
RC25195 (C1107-011) July 27, 2011
Computer Science

IBM Research Report

Scalable and Agile Data Center Networking via Software
Defined Network and Hybrid Control

Yue Zhang1, Kai Zheng1, Chengchen Hu2, Kai Chen3, Hang Liu1,
Athanasios V. Vasilakos4

1IBM Research Division
China Research Laboratory

Building 19, Zhouguancun Software Park
8 Dongbeiwang West Road, Haidian District

Beijing, 100193
P.R. China

2Xi'an Jiaotong University

3Northwestern University

4National Technical University of Athens

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

1

Scalable and Agile Data Center Networking via Software Defined
Network and Hybrid Control

Yue Zhang1, Kai Zheng1, Chengchen Hu2, Kai Chen3, Hang Liu1, Athanasios V. Vasilakos4

1IBM China Research Lab 2Xi'an Jiaotong University 3Northwestern University 4National Technical University of Athens

Abstract

Data center networks today begin to confront the scalability
problem, especially for the multi-tenant data centers sharing
the flat address space for different users. Classical Ethernet
protocols have fundamental limitations at scale, due to
broadcast flooding and the inefficient Spanning Tree Protocol
(STP). Software Defined Network (SDN)/OpenFlow provides
enough agility to leverage network forwarding plane to be
more efficient, however, it suffers from considerable control
plane overhead and the risk of single-point-of-failure in the
control plane. In this paper, we present CNA (Cloud Network
Architecture), a scalable and agile data center network
architecture, which achieves flat layer-2 network virtualization
and agile user-defined network topology in a cost-effective
way. The innovations cover through both data plane and
control plane. For the data plane, benefiting from Internet
experience, CNA adopts core-edge separation architecture to
cost-effectively support overlay and SDN/OpenFlow, with
virtual VLAN support. For the control plane, a novel hybrid
control model is proposed to greatly mitigate control plane
overhead and enhance the reliability. Through evaluation,
CNA is proven to achieve fast data plane forwarding with very
low control overhead.

Index Terms—Network Virtualization, Overlay, SDN/OpenFlow,
Core-edge, Hybrid control

I. INTRODUCTION

he increasing demand of cloud services, especially high
performance computing applications, such as Map-Reduce,
Dryad, etc., are easy to saturate data center resources by the

compute-bound applications which require to exchange data
among lots of server nodes. These has stressed the ability of the
network to scale in previously unimagined ways, and led to the
rise of the mega multi-tenant data center, consisting of tens of
thousands of servers, or even much more in the future. Amazon
Elastic Compute Cloud (EC2) and IBM's Blue Cloud are the
examples of public cloud offered by data center providers for
massive multi-tenancy.

Infrastructure as a Service (IaaS) is a widely accepted
model to provide an overall virtualization for multi-tenant data
centers which is considered to be cost effective, as well as better
for availability and performance. Server and storage
virtualization has been commercially applied, with quite a few
sophisticated solutions, such as VMware, KVM, XEN.
However, server virtualization on its own is not enough in
today’s mega multi-tenant data center, since ensuring network
performance and security for highly mobile virtual machines
(VMs) will quickly become an operations nightmare [1]. A few

recent literatures [2, 3] proposed to use non-blocking multi-root
tree topology and centric controlled overlay (e.g. MAC-in-
MAC or IP-o-IP) to support tens of thousands of nodes in the
mega data centers and provide a subset of capability of network
virtualization, such as live VM migration, etc.

Agile controlled network virtualization, as a superset of the
agility provided by [2, 3], is attracting more attention recently.
On one side, as the number of VMs grows with server amount
rapidly, current layer-2 network protocols reach significant
limitations, such as broadcast and VLAN tag number, on
providing large scale flat layer-2 network. Meticulous designed
network virtualization is able to overcome these problems,
benefiting multi-tenant data center in the following features:
“Plug-and-play” deployment could be achieved to minimize
management cost; Live VM migration is enabled, meaning that
the services and security policies over the VM are preserved
without any reconfiguration inside the VM, and the network
changes can converge fast enough without incurring exception
of the applications; Other value added services such as Quality
of Service (QoS) and Service Level Agreement (SLA) are easy
to deploy. On the other side, though [2, 3] achieve considerable
achievement in providing agility to data center network (DCN),
it is still quite insufficient to sustain the emerging multi-tenant
cloud-based services and business applications which require
on-demand network topology and user-defined flow control
policy. Since different tenants may have various expectations of
the network topology, sharing the network infrastructure with
overlay technology is not enough.

In order to provide the capability of user-defined tenant
network topology for the DCN users, more agile flow path
control should be involved to build hierarchical logical
topology over the flat layer-2 network. For example, two
tenants may have VMs in the same physical server. Tanent#1
wants the traffic to pass through an IDS/FW before comes into
the VMs, while Tanent#2 does not. The traffic forwarding
behavior for each tenant needs to be defined individually.
Unfortunately, these requirements are hard to be fulfilled
efficiently by today’s loosely structured control plane logic,
which fragments network configuration into separate network
elements.

Software-Defined Networking (SDN), promoted by the
Open Networking Foundation (ONF), has the ability to provide
agile flow based control for data center, the notion of which is
to run global software based control and management functions
independent with underlying switching/routing infrastructure.
As a brilliant implementation of SDN sprit, the value of
OpenFlow [4] has been recognized recently. It is incredibly
important to define and build sophisticated SDN-based control
plane architecture in large-scale data centers, not only because
the data plane could be simpler and more efficient, separated
from complex control logic, but also the network devices could

T

2

be configured under unified management to achieve agile
functionalities. However, there are still several challenges in
deploying SDN/OpenFlow in DCN. First, the controller [5]
might easily become the performance bottleneck, when the
software implementation got overloaded with bursty requests.
Second, centralizing control plane into one global controller
would lead to the risk of single-point-of-failure and reliability
degradation. Finally, it is unpractical for existing data centers to
replace the network devices to support SDN/OpenFlow all in
once.

