
RC25196 (W1108-006) August 1, 2011
Computer Science

IBM Research Report

Virtual Machines with Sharable Operating System

Trieu Chieu, Hoi Chan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Virtual Machines with Sharable Operating System

Trieu Chieu, Hoi Chan

IBM T. J. Watson Research Center

19 Skyline Drive

Hawthorne, NY, USA

e-mail: {hchan,tchieu}@us.ibm.com

Abstract— Virtualization technologies commonly known as

Cloud model enable the execution of multiple virtual

machine instances (VMs) with different operating systems

(OSs) on the same physical host. Each VM instance

functions independently as an isolated system with its own

physical resources, OS copy and applications. There is only

a limited number of currently available and widely used

OSs used by most of the running VM instances; it is wasteful

to store all the VM images with virtually the same common

OS code. It is also inefficient in terms of performance and

system resources utilization to virtually clone the entire

image each time a new VM instance is provisioned. In

addition, performing OS updates and patches are

complicated, tedious and error prone since not only the

stored images need to be updated, all the running VM

instances must be properly refreshed. More importantly,

faster provisioning of VM instances in respond to workload

changes is critical to the successful operation of Cloud

service providers. In this paper, we show our exploration

work to address these performance issues by using a

common, sharable operating system approach which

provides run-time on-demand operating system components

to individual VM instances in Cloud environment. This new

approach allows optimized VM image storage, faster VM

provisioning and efficient OS updates with minimum

interruption.

Keywords-Cloud VM, Cloud, patching, virtualization, OS

I. INTRODUCTION

With the widespread adaptation of virtualization

technologies and Cloud Computing [1,2,3] services and as
Cloud service providers [4] expand in size, the number of
VM images, VM instances and physical hosts increases
substantially, with resources scattering across multiple
locations and even continents [5]. Fast and responsive VM
instance provisioning [6], optimal image storage [7] and
efficient software updates and patches [8, 9] are the major
game-changers in terms of cost, performance and customer
satisfaction. VM image storage [10] has been studied
extensively, and many researches focus on efficient
mechanisms such as removing I/O bottlenecks, fast image
retrieval structure and efficient and optimized namespaces,

etc. There is little emphasis on actual image size reduction
from the point of view of the efficient use of the operating
system (OS). As there are only a limited number of currently
available and widely used OSs, and with the well-developed
virtualization technologies in image management and VM
execution, sharing the OS code from a common file system
by other VM instances is a real possibility. The traditional
way of provisioning a VM instance requires a copy of the
entire VM image which includes the OS, the required
applications and configuration files. Faster VM instances
provisioning can be achieved by directly reducing the size of
the VM image by extracting and sharing common
components in the OS. In addition, performing expected and
emergency OS updates and patches are complicated, tedious
and error prone since not only the stored images need to be
updated, all the running VM instances must be properly
refreshed. Image storage, provisioning latency and software
updates down time and reliability are the major factors which
affect user experiences and Cloud service provider
profitability. A question that almost every CIO and software
architect would ask: How can innovative software techniques
be used to enable better user experiences and increased
provider profitability in the Cloud setting? To help achieve
these objectives, we explore a new approach on the OS level
by maintaining a common, sharable central OS image which
provides on-demand OS functionalities (components) to
individual VM instances dynamically in a Cloud
environment. The production VM images will only keep
proxies to some common, non-application and non-user
specific OS components, OS code will be loaded from the
central OS system (disk or cache) to the actual running VM
instances on demand, analogous to the dynamic class loading
mechanism of the Java Virtual Machine [11]. VM image
size will be reduced since only OS component proxies are
maintained in the VM images, with user specific
configuration and applications, in contrast to the entire OS
system. For centralized managed VM instances such as
those in a large data center and with the appropriate VM
instance management tools, certain OS patches and updates
can be performed on the central OS system (and its original
VM image) and subsequently, all changes will propagate to
all of its associated VM instances after refresh. The VM
instances management tools for OS patching and updates on
a common shared OS is beyond the scope of this paper and
will be addressed in subsequent papers.

The rest of this paper is organized as follows: Section 2
gives an overview of the architecture of a shared OS
approach in Cloud setting and describes the OS component
sharing mechanism. Section 3 shows an analogous system
and possible design and implementation approach using the
common Linux file sharing system. Section 4 uses the
VMWare ESX server, its snapshot management mechanism
and APIs as the basis to prove the feasibility and show the
increased performance of the proposed shared OS approach
in Cloud setting. Section 5 discusses issues related to the
shared OS approach and possible future works and Section 5
concludes.

