
RC25200 (W1108-023) August 8, 2011
Computer Science

IBM Research Report

Dynamic Resource Allocation via Distributed Decisions in
Cloud Environment

Trieu C. Chieu, Hoi Chan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Dynamic Resource Allocation via Distributed Decisions
in Cloud Environment

Trieu C. Chieu and Hoi Chan
IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, NY, USA

e-mail: {tchieu,hchan}@us.ibm.com

Abstract—The adaptation of virtualization technologies and the
Cloud Compute model by Web service providers is accelerating.
These technologies commonly known as Cloud Compute Model are
built upon an efficient and reliable dynamic resource allocation
system. Maintaining sufficient resources to meet peak workloads
while minimizing cost determines to a large extend the profitability
of a Cloud service provider. Traditional centralized approach of
resource provisioning with global optimization and statistical
strategies can be complex, difficult to scale, computational
intensive and often non-traceable which adds to the cost and
efficiency of Cloud operation, especially in industrial
environments. As we have learned in real life, the most efficient
economic system is the one that provides individuals with
incentives for their own decisions. It is also true for computing
systems. In this paper, we present an architecture for dynamic
resource provisioning via distributed decisions. We will illustrate
our approach with a Cloud based scenario, in which each physical
resource makes its own utilization decision based on its own
current system and workload characteristics, and a light-weight
provisioning optimizer with a replaceable routing algorithm for
resource provisioning and scaling. This approach enables
resource provisioning system to be more scalable, reliable,
traceable, and simple to manage. In an industrial setting, the
importance of these characteristics often exceeds the goal of
squeezing the absolute last CPU cycles of the underlying physical
resources.

Keywords-Cloud computing; scalability; virtualization;
virtual machine

I. INTRODUCTION
Virtualization based Cloud Computing [1,2,3] is

becoming an increasingly popular enterprise computing
model in which applications share the underlying computing
resources by running in isolated Virtual Machines (VMs).
The vast processing power of Cloud Computing is made
possible though distributed, large-scale computing clusters,
often in concert with server virtualization software, like
VMware ESX Server [4] and Xen [5], and parallel
processing. The Cloud Computing model enables users to
access supercomputer-level computing power elastically on
an on-demand basis, freeing the users from the expense of
acquiring and maintaining the underlying hardware and
software infrastructure and components. With the Cloud
computing model, the providers who achieve the maximum
economies of scale while maintaining client satisfaction will

result in increased profit. The key to achieving the
maximum economies of scale in a Cloud environment is a
flexible and efficient provisioning and scaling system that
fully utilizes the underlying physical hosts and adjusts to
changing workload demand. Typically, efficient provisioning
requires two distinct steps or processes: (1) initial static
planning stage: the initial set of VMs are grouped, classified
and deployed onto a set of physical hosts; and (2) dynamic
resource provisioning [6,7,8]: the provisioning of additional
resources, creation and migration of VMs, dynamically
responds to fluctuating workload. In contrast to Step 1
which is usually performed at the initial system set up time
and may only be repeated for overall cleanup and
maintenance on a monthly or semi-annually schedule, step
2 runs continuously at production time. Step 1 has been
researched extensively with various optimization techniques
and strategies while step 2 becomes increasingly important
as the size of the Cloud environment [9] grows with complex
workload patterns. This paper focuses on step 2.

Traditional approach utilizes a centralized provisioning
and scaling system to continuously monitor the performance
and capacity characteristics of each of the VMs and their
physical hosts and makes provisioning and scaling decisions
based on the overall utility of the entire cluster as a whole.
The centralized decision making system [10] assumes that a
single decision maker will have access to all of its managed
systems and possesses all available knowledge and
information related to them and has to make decisions in
order to achieve a certain objective. These decisions are
often based on statistical models [11,27,28] and are often
difficult to trace should problems arise. The centralized
approach works well as long as the number of VMs and
physical resources remains manageable, but becomes
computationally expensive and difficult to manage as the
number of VMs and physical hosts grows. More importantly,
centralized systems may ignore the specific characteristics of
each of the VMs and physical hosts due to their inherent
complexity, each of them may be unique, e.g. some systems
are more expensive to operate, some may be offline soon for
maintenance. In the extreme cases, it will put pressure on the
limited sources and affects the performance of the entire
Cloud infrastructure. As Cloud computing grows in
acceptance and service providers [9] expand with physical
and software resources scattered and shared around multiple
locations and even across continents, these resources become