Therefore, according to what have been discussed above, to
build an agile and cost-efficient DCN, there are four objectives
should be met:

Objective 1: Layer-2 network virtualization: To assign
any service to any one or a few servers, and to realize “plug-
and-play”, e.g. via DHCP, BOOTP, etc, usually require a flat
networking scheme with layer-2 broadcast/multicast support.
Furthermore, multi-tenant clouds require “VLAN support” to
achieve secure virtual network isolation. Layer-3 network
virtualization, such as IP-in-IP encapsulation, has obvious
challenge to provide this.

Objective 2: Agile and reliable network control: SDN
provides high level network agility of making virtual
connection inside network hardware, to construct user-defined
logical topology over different kinds of tenants’ needs.
However, the agility should not be achieved at the cost or risk
of sacrificing reliability and/or efficiency.

Objective 3: Universal compatibility: To sustain rapid
growth of network scale and limit the capital/upgrading expense,
a flexible DCN should be built with the physical devices which
are universally backward compatible with the legacy or
nowadays commodity.

Objective 4: Realizable deployment: Considering the
deployment cost, it is impractical to replace all existing network
devices to achieve the first two objectives, although, minimum
amount of necessary hardware replacement could be tolerated.

To meet all of the four objectives, we present CNA (Cloud
Network Architecture), a scalable network architecture for
multi-tenant cloud computing oriented data centers. Generally
speaking, the contributions of this paper are three-fold. Firstly,
borrowing the idea from the success of the Internet, the CNA
data plane is implemented and optimized with two separated
parts, the core and the edge, respectively. The division inspires
from the observation that date center users care mostly about
end-to-end features such as network virtualization support, agile
and user-defined flow sequence, etc., which typically is nothing
to do with the network core. In contrast, data center switching
fabric designers focus on network connectivity performance in
the core side. The proposed core-edge separated network
topology decouples the complex and intelligence from the
design of performance oriented components.

Secondly, the problem in providing network virtualization
in cloud-computing oriented mega data centers is revisited.
Generally, besides the requirement on the capability of
infrastructure sharing and isolation for multi-tenant users as
have been addressed in the prior-arts [2, 3, 6, 7], we argue that
on-demand/workload-optimized logical network topology for
individual tenant users is also essential. In CNA, we propose
solutions on this new identified requirement, as well as
optimizations for the other requirements.

Thirdly, a hybrid architecture is proposed for the control
plane to mitigate the design complexity increase and reliability
degradation upon the adoption of SDN/OpenFlow. For the sake
of seeking high reliability, we firstly remain a subset of static,
simple but vital regular control functions, such as topology
discovery and basic routing/forwarding, to the distributed
control mechanism on the router/switch side. Further, to
guarantee high scalability of the network, a hierarchical
domain-based control scheme is adopted for the complicated
control tasks, e.g. network virtualization and dynamic load
balancing, etc. We propose to turn the control of individual
switches into the control of groups of switches, which
significantly lower down centric control overhead. Distributed
real-time controls are deployed within a few pre-defined
domains, respectively, while the centralized control setups per
domain policies and coordinates among the domains in a
loosely coupled manner.

Before stepping into the design details, in Section II, let’s
firstly go through the observations and design principles to get
the overview and the primitive idea of the proposed work.

II. DESIGN CONCEPTS

Network planes are divided into forwarding plane (data
plane) and control plane. With the appearance of
SDN/OpenFlow, data plane is enlarged to the devices that
perform operations according to rules, which are disseminated
by control elements. Though the division of planes simplifies
network design without losing reliability and scalability, it also
needs elaborate design for DCN, because an unnatural division
of control/data plane functionality causes complexity and
inefficiency. To make DCN network more efficient and
enhance agility by SDN/OpenFlow supporting with low cost,
we explain our design philosophy for data plane and control
plane, respectively.
A. Core-edge architecture in data plane

As mentioned before, flat layer-2 networks bring many
advantages for DCN. It is not an exaggerated metaphor that
considers DCN as a “big switch” from the perspectives of the
resources being interconnected inside the data center. However,
the “big switch” has several fundamental problems
overwhelming current Ethernet devices and protocols. One is
the limited memory and embedded CPU capacity which makes
commodity switch hard to handle hundreds of thousands flat
MAC addresses in a data center. Another problem is the
performance and security degradation caused by the Ethernet
flooding traffic. The third is the very inefficient STP protocol,
which avoids network loop by disabling redundant links. To
achieve Objective 1, these problems need to be solved. Some
recent researches [8, 9] modify network protocols among the
switches, losing protocol compatibility stated in Objective 3.
Some other works try to build new DCN architecture, in
research [2, 3, 10] or industry area such as QFabric, FabricPath,
however, all of which have relatively strong hardware and/or
topology assumption, failed to meet Objective 3&4.