II. OVERVIEW OF ON-DEMAND OS COMPONENTS

 As we have observed in a typical desktop or laptop

computer, its limited main memory does not contain the

entire copy of the OS but only the components for the

functionalities that are currently or recently used when it

runs [12]. OS components for the required functionalities

are swapped in as needed and out when done. We apply

basically the same principal to the running VM instances in
the Cloud setting – common components of the OS are

factored out and persistently stored and centrally

maintained, these components are swapped in or out by the

running VM instances dynamically on an on-demand basis.

Since the number of types of common operating systems

(e.g. Windows, Linux, UNIX, AIX) used in most of the VM

instances is small, and for each of the OSs with the same

version and up-to-date service patches, the components are

virtually identical. Maintaining a server or file system for

the common OS components for each of the common

operating systems is relatively manageable with reasonable
cost.

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…
Guest OS

Service VM

OS function Server

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…
Guest OS

Service VM

OS function Server

Guest OS

Service VM

OS function Server

Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…
Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…
Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…
Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtua l OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…
Guest OS

Service VM

OS function Server

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…
Guest OS

Service VM

OS function Server

Guest OS

Service VM

OS function Server

Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…
Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…
Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…
Hypervisor

Physical Resources

Guest OS

VM

App App App

Guest OS

VM

App App App

…

Figure 1. Cloud with VM OS component sharing

Figure 1 shows an overview of a typical Cloud

environment with on-demand OS components sharing. In

contrast to a classical Cloud setting, it maintains one or

more dedicated VMs with an installed OS component server

(Figure 2). Or alternatively, the OS components can be

stored in a in a common sharable file system and accessed
locally (Figure 3).

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…

Figure 2. VM with thin virtual OS layer

Figure 3. OS components from image storage

For simplicity, we will use the common OS server

approach in subsequent discussions. The server hosts a

collection of common, non-user and non-application

specific OS components and will be delivered to any of its

clients dynamically upon request (loaded into the client’s
main memory). For those VM instances that participate in

the OS component sharing scheme, a thin version of OS of

the required type (Figure 4) and a pointer to the OS server

replaces the regular full OS copy. For those VM instances

that do not participate in this scheme, it runs normally with

the entire regular OS image stored locally.

Virtual OS

Guest OS

App App App

Local

Configurat ion

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…
Guest OS

Service VM

OS function Server

Virtual OS

Guest OS

App App App

Local

Configurat ion

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configurat ion

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

…
Guest OS

Service VM

OS function Server

Guest OS

Service VM

OS function Server

Figure 4. Dedicated VM with OS component server

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

… OS Image

Storage Disk

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

Hypervisor

Physical Resources

Virtual OS

Guest OS

App App App

Local

Configuration

Components

Common

Component

Proxies

VM

… OS Image

Storage Disk

The thin OS layer includes only the required VM and

installed application and user specific components (such as

drivers and configuration settings), and a set of proxies

(pointing mechanism) for accessing the shared OS

components. The VM instance hosting the OS server
behaves as an independent VM instance, with the OS image

stored locally. The OS server is highly scalable; instances

of the VM with the OS server can be provisioned or

removed in respond to workload. (The same holds true for

using the file system approach as multiple copies of the OS

images can be created on different disks or mounted on

remote storage systems).

 With the shared OS system, each individual VM image

only needs to store the pointers (as part of the configuration

parameters), its own applications and data instead of the

entire OS copy; as a result, less storage capacity is required.

Figure 5 shows the storage view of VM of OS servers and
their client VM images. For large scale Cloud operation

with thousands of VM images, the savings in storage cost is

significant.

Figure 5. Storage view of master OS VMs

 Another major potential benefit of the OS sharing system

in Cloud is the significant time and reliability improvement

in performing software patches and updates. The traditional

approach of on-line software OS updates and patches add

significant costs to the management of a Cloud environment,

since each VM image needs to be powered up and shut

down for the updates to be installed. In a control

environment where all VM instances are centrally managed,
such as data centers, the OS component sharing approach

with the appropriate VM instance version management tools,

a significant number of OS patches and updates can be

performed only on the various OS component servers or file

system with a single master image for each of target OS

types. Subsequently, all changes will propagate to its entire

set of VM instances upon re-start. The time and cost saving

in performing regular and emergency updates and patches

are substantial, in addition to the increased service reliability

by reducing the risk associated with power up and down

thousands of VM images while performing the traditional

software updates and patches.

