ( ).......
k

j

u u
ij

ii j k j
k

u u

p
p u u u u u u

             (4)

Because the factor such as ( ) / ( )
ku u

j k
k

u u u u  can be pre-

computed according to the workload table before the arrival of 
packets, the time complexity is O(logm) . The optimization 
result, i.e the mathematical expectation of the utilization ratio, is 

( )= ( ) /i i ki i
k

E u u p L mR .                                         (5) 

The formula (5) indicates that the expectation in distributed 
controller is much closer to the ideal case of formula (1) than 
that of traditional distributed balancing algorithm such as 
simple hashing or random forwarding. And the complexity is 
reduced to the scale of the domain to compare with the 
traditional centralized control. The pseudo-code of the LPLB
algorithm is described as the following, in Figure 7. 

Step1. Edge switch: for every 
updateT

update massage ( , )ik ikg u is sent to DEdge; 

Step2. DEdge switch: for every ( , )ik ikg u  received 

update workload table WLT ;
Step3. DEdge switch: for every 

broadcastT
broadcast WLT in the domain; 

Step4. Edge switch: for every WLT  received 
update workload table WLT .
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Algorithm LPLB 
Input: L  (workload) 
Output:

kg forwarding path 

01:while(true) 
02:       when receive L
03:            foreach

jg  in domain 
04:                     ijp compute( P ); 
05:            end for
06:            temp generated random number(0,1); 
07:            foreach 

jg  in domain 
08:                      if temp is in ikp
09:                            forward( L ) to 

kg ;
10:                      end if
10:                      break
11:            end for
12:             
13:            if u threshold
14:                      forward ( L ) to centralized controller; 
15:            end if 
16: end while

Figure 7 Pseudo-code of Algorithm LPLB 

c) The centralized part in hybrid control 
The centralized controller is in charge of balancing the 

traffic load among domains based on a domain table ( DT ). As 
shown in Figure 8, generally the processing proceed can be 
summarized as the following steps via Domain Table Update 
Protocol (DTUP). 

The centralized controller runs merely a simple SQF 
algorithm, but as it is coarse-grained (i.e. balancing among 
domains), the temporal complexity of which is O( / )n m .

Figure 8. Centralized control inter-domain 

IV. EVALUATION

In this section, we evaluate the key performance indexes of 
CNA through both simulation and experimental tests. The first 
part focuses on evaluating the scalability of the proposed 
architecture, while the second part stresses on investigating the 
implementation related advantages with it. 

A. Simulation results 
C++ based simulations are developed to evaluate the 

scalability of CNA under the hybrid control model in large 
scale environment. The DNLB use-case introduced in Section 
VI is deployed, in which 5000n  edge switches are used. The 
performance and overhead of three LB control models are 
compared. The workloads (the traffic flows which need security 
check mentioned in LiveSec) are generated by 50 users 
concurrently. Each flow arrives at a random edge switch. In 
centralized control model, the flows are scheduled by the 
centralized controller following the SQF principle; in 
distributed control model, the VLB scheme is deployed, that is 
the flow are forwarded randomly to all candidate resources; in 
hybrid control model, the forwarding is based on the scheme 
described in Section IV where the 5000 nodes (edge switches) 
network is divided into 100m  domains and / 50n m  edge 
switches in each domain. For the sake of simplicity and 
providing intuition, 50 out of the 5000 edge switches are 
sampled to present the results. The 50 edge switches are 
sampled from 10 domains. In the following subsections, CSQF,
VLB and HYBRID are used to denote the centric control scheme, 
distributed control scheme and the hybrid scheme, respectively. 

1) Balancing results 
The balancing result is shown in Figure 9 (a) in terms of 

average utilization ratio of the sampled edge switches. The 
result of HYBRID is very close to that of CSQF, and both are 
significantly better than that of VLB. On one hand, the 
balancing results in the same domain are remarkable. This is 
because the workloads may loss balance in the VLB scheme, 
due to the uncertainty of the bursty traffic. On the other hand, 
the distributed control mechanism in HYBRID balances the 
workloads much better within the domains, respectively, thanks 
to feedback information collected in real-time. Moreover, the 
balancing results of HYBRID among domains are close to 
CSQF. This is because the centric controller running SQF 
algorithm in HYBRID will reassign the imbalance workloads 
among the domains. We will see later that, though CSQF 
achieve slightly better balancing result, the advantage of is at 
the cost of significant control plane overhead. 
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   Figure 9. Balancing results of three LB models 