In this paper, borrowing the idea from the hierarchical
model of Internet, which is still under use today, we divide the
“big switch” into two parts, the edge and the core. The core is
designed to be simple and efficient which care only about
connectivity and efficiency. It will be a forward-only network

3

where the packets will not be modified or encapsulated. In the
proposed experimental implementation, the core is an efficient
underlay IP network, without any other pre-assumptions. Either
the commodity Layer 3 switches (OSPF/ECMP supported) or
the emerging efficient switch fabric such as QFabric/FabricPath
can be leveraged. The core benefits the overall performance by
providing, natively, topology discovery and loop-free
forwarding mechanisms, as well as the standard packet interface
and link-level load balancing solutions, which has universal
compatibility with existing technologies (Objective 3).
Meanwhile, the edge contains all the intelligent components
required for the cloud-computing oriented DCN (Objective
1&2). The observation is that, the intelligential network
operations (such as those related to network virtualization, fine-
grained flow-control or server load balance, etc.,) can be
achieved only with the control of network edge, without the
participant of the network core. Hence the construction costs
are greatly reduced by deploying simpler and performance
oriented network core, or continue using the legacy devices
(Objective 4).

B. Hybrid control plane
In several recent literatures, to achieve Objective 2, the

powerful centralized control plane model is revisited [11, 12].
Researchers claim that with the progress of the supporting
technique, single-node performance becomes strong and
powerful enough to handle the network control and make
decision for every details of the network, especially DCN; and
only when it is with a centric control mechanism can the
network provides the agility and flexibility that required for the
modern cloud computing applications. Everything tends to be
centralized, including topology discovery, routing decision,
flow-control, traffic engineering etc. The centric controllers are
thought to be powerful and overwhelming.

We argue that, completely rely on centralized control to
meet the agility needs might not be scalable or efficient enough.
Meanwhile, having every decision made centralized may lead to
either performance or reliability issues, as well. As in the case
of the Openflow-Nox [6] architecture which falls into the
“powerful center” category, the switches will have to forward
all unknown packets to the controller, which makes the
architecture eventually not scalable. As the network scale goes
up, the switches can hardly keep all rules (including basic
routes), installed by the controller, in the expensive flow-table
on the switch (implemented with TCAM usually), so that the
controller will become performance bottleneck upon a certain
portion of the traffic being considered unknown by the dump
switches. And also note that the centric approaches will always
face the single-point-of-failure problem.

Actually, a “high priority centralized control” is good
enough to dynamically control the network on demand. In this
paper, we propose a hybrid control plane model which consists
of a high priority centralized control panel and a low priority
distributed control mechanism. We argue that, the network
activities and traffic should be treated differently. The
observation is that basic control functions such as topology
discovery and basic routing are not only simple but also vital
and static. The majority of the traffic which is considered none-
interesting can be handled by the low priority distributed
routing mechanism on the switches when no pre-defined rules,
installed by the controller, are matched (which is under the

awareness of the centric controller). This gets rid of the
reliability risks while remains the full control of the centric
controller, since it always has higher priority control.
Meanwhile, from performance and scalability perspective, the
spirit of P2P/DHT can also be leveraged in DCN control plane
[13]. The control targets, e.g. traffic or devices, can be grouped
and managed autonomously according to a few policies
dynamically generated by the centric controller, which also acts
as the coordinator among the groups. This prevents the centric
controller from being a bottleneck against the growing load
with the network scale. And this also remains the full control of
the centric controller, since the distributed P2P control
mechanisms simply follow the policies pushed by the centric
controller. The controller can deploy either fine-grained policies
(e.g. for a specific switch) or coarse-grained ones (e.g. for a
specific group of switches) on demand.

 Let’s take the human biologic system for a simile. The
brain is a centric power of the body which can take the control
of most of the body actions so as to express our emotion or
reflect our internal idea; however meanwhile, we also have
several auto-sub-systems, such as the circulation system,
respiratory system, alimentary system etc, which do not rely on
the conscious brain decision and can function well
automatically even when we loss our conscious or become a
human vegetable. Imagine the case when we have to “think”
about every details of our breath or have to be conscious about
the details of how the food are digested, how can we be possible
to come up with the innovative and creative idea?

III. CNA ARCHITECTURE AND IMPLEMENTATIONS

A. Core-edge separated topology
The widely adopted multi-tenant data center infrastructure

consists of three parts: host servers provide computing resource,
which is shared with several VMs by hypervisor running on
each server; storage devices provide fast and reliable data store
for VMs; hierarchical network devices interconnect servers and
storages. In the CNA architecture, the three parts are grouped
into network edge and network core, as depict in Figure 1.
Network edge consists of all the servers, storages and the “last-
mile” edge switches, which is defined as the enhanced “smart
switches” close to the server side (think the Tag Edge
Routers/TERs in MPLS [14]). Network core consists of all the
interconnect devices except the “last-mile” switches. For the
sake of simplicity, we denote the smart “last-mile” switches as
Edge switch in the following contents.

Figure 1. Physical infrastructure of CNA.

4

In the prototyping of CNA implementation, the intelligent
edge switches are deployed on special virtual appliances, more
specifically, the hypervisor domain (Dom0) [15] similar to Xen,
which have privileges to access the hardware and forward
traffic pass through the physical servers. Note that the edge
switch could be also deployed either in the physical Top of Rack
(ToR) switches or the virtual switches inside the hypervisor.
The reason for deploy in Dom0 is that such an approach is
independent with network devices and hypervisor, having the
most universal compatibility and lowest realizing cost to meet
Objective 3&4.

The network intelligence is provided by the 1) virtual
SWitch Module (vSWM), following rules either from a local
DHT (Distributed Hash Table) based mechanism or a
centralized virtual SWitch Controller (vSWC), and 2) the
OpenFlow enabling mechanism, following rules from
OpenFlow Controller (OFC). In the next subsection, the hybrid
control model of CNA is introduced.