III. LINUX BASED SHARED OS

There are numerous ways to design and implement the

OS component sharing system, depending on the operating

system type. For some OSs, it may not be possible without

substantial changes to the OS structure (e.g. Windows),

some OSs may have existing infrastructure that can be

leveraged to achieve relatively simple design and easy

implementation. For simplicity, we use the common Linux

file mounting process as an example to show a possible way

of how the OS component sharing among VM instances in a

Cloud setting can be realized. In a typical Linux OS

installation [13], /boot directory, which contains files used

by the bootstrap loader, LILO and kernel images, along with
some necessary modules which are needed during startup

and system initialization, are kept and loaded locally.

Others such as /lib/modules which contains the loadable

kernel modules can be loaded on-demand (Figure 6).

Figure 6. Linux directory structure

 File system mounting is a common process in Linux OS

that sets up a file system for use by the OS simply by adding

the mount information in the /etc/fstab configuration file

[14]. Based on the mounting information entries in this file,

file systems are automatically mounted when the system

boots. Figure 7 shows an example of the file mount

information added to /etc/fstab configuration file.

Figure 7. File mount and symbolic link example

 A modified Hypervisor keeps a registry of the available

OS component sharing servers. At VM instance start-up, the
Hypervisor locates the /etc/fstab configuration file and

insert the remote file mounting information to a Hypervisor

selected OS component sharing server, making it available

to the VM instance’s OS after start-up. This change affects

only the running VM instance, the original VM image

remains unchanged. As far as the users and applications are

concerned, all these changes are transparent to them and it

looks to them as if they have the full OS and the isolated

environment. This example takes advantages of the Linux

VM Image
Linux

VM Image
AIX

VM Image
Windows

VM Image

……

VM4
Delta

VM1
Delta

VM2
Delta

VM3
Delta

VM5
Delta

VM6
Delta

Storage

VM Image
Linux

VM Image
AIX

VM Image
Windows

VM Image

……

VM4
Delta

VM1
Delta

VM2
Delta

VM3
Delta

VM5
Delta

VM6
Delta

Storage

// network mount info in /etc/fstab file

9.7.25.123:/vol/shared_lib /shared nfs

ro,soft,bg,timeo=3,intr 0 0

// establish symbolic link
ln -s /shared/lib/modules /lib/modules

|---root
|---boot
|---lib
 |-----modules
|----

OS infrastructure and is the simplest, but not necessarily the

best way to enable OS components sharing. Recently, there

are numerous new ideas and developments in the Linux

world (and other OSs) that attempt to provide a more

flexible executing environment, which will provide a better

foundation for the OS component sharing system. The
recent advance of network boot [15] and diskless OS [16] is

an example to move away from the traditional OS executing

environment to meet the challenges of a new generation of

applications and usages. Researchers may look into the

Linux initial system boot process [17] and the kernel system

for a better and more efficient design and implementation,

but this is beyond the scope of this report.

IV. EXPERIMENT WITH VMWARE ESX

 To prove the feasibility of the OS sharing architecture in a

Cloud setting with a typical and widely used virtualization

platform, we conducted a serious of experiments on a
VMWare ESX 4 server [18] hosted on an IBM Blade server

(IBM BladeCenter HS22 - 7870 - 4 GB RAM - 2.53 GHz)
to simulate the operation of the OS sharing system. The

idea is to create multiple snapshots from the original master

image and support running independent VM instances from

these snapshots.

 A master VM image with complete OS, which serves as

the repository or master copy for the common sharable OS

components is created. We then utilized VMWare’

Snapshot Manager [19,20] to provide the snapshot and

instance creation functions. Although these functions can
be performed using the Snapshot Management GUI, our

entire process of snapshots and VM instances creation and

the subsequent modification in the delta of the children

images is done automatically by a script using VMWare’s

published APIs [21]. Figure 8 shows the high-level

algorithm to create snapshots and independent VM instances

from the master VM image.

In the example algorithm, the key idea is the use of

VMWare ESX server’s existing Snapshot Manager to create

snapshots and VM instances are supported from these

snapshots. Snapshots are utilized by many VMWare and

third party products and features such as VMWare
Consolidation Backup, VMWare Data Recovery, VMWare

vCenter and the VMWare Infrastructure Client and

VMWare Lab Manager. Obviously, the algorithm we

developed for our experiment is not the intended use of

snapshot mechanism by VMWare, but we were able to

modify each of the VM instances’ configuration parameters

(e.g. new IP and host name as in step 6) in a way that each

of the snapshot supported VM instances acts as independent

VM instance from the perspective of the users (users can

login in simultaneously into each of the created VM

instances and communicate among them using their unique
assigned IPs and host names). Internally from the

Hypervisor, it acts as a typical VM instance created from the

snapshot and managed by VMWare’s snapshot management

functions.