so diverged and large in number that a classical centralized
allocation system is inefficient and impractical. All these
reasons make decentralized [12,13] or distributed resource
allocation decision making a viable and practical solution.
This raises the need to explore and structure the
decentralized decision process so that the outcomes of the
combined individual effort of each of the distribution
decisions will achieve or closely match the defined objective
of the overall systems.

The advantages of distributed decision making have been
researched extensively [14]. In this paper, we will present a
distributed resource provisioning decision making system
and a Cloud based scenario with Web applications installed
in VM instances that are dynamically deployed on a Cloud
setting via distributed decision making, and the same
scenario but the provision and scaling decisions are made by
a centralized decision maker. Using this Web application
scenario, we show the operation and advantages of the
distributed decision making system as compared with the
centralized decision making process. In the rest of this paper,
section 2 describes a typical Cloud based Web application
usage scenario for dynamic resource allocation. Section 3
describes the classical centralized decision making
provisioning and scaling system while section 4 introduces
the distributed decision making provisioning and scaling
system. In section 5, we compare the centralized and
distributed provisioning and scaling systems. Section 6
briefly describes related work and section 7 concludes.

II. WEB APPLICATION SCENARIO
 We consider a typical Cloud-based commercial Web
application scenario to provide quality of services with
potentially unlimited number of users accessing the services
at any time. Such services demand short response time,
uninterrupted reliability and availability from the
application. Thus, the Cloud service provider must
provision resources to guarantee performance under all
workload conditions or risks losing customers. Due to the
unpredictable nature of workload patterns, the amount of
resources to be provisioned is critical to the profitability of
the Cloud service providers. Over-provision results in
lower profit margin while under-provision certainly results
in customer dissatisfaction. Obviously, the solution is to
scale the resources dynamically based on workload demand.

 The scenario system uses a front-end load balancer to
dynamically route user requests to back-end VM based Web
servers [15] that host the Web application. An Apache HTTP
Load Balancer is used as a single point of entry for service
requests and it routes requests to the underlying servers that
host the target Web applications. The Web applications are
deployed in Apache HTTP servers installed in Linux VMs.
These VMs are initially provisioned and started on-demand
by their provisioning and scaling system. The number of
Web servers (VMs) will automatically scale up or down
according to the number of current active sessions in each
Web server instance in order to meet the service quality
requirements.

The major scaling indicator [16] selected is the number
of active sessions or logon sessions in each Web application.
These indicators correlate closely with the capacity and
performance of the web application according to the results
of a performance and scalability study (reference?). Study
shows that each Web application can support up to about
40,000 active, concurrent sessions. Above this threshold, the
performance of the Web server system deteriorates rapidly
and the system crashes imminently.

The mechanism for the actual resource provisioning of
VM instances with web app and physical hosts is beyond the
scope of this paper. However, for completeness, we will
briefly describe the “Image-based provisioning” (IbP)
technique we use in our system -- IbP is a deployment and
activation mechanism that clones a “golden” virtual image to
create new virtual machine instances. Automating the
provisioning of new VMs with unique configuration from a
“golden” image template [17] can be accomplished by a
combination of template-based automation capabilities and
external automation scripts.

III. CLASSICAL CENTRALIZED DECISION MAKING
PROVISIONING AND SCALING SYSTEM

Figure 1 shows a scalable architecture of a centralized
provisioning and scaling management system (PSMS) in a
Cloud Computing environment. The architecture design
includes a front-end load-balancer (as described in Section
4), VMs with Web application, the collection of physical
hosts, a centralized management system which includes a
provisioning and scaling sub-system, and a service monitor
sub-system embedded with a dynamic scaling algorithm.