B. Hybrid control model
Classical network control is distributed into individual

network device via management interfaces. SDN/OpenFlow
uses a generic centralized controller, with global view of the
whole network. It pushes rules into the dump network devices,
which only operate according to the rules without any
intelligence. However, as for the data center scale, neither the
pure distributed control nor the pure centralized control model
is practical enough. As the number of devices growth, distribute
control causes considerable performance/management overhead
in synchronizing all network devices; centralized control may
also become performance bottleneck to handle rules for huge
amount of network devices which require real-time interactions
with the controller.

In CNA, a hybrid control architecture is proposed, which
combines the distributed control and centralized control to take
benefits from both. The control plane is divided into many
small control domains, in which distributed control protocols
are deployed to make each domain autonomous. A centralized
controller is deployed on top of the distributed control domains,
which had the authority to install/update/delete policies to the
distributed control mechanism, on demand, and this is called
“hyper-control”. For each control task, the two types of control
elements are coordinated in a hierarchical model as follows:
The distributed control mechanism is only responsible for the
inner-domain control tasks and only share states among the
peers within the domain, avoiding significant synchronization
overhead. The centralized controller takes charge of the inter-
domain coordination. It also has the privilege to control the
interesting flows with the highest priority against the distributed
control mechanism.

 In the next two subsections, a functional oriented control
mechanism of agile layer-2 network virtualization and a
performance oriented control mechanism of dynamical network
load balancing are explained in details to demonstrate how the
hybrid control architecture is deployed for practical control
tasks.

C. Agile Layer-2 Network Virtualization via Hybrid Control
On top of the physical infrastructure mentioned in Section

III.A, CNA provides agile controlled network virtualization for
multiple tenants through three phrases. First, flatten and

formalize the network with the MAC-o-IP overlay. Second,
isolate the logical tenant network and slice their subnets
respectively using a virtual VLAN service realized on top of the
overlay. Third, further define the corresponding logical
topology using virtual connection. Figure 2 depicts the 3
phrases through which two example tenants define different
network topologies on the same hardware infrastructure,
respectively. In this example, Tenant#1 and Tenant#2 require
different logical topology based on the same network
infrastructure. In the following parts, the three steps are
explained in details, respectively.

Figure 2. The 3 phrases of agile layer-2 network virtualization

1) Flatten & Formalize the network with MAC-o-IP overlay
CNA flattens the network address by deploying a MAC-o-IP

overlay network, through which the network edge is connected
with a “big switch”. To adopt hybrid control, the network edge
is grouped into control domains, containing one or more Edge
switches. For a given VM h, the corresponding mapping
between the logical overlay address and the physical underlay
address, i.e. <underlay_IP, overlay_MAC> is stored in both
the centralized controller (i.e. vSWC) and the DHT of one of
the distributed controllers in the same control domain with h.

The centralized controller vSWC learns the address
information for all the VMs in DCN. When a newcomer VM
broadcasts an ARP request, the corresponding vSWM will
intercept that request, and then send out an update message to
vSWC, telling it the mapping <vSWM IP, VM MAC>. As for
the distributed controller, DHT learns address information in
the same way, but for each DHT, it follows DHT protocols as
distributed control mechanism to only store the partition of the
mapping used in its control domain.

As for the traffic forwarding through MAC-o-IP overlay, the
hybrid control model is implemented as follows: The edge
switch searches the DHT within the corresponding domain first.
In the case when the destination is inside the control domain,
the address information should be found in the DHT, so the
edge switch (vSWM) do not need to query the centralized
controller (vSWC). In the case when the destination is outside
the control domain, the edge switch will query vSWC,
encountering a DHT searching miss. In this model, the control

5

domain can be defined intentionally and re-defined
dynamically to avoid the centralized controller (vSWC) from
becoming a performance bottleneck.

Figure 3 depicts an example, in which 3 operations are
performed for the layer-2 packet forwarding from Client to
T2V1 (i.e. VM#1 in the Tenant#2 network).

Figure 3. Layer-2 packet forwarding

2) Subnet slicing by virtual VLAN
After “connecting” all related devices or virtual devices to

the “big switch”, it is also necessary to isolate different tenants
for security reasons and provide subnet partitioning within a
tenant. In the example shown in Figure 3., Tenant#1 and
Tenant#2 should be invisible to each other, though they are
sharing the same underlying network and may even share the
same overlay address space. Furthermore, the two subnets of
Tenant#1 are also need to be layer-2 isolated. Classical VLAN
provides layer-2 isolation in the switch level. However, scale
current VLAN into data center will meet fundamental problems.
For example, the total VLAN tag number (4096) is too limited
comparing with the amount of tenants and servers required.
And it was designed under the assumption that the network
configuration is mostly static. Although some extended
technologies such as QinQ, PVLAN, etc., try to mitigate these
problems, they have strong hypervisor dependency, suffering
from even more management overhead in the large scale data
center containing different types of hypervisors.

In this phrase, CNA realizes the global virtual VLAN
service, based on the layer-3 IP multicasting mechanism (on the
underlay) and layer-2 802.1q VLAN (on the overlay). First,
802.1q compatible VLAN service is provided by the smart
Edge switches for the local VMs interconnecting or isolating
with each other, which is called the Local virtual VLAN
(LvVLAN), the scope of which is limited within the hypervisor.
Second, to further accommodate the need to include VMs with
different physical locations to the same virtual VLAN, the term
Global virtual VLAN (GvVLAN) is introduced. A dynamic
mapping will be therefore setup between LvVLANs and
GvVLANs, as Figure 4 depicts. Further, to realize the transition

between the overlay virtual network and the underlay physical
network, dynamic mappings are built between the underlay IP
multicasting groups and GvVLAN IDs. vSWC is responsible
for maintaining the mapping and replying to the queries to
resolve the mappings.