1. Create Master Image on VMWare ESX with

fixed IP and embedded host public key (to

allow remote login from script without
password), this image is immutable

2. Create child image by cloning only the

configuration files(.xmx, .vmdk, .vmxf) from

the Master Image, assign new name to the new

child image in configuration files and remain

pointing to the Master Image’s flat vmdk file

3. Register the child to the ESX Server

4. Create a snapshot instance from the child

image’s .vmx file (the cloned and modified

configuration file in step 2)

5. Boot up and log on to child instance using the

Master copy’s IP, as it still uses the IP of the
Master Image

6. Assign new IP and host name to the child

instance, thus the new IP and host name are

saved in the delta of the snapshot’s image.

7. Reboot and login to new instance with the new

IP established in step 6

8. Verify communication with the new instance by

pinging the new instance using the new IP

established

9. Repeat 2-8 for new instances

Figure 8. Algorithm of creating VM instances with a master
VM image

Results:

Running the script produces a set of new snapshots and

VM instances, all of these VM instances can be logged in

simultaneously with their assigned IP addresses (step 6 of

figure 8). Normally, it will take around 15 minutes to

provision a VM instance from a VM image of roughly 10G

in a typical server. With the automatic fast provisioning

script, we were able to provision instances from the 10GB
image without copying the entire master image in less than

1-2 minutes per VM instance, including the time to establish

network communication, this is significantly less than the

amount of time it takes for an instance provisioned in the

traditional way from individual full images. The initial

storage of the snapshot and delta image is relatively small,

since it only includes the configuration files (<vm>.vmx,

<vm>-<number>.vmdk, <vm>-<number>-delta.vmdk,

<vm>Snapshot <number>.vmsn). The child delta.vmdk file

which is initially created with the snapshot is a sparse

disk. The virtual disk (delta) contains no data and no OS

code in places, and yet is able to be used to provision
independently running VM instance, which suggests that the

OS code from the master image is used by the VM

instances. As the VM instance runs and application data is

added (via the COW – copy on write mechanism), it will

grow in size up to the full storage size determined initially

by the master image.

 The purpose of this experiment is to prove indirectly the

feasibility and performance of the shared OS approach in
Cloud setting using a common and widely used Cloud

platform (VMWare ESX server) and its supported utilities

e.g. the Snapshot Manager, it is by no means the way or the

only way to implement the shared OS system. We do not go

into the internal memory paging mechanism for snapshot

operation of the VMWare ESX Server platform and used

only the available VMWare ESX APIs, as we believe that

the implementation of the OS sharing idea in Cloud is

platform specific. This experiment proves that the concept

of shared OS in Cloud setting is possible even with the

currently available and unmodified virtualization platform.

In summary: we have demonstrated the concept of OS
sharing by VMs in Cloud setting by a master VM image as

the OS repository, and the created snapshot instances as the

independent VM instances sharing the OS of the original

master VM image. We have also showed that the size of the

OS-sharing VM images are reduced, resulting in faster

provisioning and reduced storage need.

V. ISSUES AND FUTURE WORKS

 As mentioned in earlier sections, in a large scale Cloud

setting, dynamically sharing common components by VM

instances is obviously beneficial in terms of image storage,
ease of maintenance especially for software updates and

patches, reliability and the more efficient use of resources.

However, there are numerous issues to be explored before

its full benefit and potential can be realized: (1) Not all

current OS infrastructures can be adapted for component

sharing. (2) This approach deviates from the current

common Cloud model in which a VM image other than its

own snapshots is completely isolated and self-contained.

(3) A new Hypervisor may be needed for real-time instance

modification which adds to complexity of the entire

approach. (4) Dynamic component loading incurs system

overhead which may affect performance especially when the
common components swap in/out frequently due to custom

applications. (5) Shared component may cause security

concerns to some users. (6) Sharing OS components among

VM instances represents a small step towards centralized

computing, or at the minimum, a hybrid between total

independence and centralization, this will cause

controversies such as “Is some degree of centralized

computing necessary to meet the current and future

challenges of Cloud computing model ?”. (7) Since running

VM instances relies to some extent on external components,

it becomes less portable. 8) As the size of the VM instance
grows, the OS part of the image becomes relatively less

important, and potential benefit of sharing OS in terms of

storage and provisioning time decreases, but the potential

benefit of more efficient OS patching and updates remain.