The monitoring service of PSMS periodically retrieves
performance and capacity data from each of monitoring data
collecting agents provided by the application, the VMs and
their physical hosts as scaling indicator metrics. The moving
averages of these scaling indictors are used as inputs to a
threshold based scaling algorithm which makes decision on
adjusting resources on each of the active physical hosts to
match current workload. Resource adjustment decision is
executed by the provisioning service sub-system to initiate
actions to scale up or down the current active set of physical
resources.

The scaling algorithm is implemented as part of
monitoring service of the PSMS. Figure 2 shows the
algorithm in pseudo procedures; it is based on the scaling
indicator Ai in each virtual machine instance in the Cloud.
For simplicity, we choose a scaling indicator in our
implementation that corresponds to the number of active
sessions in the web application of each instance.

The algorithm uses statistically determined active
sessions thresholds to make resource scaling decision. If all
instances have active sessions above the upper threshold, a
new VM with Web application instance will be provisioned
by the Provisioning Service, started, and then added to the
front-end load-balancer.

 Figure 1. Centralized Provisioning and Scaling Management System

(PSMS) in a Cloud Environment.

 If a VM instance has active sessions below a given lower

threshold and with at least one idle instance (no active
session) in the active pool, the idle instance will be removed
by the provisioning service from the load-balancer and be
shutdown and removed from the system. Consequently, the
load factors for all newly created and remaining active
instances will be recalculated and applied to the load-
balancer for workload re-distribution.

For an instance i in NInstance
 If (Ai/SMax >= TUpper) then
 Increment NExceed
 If (Ai/SMax < TLower) then
 Increment N Below
 Record and sort all indexes J in ascending of Ai/SMax
If (NExceed == NInstance) then
 Provision and start a new instance
 Increment number of instances: NInstance
 Add new instance to Load-Balancer
If (NBelow >= 2) then
 Set m equal first index in J
 If (Am == 0) then
 Remove instance m from Load-Balancer
 Shutdown instance m
 Decrement number of instances: NInstance
 Decrement NBelow and remove index m from J
 If (NBelow >= 2) then
 Set n equal first index in J
 Remove instance n temporary
 Decrement number of instances: NInstance
 Set normalized load factor Ln = 0
For an instance i in NInstance
 Evaluate normalized load factor:
 Li = (1-Ai/SMax) / Sum k=1,Ninstance [1-Ak/SMax]
 Apply new load factors Li to Load Balancer

where Ai: Number of active sessions in instance i
 SMax: Maximum sessions per instance (e.g. 40,000)
 Tupper : Session upper-threshold (e.g. 80% or 0.8)

 TLower : Session lower-threshold (e.g. 60% or 0.6)
 NInstance: Number of existing instances
 NExceed: Number of instances exceeding session
upper-threshold
 NBelow: Number of instances below session lower-
threshold

Figure 2. Dynamic Scaling Algorithm for Virtual Machine Instances in
Cloud.

Once the scaling decision to scale up is made, the
provision service will scan the current capacity and
performance data from each of the physical hosts, and find
the host with the most capacity for the additional VM
deployment, and add new physical host if needed.
Periodically, the Provision Service will perform maintenance
service to consolidate VMs and remove idle physical hosts.

This architecture represents a classical centralized control
design in which a single entity possesses all information (via
communication with local agents), performs analytics, and
makes decisions for the benefit of the entire system. As the
number of VMs and physical resources increases and scatter
across many geographic and political boundaries, it becomes
more difficult to analyze, scale and manage. It efficiency
decreases as it does not take into consideration the specific
characteristics of each physical systems and VMs.
Maintenance and trouble shooting become costly which adds
to the operating costs of the service provider. An alternative
approach of resource provisioning decision is necessary,
which led us to explore the distributed decision making
provisioning and scaling system.

IV. DISTRIBUTED DECISION MAKING PROVISIONING
AND SCALING SYSTEM

Figure 3 shows a scalable architecture of a distributed
provisioning and scaling management system (DPSMS) in
virtualized Cloud Computing environment with the same
scenario. The basic architecture design is similar to its
counter part except that there is an Capacity and Utility
Agent (CUA) deployed on each physical host under a
dedicated service VM running continuously trying to
maximize its own utility and PSMS is replaced by the
Distributed Capacity Agent Manager (DCAMgr) (Figure 4)
which is a light weight agent management system
responsible for managing and communicating with the
participating agents and directing the resource adjustment
actions to the target systems. Below is a description the
analytic and capacity agent and the agent management
system.