Figure 4. Dynamic virtual VLAN mapping.

Once a VM belong to a certain tenant is attached to the
hypervisor with LvVLAN ID configured, the related vSWM
queries its GvVLAN ID from vSWC and attend the
corresponding underlay multicast group by sending IGMP
message to the core layer-3 switch it is attached. The
multicasting routing protocol, e.g. RIM, among core switches
ensure the multicast packet can be delivered to each vSWM
attending the same multicast group. At the same time, vSWM
searches for the existing LvVLAN ID for the attending VM, or
allocates from the available pool if no existing LvVLAN is
found. The destination vSWM also maintains the mapping of
GvVLAN ID to the LvVLAN IDs on its side, so it can mark the
incoming packet with correct destination LvVLAN ID. With
the mechanism introduced above, Global VLAN-wise services,
such as broadcasting, can be achieved with backward
compatibility to the IEEE 802.1q standard.

Note that, it is important to provide the isolation between
different virtual VLANs. On one side, the packets from
different tenants need to be restricted within the GvVLAN. This
can be achieved by defining restrict rules on the vSWC. The
query request includes the source address of the packet as well
as the destination, from which vSWC could verify whether the
source and destination are in the same Global VLAN. If not, the
deny response is replied, and the vSWM would block the traffic.

On the other side, the isolation is also needed within a
tenant for agile subnet partitioning. This can be achieved by the
user-defined mapping between LvVLAN and GvVLAN. For
each subnet, LvVLAN ID is used to divide subnet within each
hypervisor, which is allocated automatically by the virtual
switch in the hypervisor.

The proposed virtual VLAN solution has the following
advantages: 1) Total amount of GvVLANs supported by a data
center is extended to the number of multicast groups supported
by the underlying network (IPv4 28bits, IPv6 112bits), which is
much more than classical VLAN tag capacity of 4096 (14bits);
2) Compatible with most existing hypervisors with only basic
VLAN support, making it easy and efficient to implement; 3)
The centralized VLAN configuration in vSWC reduces the
management overhead for socializing Local VLAN IDs (on
different location and belong to the same GvVLAN).
3) Define logical topology through virtual connection

With the overlay and VLAN configuration, multi tenants
share the same network infrastructure without aware of each
other. However, it is also an important requirement that tenants
need to define the network logical topology as they want. It is
hard to define hierarchical topology under the big switch
scheme, because all the ports are flatly connected by the
physical hardware. Fortunately, SDN/OpenFlow enabled switch
has the ability to build logical topologies by setting up virtual
connection between end hosts. Virtual connection is a user-
defined end-to-end traffic path, customized in every passing
switch through flow-based control policies.

LvVLAN IDs GvVLAN ID Multicast IP Group

Operation 1. Encapsulation.
1-1) Client sends packets to T2V1, through vSWM#1.
1-2) If vSWM#1 do not cache the mapping of (vSWM#2 IP, T2V1 MAC),

it requests to DHT for the mapping, first.
1-3) If not found in DHT, vSWM#1 requests to vSWC, then.
1-4) vSWM#1 caches the mapping of (vSWM#2 IP, T2V1 MAC).
1-5) vSWM#1 encapsulates each layer-2 packets with vSWM#2 IP.
1-6) vSWM#1 sends the packets into the underlay network.
Operation 2. Transportation.
2-1) Network core transports the packets to destination vSWM#2, through

legacy IP layer protocols.
Operation 3. Decapsulation.
3-1) vSWM#2 decapsulates the underlay packets.
3-2) vSWM#2 sends the original overlay packets to T2V1.

6

Return to the example, Tenant#2 requires the flat topology,
with no need for flow based control. For Tenant#1, the subnet1
and IDS/FW require a hierarchical topology that all traffic of
subnet1 must go through the IDS/FW. The OpenFlow rules in
this example are as follows:

Through the three steps mentioned above, agile layer-2
network virtualization is fulfilled. The network infrastructure is
flattened via MAC-o-IP, isolated for multi-tenants and then
subnet partitioned inside each tenants, respectively. By the
virtual VLAN service, it is also equipped with the distinct
support for user-defined network topology.

D. Dynamical Network Load-Balance via Hybrid Control
In this subsection, we take Dynamical Network Load

Balancing (DNLB) as an example of performance oriented
hybrid control model.

1) Scenario description and existing solution
For most applications in data center, there are usually many

service elements which provide the same service, e.g.,
MapReduce application such as web search, as is shown in
Figure 5 (a). A user query is decomposed into several meta-
tasks and then sent to a set of mappers to process, respectively.
After that all the search records (e.g. web pages) are sent to
corresponding reducer to further proceed and aggregate. Here
the challenges we focus on is how to design a scalable and
efficient control plane of the DCN which can co-operate with
the MapReduce master node to balance the workload among the
mappers and the reducers.

(a) MapReduce

(b) Security check
Figure 5. Examples of LB in data center

Another representative example of load balancing in DCN is
interactive policy-enforcing and dynamic load-balancing, as
mentioned in LiveSec [16]. As shown in Figure 5 (b), in
LiveSec the controller forwards the packets to one of the
security service elements to have security check when a user
tries to access the Internet. There are usually a certain number
of servers providing such security service, and, a centric
controller takes charge of balancing the security checking load,
e.g. policy check, deep packet inspection (DPI) in LiveSec.