2) Encountering Overload 
Another advantage of the hybrid control model is that 

workload can be reassigned by both distributed controller and 
centric controller according to the variable distribution of the 
workload and the utilization of resources. Figure 9 (b) shows 
the mathematic standard deviation value of each edge switch’s 
utilization ratio which represents the unstable degree of 

Step1. DEdge switch: for every 
updateDomainT

( , )i iG u is sent to centric controller; 

Step2. Centric controller: for every ( , )i iG u  received 

update domain table DT ;
Step3. Edge switch: for every L  when overload 

L is sent to centric controller; 
Step4. Centric controller: for every WLT  received 

forward L  to another domain.
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workload. Note that, in CSQF the workload will be forwarded 
only once. In some extreme case, when the feedback of the 
utilization info can not converge in time, bursty workload will 
be assigned to a certain “idle” nodes before it manages to report 
the change of utilization in time, which leads to overload. 

 However, in HYBRID, the workload can be re-assign to 
other edge switch many times “automatically” and avoid being 
overload. We also measure the overload occurrence (by 
discarded workloads ratio) in the whole DCN, as is shown in 
Table 1, where we can see obvious advantages of HYBRID.

Table 1. Discarded workloads when overload occurrence 
Balancing mode VLB CSQF HYBRID

Overload (%) 6.20 1.75 0.07 

3) Control overhead 
Table 2 shows the temporal complexity of each LB model 

as previous analysis (in the table, DC refer to Distributed 
Controller and CC refer to Centralized Controller). To verify 
this, the average computing time (measured by CPU ticks) of 
the algorithms are also shown in Table 2, where we can see 
obvious higher control overhead for the centralized scheme. 

Table 2. Temporal complexity and simulation results 
Model VLB CSQF HYBRID

Controller DC CC DC CC 
Complexity O(1) O(n) O(logm) O(n/m)
Computing 

time(CPU ticks) 4.22 96.10 10.82 17.87 

To dedicatedly compare the cost of controller in each model, 
the experimental computation times are shown in Table 3. We 
can see that CSQF takes about 2 orders of magnitudes more 
time than the centric controller in HYBRID.

Table 3. Computation times of centric controller 
Balancing model VLB CSQF HYBRID

Computation times 0 175541 1672 

B. Experimental forwarding performance 
This experiment is based on a real test-bed, consisting three 

IBM system x3550 servers, in which VMware ESXi is 
deployed as hypervisor. VM1, Dom0#1 is deployed in server1, 
VM2, Dom0#2 is deployed in server2, vSWC and NOX are 
deployed in server3 for control plane. CNA adopts vSWM to 
achieve MAC-o-IP overlay, which is deployed in Dom0#1 and 
Dom0#2. As Figure 10 depicts, the capsulation overhead is very 
small, the ping RTT (Round-Trip Time) from VM1 to VM2 is 
less than 1ms, because for most case the capsulation rules could 
be cached in distributed DHT of Dom0#1. Centralized 
controller vSWC generates longer forwarding latency up to 4ms 
or even longer. 

Figure 10. Packet forwarding Rtt.    Figure 11. Throughput of vSWC and NOX 

Figure 11 depicts the control plane throughput comparison 
between vSWC and NOX, both implemented by C/C++. Up to 

9 clients (implemented in VMs) are used to flood control 
messages to the controllers, for stress performance test. The 
average response rate of vSWC is up to 20,000 Responses per 
second, which is twice more than that of NOX. The reason is 
that NOX is complex and could not be optimized for particular 
tasks. Instead, vSWC is implemented fast dedicatedly for 
mapping table search and easy to be put into the kernel space. 

V. CONCLUSION

CNA is a scalable network architecture for multi-tenants 
data centers. The Network infrastructure is divided into the 
smart edge and a performance oriented core. This allows the 
network intelligence to be deployed in the most cost-effective 
way, without any assumption of network topology. CNA 
provides an agile network virtualization scheme which allows 
the multi-tenant users to define their own logical networks on 
demand, respectively, on top of the same physical infrastructure. 
A hybrid control model is proposed, in which, the distributed 
auto-control domains are “hyper-controlled” by the centralized 
controller. This not only remains the fully agile centralized 
control, but also avoids the reliability issues and scalability 
issues. 
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