Figure 4 shows the VMs with apps, the service VM with
CUA within a physical host. The CUA is designed as an
autonomic agent [18,19,20], a default CUA is initially
installed in the service VM and boot-started with the
Hypervisor as soon as the host system is active. Each agent
includes a pluggable Capacity Index (CI) calculator which
takes an input XML file describing the specific conditions
and parameters unique to the physical host (default calculator
and input xml are usually replaced by the user due to their
own requirements and conditions).

Host 1

Database on
VM

Load Balancer
On VM

Host 2 Host N

Monitoring
Service

Scaling Decision
Algorithm

Provisioning
Service

Cloud Environment Centralized
Provisioning system

Users

….App
VM1

App
VM2

App
VM1

App
VM1

App
VM2

App
VM2

Standby
Physical HostStandby

Physical HostStandby
Physical Host

Host 1

Database on
VM

Load Balancer
On VM

Host 2 Host N

Monitoring
Service

Scaling Decision
Algorithm

Provisioning
Service

Cloud Environment Centralized
Provisioning system

Users

….App
VM1

App
VM2

App
VM1

App
VM1

App
VM2

App
VM2

Standby
Physical HostStandby

Physical HostStandby
Physical Host

Figure 3. Distributed Provisioning and Scaling Decision Making System

(DPSMS) in a Cloud Environment.

Figure 4. Capacity and Analytic Agent in the Service VM of a Physical
Host

The CUA collects capacity and resource data from each
of the VMs and the underlying physical host via the
Hypervisor APIs and optionally from a system profile which
describes the characteristics of the physical host such as
power usage and its usage priority. Using the data, it
generates a CI based on its own goals and incentives and it is
through this CI that the host system controls its own destiny.
The CI ranges from 0 to 1, with 1 indicating that the host’s
capacity is fully utilized and scaling up is needed urgently,
and a value of 0 means the system is virtually idle. Figure 5
shows an example of a simple algorithm to determine the CI
based on a few general systems performance indicators. In
contrast to CPSMS which performs all analytics and make
all resource decisions centrally, in the DPSMS, each physical
host in the DPSMS indicates its current states of capacity and
utility and its willingness to accept new VMs, or its need to
scale up through the published CI.

The CUA analyzes the performance of the VM instances
running on the local host (in this scenario, we follow the
centralized system by using a single parameter “number of
sessions” as Web app scaling indicator, and the same scaling
algorithm (Figure 2)) and decides if resource scale up/down
is needed. If resource scale up is needed and its CI is low,
additional VMs will be created within the local host. If
resource scale down is needed, VMs will be removed from

the local host. All local VM deployment or removal actions
will trigger re-calculation of the CI.

The CI is sent to the DCAMgr if changed. The DCAMgr
maintains a database for all the current CIs and formulate a
plan based on them to adjust resources to maximize resource
utilization while meeting workload requirements.

CIm = % of current memory usage
CIc = % of current CPU utilization
CId = % of disk utilized
CIi = % of IO capacity

CI overall = max of (CIm, CIc, CId, CIi) *100

Figure 5. Sample Algorithm to deterimine Capacity Index

This algorithm can be replaced by the user’s calculator (a
Java class implementing the CUA interfaces) [21] and is
loaded at runtime during start up to reflect the characteristics
of the applications on each of the VMs. Figure 6 shows
another example algorithm which takes into consideration of
the priority of the underlying running applications.

CI app1 CPU = actual % of CPU used by app1
CI app2 CPU = actual % of CPU used by app2
CI app3 CPU= actual % of CPU used by app3
CI app4 CPU= actual % of CPU used by app4

Since Application 4 represents a higher-valued service, its
importance is reflected with a factor >1.