In order to provide the intuition of the DNLB problem and
have quantifiable discussion, here we model the DNLB
problem with formal terms as following.

Given a set with n computing nodes which perform the
same functions (e.g. in the case of MapReduce, it is the set of
mappers, and in LiveSec, it is the set of security service
elements), term 1 2=(,)nG g g g is used to denote the set,
where

ig denotes the thi node (server) in the set. The resource
(computational and/or communicational) of

ig is abstracted
and defined as

iR , and we use
iL to refer to the current

workload in
ig (In MapReduce applications

iL represents the
computation or search workloads which are being processed or
queuing for processing, and in LiveSec it represents the traffic
loads of security service element). Then we use

iu to refer to
the utilization ratio of

ig , which is defined as /i i iu L R . The
average utilization ratio of the whole set is denoted as u , which
can be computed with ease as,

= / /
i i i i

i i i i i
g G g G g G g G

u L R R u R .

Traditional load balance mechanism adopts either
distributed or centralized control manner. In the case of
distributed control, typical schemes, e.g. OSPF-ECMP and
VLB [2], usually adopt simple and efficient algorithm such as
simple hashing or random node selection. In general, they have
O(1) temporal complexity. But the traditional distributed
control mechanism usually has no feedback information

iu
because the communication cost will be significantly
insufferable when the data center scales up. From this point of
view, existing distributed control algorithms are based on
statistical regularity, so they may be inefficient when working
on unpredictable workload or in a highly dynamic environment.

In the case of centralized control, as described in LiveSec,
the controller makes decision for every traffic flow which tries
to access the Internet. Let’s take the simple Shortest Queue
First (SQF) algorithm, which is usually adopted by the centric
controller, as an example. The temporal complexity of SQF is
O(n) (where n is the number of nodes). Therefore, as the size
of the data center scales up, e.g. to tens of thousands of nodes,
the controller may become the performance bottleneck, and on
the other hand might become a single-point-of-failure.

2) CNA dynamical load-balance using hybrid control
As mentioned in section III.B, the motivation of the hybrid

control model is to leverage the advantages of both centralized
and distributed control while compensate the inadequacy of
each other.

For in_port=ouside, dst=subnet1, action=output:IDS/FW port_in
For in_port=subnet1, dst=outside, action=output:IDS/FW port_in

7

Generally speaking, in CNA, the network will be partitioned
into a few load-balancing control domains in the initiation
process. Each control domain includes one or more edge
switches which act as the distributed controllers for the
computing resources (e.g. servers) connected to the network
through them, respectively. The distributed control mechanism
contains: 1) designated algorithm deployed on the distributed
controllers to re-compute the forward path for the sake of load
balancing. 2) traffic control rules installed by the centralized
controller acting as the coordinator among the domains, which
tries to perform long term load balance on a large scale. The
DNLB design is described as the following.

a) Initialization
As mentioned above, the centralized controller partitions the

data center edge (e.g. all the nodes and the edge switches they
connect to) into several domains during the initialization phrase,
denoted as =

i

i
G G

G GU ,where ,i jG G i j . Each domain

contains m edge switches, e.g. 1 2=(,)i i i imG g g g . And then
the centric controller will designate one of the edge switches
randomly as the designated edge switch (DEdge) in each
domain.

b) The distributed part in hybrid control
The edge switches act as the distributed controllers within

the corresponding domain. As shown in Figure 6, all the edge
switches in the same domain share a workload table (WLT),
via a dedicated distributed protocol, Workload Table Update
Protocol (WTUP). The workload table keeps the utilization
ratio of each node in domain.

Figure 6. Distributed control intra-domain

The protocol procedure of synchronizing WLT is as follows:

Based on the workload table, the essential part of the
algorithm is to find out a load-balanced forward path for
arriving workload L (meta-task for the mappers in MapReduce
or traffic flows to access Internet in LiveSec. Note that, to avoid
the out-of-order issue, the load balancing control is flow-
grained.). As we know, the ideal balancing results of utilization
ratio of each node are,

1 2()= ()= = ()= =() /m i iE u E u E u u L L R (1)

However, in the practical cases, there may be some elephant
flows or monolithic computing tasks with which the overall
workload can hardly be divided evenly. So usually only
approximation result can be obtained. For example, the
traditional SQF algorithms always look for the minimal load
node, and in these cases, the utilization ratio after balancing is
given by

min() /
()

i i i i

i i

E u u L R u u

E u u others
. (2)

Here in the proposed load balance scheme, the intuition is to
reduce the complexity of the distributed algorithms by limiting
the distributed control within small domains, while avoiding the
convergence issues by letting the centric controller act as
merely a loosely-couple coordinator among the domains (i.e. it
handles only long term balancing goal and works in a loosely-
coupled way with the distributed controllers, so that does not
required to be responsive). Meanwhile, unlike the VLB
algorithm which always chooses a forwarding path randomly,
the forwarding path will be computed with feedback. To
compensate to disadvantages of existing algorithms, a
distributed LB algorithm is proposed based on a load-aware
probability model, which is called Load-aware Probability
based Load Balance (LPLB). The primitive observation is that,
as the distributed control mechanisms are restricted within
small domains respectively, the overhead to synchronize load
information and utilization of the resources among the
distributed is well bounded, not sacrificing scalability.

In the proposed algorithm, the forwarding path computation
is based on a probability model which is related to the current
utilization ratio in workload table. The detail of algorithm is
described as following.

For each Edge switch
ig , we design a transition probability

1 2 m(, , ,)i i i iP p p p in which
ijp refer to the probability of

forwarding workload from ig to jg . The computation of
iP is

shown below.
i

i

1.................
(1) / (1)..........ii

i

u u
p

u u u u (3)

0...