These issues are very interesting topics, and present

themselves uniquely in a Cloud setting. We also raised the

question of the classical arguments of the advantages and

disadvantages of centralized vs. distributed computing in a

Cloud setting with service providers facing issues on
economies of scale and management. Perhaps, a hybrid of

centralized and distributed computing approaches will be a

viable solution to address some of the Cloud computing

issues, all these are interesting questions that may stimulate

further research interests. In the future, we will focus on

using the Linux OS, study and prototype tools to extract

common components from various OSs, and different ways

of efficient component sharing in the Cloud setting.

VI. CONCLUSION

In summary, our initial works have showed the concept

and an approach to VM instance execution by enabling OS
components sharing among VM instances in Cloud
environment by sharing the OS of the master VM image.
We have demonstrated indirectly this concept in a currently
available and widely used commercial virtualization
platform by creating and running multiple VM instances
from a master VM image. We also explained that this
approach benefits the Cloud computing service providers
with increased storage efficiency, faster provisioning,
efficient and reliable software updates and patches which are
among the major pain points affecting customer satisfaction,
efficiency and profitability of a Cloud service provider. We
also identified some issues and obstacles with this approach
and raised questions on how much centralization is needed to
supplement the current Cloud computing management
system to fully take advantages of the benefits of Cloud
computing model.

REFERENCES

[1] G. Gruman, "What cloud computing really means", InfoWorld, Jan.

2009.

[2] R. Buyya, Y. S. Chee, and V. Srikumar, “Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities”, Department of Computer Science and Software

Engineering, University of Melbourne, Australia, July 2008, pp. 9.

[3] D. Chappell, “A Short Introduction to Cloud Platforms”, David

Chappell & Associates, August 2008.

[4] Amazon elastic compute cloud (EC2). http://aws.amazon.com/ec2/.

[5] Enterprise Cloud: http://websphere.sys-con.com/node/1017378

[6] Jun Zhu, Zhefu Jiang, Zhen Xiao. Twinkle: A Fast Resource
Provisioning Mechanism for Internet Services To appear in Proc. of

IEEE Infocom, April 2011

[7] Virtual Machine Storage: http://www.gluster.com/solutions/use-
case/virtualization/

[8] W. Zhou P. Ning, R Wang, Z Zhang, G Ammons and V. Bala,

“Always Up-to-date – Scalable Offline Patching of VM Images in a
Compute Cloud”, ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA

[9] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew
Schultz.Opus: online patches and updates for security. In

SSYM’05:Proceedings of the 14th conference on USENIX Security

Symposium,pages 19–19, Berkeley, CA, USA, 2005. USENIX
association.

[10] A.C Amarie, T.V Dinh, G. Antoniu, “Efficient VM Storage for
Clouds Based on the High-Throughput BlobSeer BLOB Management

System”, INRIA Sept 2010, 7434

[11] IBM DeveloperWorks, “Java programming dynamics, Part 1: Java
classes and class loading”, http://www.ibm.com/developerworks/java

/library/j-dyn0429/

[12] Gesellschaft für Mathematik und Datenverarbeitung, “Progress in
distributed operating systems and distributed systems management”,

European Workshop, Berlin, FRG, April 1989 Proceedings

[13] Linux Directory Structure, http://www.comptechdoc.org/os/linux/
/linux_ugfilestruct.html

[14] File Mounting, http://itc.virginia.edu/desktop/linux/mount.html

[15] Linux Network Boot, http://www.linuxtoday.com/infrastructure/

2009051801935OSNT

[16] Linux Remote Booting a Diskless Computer:

http://www.comptechdoc.org/os/linux/howtos/Howtoremoteboot//ind
ex.html

[17] IBM DeveloperWorks, “Inside the Linux boot process”,
http://www.ibm.com/developerworks/linux/library/l-linuxboot/

[18] VMWare URL: VMWare ESXi & ESX Information Center,

http://www.vmware.com/products/vsphere/esxi-and-esx/index.html

[19] VMWare URL: Snapshot Manager Information,
http://www.vmware.com/support/ws55/doc/ws_preserve_sshot_mana

ger.html

[20] VMWare Knowledge Base: Working with Snapshots,
http://kb.vmware.com/selfservice/microsites/search.do?language=en_

US&cmd=displayKC&externalId=1009402

[21] VMware Infrastructure (VI) API Reference Guide

 http://www.vmware.com/support/developer