CI overall = max of (CI1 + Cl2 + Cl3 + 1.5Cl4)*100 <=1

Figure 6. Sample Algorithm to deterimine Capacity Index

Figure 7 shows an overview of the Distributed Capacity
Agent Manager (DCAMgr), it provides basic services to the
distributed CUAs such as discovery and registration and
keeps a repository of the current CIs sent from the CUA of
each of the physical hosts.

Figure 7. Distributed Capacity Agent Manager Overview

DCAMgr includes 3 major services (1) The Host
Capacity Index Repository service receives the capacity
index from each of the CUAs under its watch and maintains

Provisioning
Service

Provisioning and
Scaling Planner

Host
capacity

Index

Distributed
Capacity Agent
Manager

Host 1

Database on
VM

Load Balancer
On VM

Host 2 Host N

Cloud Environment

Users

….App
VM1

App
VM2

App
VM1

App
VM1

App
VM2

App
VM2

= Capacity & Analytic Agent on VM Standby
Physical HostStandby

Physical HostStandby
Physical Host

Provisioning
Service

Provisioning and
Scaling Planner

Host
capacity

Index

Distributed
Capacity Agent
Manager

Provisioning
Service

Provisioning and
Scaling Planner

Host
capacity

Index

Distributed
Capacity Agent
Manager

Host 1

Database on
VM

Load Balancer
On VM

Host 2 Host N

Cloud Environment

Users

….App
VM1

App
VM2

App
VM1

App
VM1

App
VM2

App
VM2

= Capacity & Analytic Agent on VM Standby
Physical HostStandby

Physical HostStandby
Physical Host

Provisioning
Service

Provisioning and
Scaling Planner

Host
capacity

Index

Distributed
Capacity Agent
Manager

Provisioning
Service

Provisioning and
Scaling Planner

Host
capacity

Index

Distributed
Capacity Agent
Manager

a copy of them in its database. (2) Provisioning and Scaling
Planner service reviews periodically all the CIs and
formulate a plan to re-adjust resource allocation, including
provisioning and/or removal of VMs as well as physical
hosts form the active pool. The Planner includes a
pluggable algorithm (a Java Class implementing the Planner
interface) to determine the optimal resource allocation based
on the indices from each of CAUs. Figure 8 shows an
example threshold based allocation strategy which
maximizes the CIs of each of the physical host with an
acceptable margin. (3) The Provisioning Service carries out
the allocation decisions made by the Planner, it includes
functions to provision, remove and move VMs and physical
hosts.

Sort indices in descending order CI[n] // n=number of
physical hosts
Sort physical hosts in order according to their CIs: H(n)

For each ci in CI[n] ; n from 0 to n-1 {
 if (i > upperlimit) {
 if (ci of CI(n-1) < 0.6) {
 createInstance in PH(n-1)
 remove PH(n-1) from the list
 }
 if (numberOfHostCIBelowLimit < 2) {
 addPhysicalHost();
 }
 }
}

Sort indices in descending order CI[n] // n=number of
physical hosts
Sort physical hosts in order according to their Is:PH(n)

For each ci in CI[i] ; i from n-1 to 0 {
 if (numberOfHostCIBelowLimit > 2) {
 removePhysicalHost(i);
 remove PH(i) from PH(n);
 }
}

Figure 8. Sample Algorithm for provisioning

This algorithm seeks to maintain a target overall CI of
close to 0.9 for all of its participants. Resource adjustment
actions are initiated either by scaling or provisioning new
VM instances or physical hosts if any of its CUA reports
index close to 1. Similarly, instances and physical resources
removal or consolidation actions are initiated if more than 1
of its CUA reports index below 0.1.

V. COMPARISON WITH CENTRALIZED PROVISIONING
 As mentioned before, the success of an application and
consequently its provider depends on the following factors:
the application’s scalability, availability, reliability,
management and maintenance cost, resource utilization, and
mostly importantly, its responsiveness. All these factors,
especially in virtualized computing settings, to a large
extend, depend on an efficient resource allocation system.

Based on the initial implementation of the CPSMS and the
proposed DPSMS architecture, the proposed distributed
decision system offers the following advantages:

Cost reductions: Monolithic decision structure often fails to
take advantage of the specific characteristics of its
individual physical systems, which may result in over/under
resource allocation, adding to the cost of operation.