(1) () / ().......
k

j

u u
ij

ii j k j
k

u u

p
p u u u u u u

 (4)

Because the factor such as () / ()
ku u

j k
k

u u u u can be pre-

computed according to the workload table before the arrival of
packets, the time complexity is O(logm) . The optimization
result, i.e the mathematical expectation of the utilization ratio, is

()= () /i i ki i
k

E u u p L mR . (5)

The formula (5) indicates that the expectation in distributed
controller is much closer to the ideal case of formula (1) than
that of traditional distributed balancing algorithm such as
simple hashing or random forwarding. And the complexity is
reduced to the scale of the domain to compare with the
traditional centralized control. The pseudo-code of the LPLB
algorithm is described as the following, in Figure 7.

Step1. Edge switch: for every
updateT

update massage (,)ik ikg u is sent to DEdge;

Step2. DEdge switch: for every (,)ik ikg u received

update workload table WLT ;
Step3. DEdge switch: for every

broadcastT
broadcast WLT in the domain;

Step4. Edge switch: for every WLT received
update workload table WLT .

8

Algorithm LPLB
Input: L (workload)
Output:

kg forwarding path

01:while(true)
02: when receive L
03: foreach

jg in domain
04: ijp compute(P);
05: end for
06: temp generated random number(0,1);
07: foreach

jg in domain
08: if temp is in ikp
09: forward(L) to

kg ;
10: end if
10: break
11: end for
12:
13: if u threshold
14: forward (L) to centralized controller;
15: end if
16: end while

Figure 7 Pseudo-code of Algorithm LPLB

c) The centralized part in hybrid control
The centralized controller is in charge of balancing the

traffic load among domains based on a domain table (DT). As
shown in Figure 8, generally the processing proceed can be
summarized as the following steps via Domain Table Update
Protocol (DTUP).

The centralized controller runs merely a simple SQF
algorithm, but as it is coarse-grained (i.e. balancing among
domains), the temporal complexity of which is O(/)n m .

Figure 8. Centralized control inter-domain

IV. EVALUATION

In this section, we evaluate the key performance indexes of
CNA through both simulation and experimental tests. The first
part focuses on evaluating the scalability of the proposed
architecture, while the second part stresses on investigating the
implementation related advantages with it.

A. Simulation results
C++ based simulations are developed to evaluate the

scalability of CNA under the hybrid control model in large
scale environment. The DNLB use-case introduced in Section
VI is deployed, in which 5000n edge switches are used. The
performance and overhead of three LB control models are
compared. The workloads (the traffic flows which need security
check mentioned in LiveSec) are generated by 50 users
concurrently. Each flow arrives at a random edge switch. In
centralized control model, the flows are scheduled by the
centralized controller following the SQF principle; in
distributed control model, the VLB scheme is deployed, that is
the flow are forwarded randomly to all candidate resources; in
hybrid control model, the forwarding is based on the scheme
described in Section IV where the 5000 nodes (edge switches)
network is divided into 100m domains and / 50n m edge
switches in each domain. For the sake of simplicity and
providing intuition, 50 out of the 5000 edge switches are
sampled to present the results. The 50 edge switches are
sampled from 10 domains. In the following subsections, CSQF,
VLB and HYBRID are used to denote the centric control scheme,
distributed control scheme and the hybrid scheme, respectively.

1) Balancing results
The balancing result is shown in Figure 9 (a) in terms of

average utilization ratio of the sampled edge switches. The
result of HYBRID is very close to that of CSQF, and both are
significantly better than that of VLB. On one hand, the
balancing results in the same domain are remarkable. This is
because the workloads may loss balance in the VLB scheme,
due to the uncertainty of the bursty traffic. On the other hand,
the distributed control mechanism in HYBRID balances the
workloads much better within the domains, respectively, thanks
to feedback information collected in real-time. Moreover, the
balancing results of HYBRID among domains are close to
CSQF. This is because the centric controller running SQF
algorithm in HYBRID will reassign the imbalance workloads
among the domains. We will see later that, though CSQF
achieve slightly better balancing result, the advantage of is at
the cost of significant control plane overhead.

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90
 VLB
 CSQF
 HYBRID

A
ve

ra
ge

 U
til

iz
at

io
n

R
at

io
 (%

)

Nodes
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

St
an

da
rd

 D
ev

ia
tio

n

Nodes

 VLB
 CSQF
 HYBRID

a) Average utilization ratio b) Standard deviation
 Figure 9. Balancing results of three LB models

2) Encountering Overload
Another advantage of the hybrid control model is that

workload can be reassigned by both distributed controller and
centric controller according to the variable distribution of the
workload and the utilization of resources. Figure 9 (b) shows
the mathematic standard deviation value of each edge switch’s
utilization ratio which represents the unstable degree of

Step1. DEdge switch: for every
updateDomainT

(,)i iG u is sent to centric controller;

Step2. Centric controller: for every (,)i iG u received

update domain table DT ;
Step3. Edge switch: for every L when overload

L is sent to centric controller;
Step4. Centric controller: for every WLT received

forward L to another domain.

9

workload. Note that, in CSQF the workload will be forwarded
only once. In some extreme case, when the feedback of the
utilization info can not converge in time, bursty workload will
be assigned to a certain “idle” nodes before it manages to report
the change of utilization in time, which leads to overload.

 However, in HYBRID, the workload can be re-assign to
other edge switch many times “automatically” and avoid being
overload. We also measure the overload occurrence (by
discarded workloads ratio) in the whole DCN, as is shown in
Table 1, where we can see obvious advantages of HYBRID.

Table 1. Discarded workloads when overload occurrence
Balancing mode VLB CSQF HYBRID

Overload (%) 6.20 1.75 0.07

3) Control overhead
Table 2 shows the temporal complexity of each LB model

as previous analysis (in the table, DC refer to Distributed
Controller and CC refer to Centralized Controller). To verify
this, the average computing time (measured by CPU ticks) of
the algorithms are also shown in Table 2, where we can see
obvious higher control overhead for the centralized scheme.

Table 2. Temporal complexity and simulation results
Model VLB CSQF HYBRID

Controller DC CC DC CC
Complexity O(1) O(n) O(logm) O(n/m)
Computing

time(CPU ticks) 4.22 96.10 10.82 17.87

To dedicatedly compare the cost of controller in each model,
the experimental computation times are shown in Table 3. We
can see that CSQF takes about 2 orders of magnitudes more
time than the centric controller in HYBRID.

Table 3. Computation times of centric controller
Balancing model VLB CSQF HYBRID

Computation times 0 175541 1672

B. Experimental forwarding performance
This experiment is based on a real test-bed, consisting three

IBM system x3550 servers, in which VMware ESXi is
deployed as hypervisor. VM1, Dom0#1 is deployed in server1,
VM2, Dom0#2 is deployed in server2, vSWC and NOX are
deployed in server3 for control plane. CNA adopts vSWM to
achieve MAC-o-IP overlay, which is deployed in Dom0#1 and
Dom0#2. As Figure 10 depicts, the capsulation overhead is very
small, the ping RTT (Round-Trip Time) from VM1 to VM2 is
less than 1ms, because for most case the capsulation rules could
be cached in distributed DHT of Dom0#1. Centralized
controller vSWC generates longer forwarding latency up to 4ms
or even longer.

Figure 10. Packet forwarding Rtt. Figure 11. Throughput of vSWC and NOX

Figure 11 depicts the control plane throughput comparison
between vSWC and NOX, both implemented by C/C++. Up to

9 clients (implemented in VMs) are used to flood control
messages to the controllers, for stress performance test. The
average response rate of vSWC is up to 20,000 Responses per
second, which is twice more than that of NOX. The reason is
that NOX is complex and could not be optimized for particular
tasks. Instead, vSWC is implemented fast dedicatedly for
mapping table search and easy to be put into the kernel space.

V. CONCLUSION

CNA is a scalable network architecture for multi-tenants
data centers. The Network infrastructure is divided into the
smart edge and a performance oriented core. This allows the
network intelligence to be deployed in the most cost-effective
way, without any assumption of network topology. CNA
provides an agile network virtualization scheme which allows
the multi-tenant users to define their own logical networks on
demand, respectively, on top of the same physical infrastructure.
A hybrid control model is proposed, in which, the distributed
auto-control domains are “hyper-controlled” by the centralized
controller. This not only remains the fully agile centralized
control, but also avoids the reliability issues and scalability
issues.

REFERENCES

[1] Bob Laliberte. Enabling VM Mobility via Intelligent, Automated, Virtual
Machine Aware Networking Solutions. March, 2009

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.
A. Maltz, P. Patel and S. Sengupta. VL2: a scalable and flexible data
center network. In Proc. of ACM SIGCOMM, 2009

[3] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya and A. Vahdat. PortLand: A Scalable
Fault-Tolerant Layer 2 Data Center Network Fabric. In Proc. of ACM
SIGCOMM, 2009

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner. OpenFlow: enabling innovation in
campus networks. In Newsletter, ACM SIGCOMM Computer
Communication Review, Volume 38 Issue 2, April 2008

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, S.
Shenker. NOX: towards an operating system for networks. In Newsletter,
ACM SIGCOMM Computer Communication Review, Volume 38 Issue
3, July 2008

[6] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, Y. Pouffary.
NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized
Datacenters. In Proc. of ACM SIGCOMM, 2011

[7] F. Hao, T. V. Lakshman, S. Mukherjee, H. Song. Secure cloud
computing with a virtualized network infrastructure. In Proc. of the 2nd
USENIX conference on Hot topics in cloud computing, 2010

[8] C. Kim and J. Rexford, “Revisiting Ethernet: Plug-and-play made
scalable and efficient,” in Proc. of IEEE LANMAN, 2007.

[9] R. Perlman, “Rbridges: Transparent routing,” in Proc. of IEEE
INFOCOM, 2004.

[10] M. Yu, J. Rexford, M. J. Freedman, J. Wang. Scalable flow-based
networking with DIFANE. In Proc. of ACM SIGCOMM, 2010

[11] M. Casado, T. Koponen, R. Ramanathan, S. Shenker. Virtualizing the
network forwarding plane. In Proc. of the Workshop on Programmable
Routers for Extensible Services of Tomorrow, 2010

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: a
distributed control platform for large-scale production networks. In Proc.
of the 9th USENIX conference on OSDI 2010.

[13] C. Kim, M. Caesar, J. Rexford. Floodless in seattle: a scalable ethernet
architecture for large enterprises. In Proc. of ACM SIGCOMM, 2008

[14] http://www.ietf.org/rfc/rfc3031.txt
[15] http://wiki.xensource.com/xenwiki/Dom0
[16] Y. Qi, F. He, K. Wang, X. Chen, J. Fong, F. Xie,Y. Shao, Y. Gao, Y.

Xue, J. Li. LiveSec: OpenFlow-based. Security management for
production networks. In Proc. of the IEEE INFOCOM, 2011