Benefits to users: Since most physical resources in a
virtualized computing environment are shared among
multiple users, administrators will have more flexibility in
optimizing their resource usages by manually adjusting its
CI.

Improved decision-making: More accurate decisions can be
made at the individual physical host level as data are readily
available without network delay. System and geographic
specific information can be incorporated into the decision
making process to better reflect local system characteristics
and requirements.

Improved scalability: Adding or removing resources can be
done incrementally by a simple registration operation;
minimum communication is needed between the agents and
its agent manager. There is no need to re-compute the
model due to resource changes.

Improved decision speed: Most of the decision making and
data collection processes are executed in the distributed
systems which are analogous to parallel processing.
Naturally, for a relatively large Cloud operation, it is orders
of magnitude faster than a centralized decision making
system.

Improved maintenance: Maintenance is much easier to be
done at a smaller isolated environment, especially in trouble
shooting should problems arise.

Improved reliability: The crash of individual physical
systems does not affect the overall operation. If a physical
host crashes, it simply disappears from the active resource
pool and the load balancer will re-route the workload to
other instances and the system will adjust accordingly.

Distributed ownership: Resources used by a Cloud service
provider may scatter across geographic and political
boundaries; the distributed resource allocation decision
model is consistent with the current geographic and political
landscape of the world.

VI. FUTURE WORKS
Scalability has been one of the principal topics discussed

regarding Cloud Computing model and is the most important

issue for the Cloud service providers. Dynamic resource
allocation is unquestionably the preferred solution to
efficiently manage a Cloud setting. The coupling of
autonomic computing principals [18,19,20] with distributed
resource allocation decision making in a Cloud setting
provides a new way of managing a Cloud, and raise the
question if a hybrid system of mixed centralized and
distributed decision making will be more applicable in the
Cloud setting. All these are interesting areas for further
exploration and its results will ultimately help the further
acceptance of the Cloud service model.

VII. CONCLUSION
As we have learned in real life, the most efficient

economic system is the one that provides individuals with
incentives for their own decisions. It is also true for
computing systems. In this paper, we have presented the
overview architectures of both centralized and distributed
decision making system for Cloud with a scenario. In
addition to its major advantage of scalability, the main benefit
of distributed decision making for resource allocation is that it
enables Cloud service provider to distribute the resource
allocation decision to its basic root entities where information
and analysis can be done quickly and accurately, and
collectively they optimize their computing resources in an
efficient and natural way. The comparison of centralized and
distributed systems have been studied extensively, as a follow
up to this paper and specifically for Cloud setting, we will use
simulated Web services data to study the efficiency of these
systems with different workloads and sizes of Cloud.

REFERENCES
[1] G. Gruman, "What cloud computing really means", InfoWorld, Jan.

2009.
[2] R. Buyya, Y. S. Chee, and V. Srikumar, “Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities”, Department of Computer Science and Software
Engineering, University of Melbourne, Australia, July 2008, pp. 9.

[3] D. Chappell, “A Short Introduction to Cloud Platforms”, David
Chappell & Associates, August 2008.

[4] VMware ESX Server, VMware Inc.,
http://www.vmware.com/products/vi/esx/

[5] Xen Hypervisor, http://www.xen.org/
[6] E. Knorr, “Software as a service: The next big thing”, InfoWorld,

March 2006. P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,S.
Singhal, A. Merchant, and K. Salem. Adaptive control ofvirtualized
resources in utility computing environments. In ACM
SIGOPS/EuroSys European Conference onComputer Systems, 2007.

[7] M.N.Bennani and D.A.Menasce. Resource allocation for automatic
data centers using performance models. In IEEE International
Conference on Autonomic Computing (ICAC), 2005.

[8] D.Kusic and N.Kandasamy. Risk-aware limited lookahead control
for dynamic resource provisioning in enterprise computing systems.
In IEEE International Conference on Autonomic Computing (ICAC0,
2006.

[9] Amazon elastic compute cloud (EC2). http://aws.amazon.com/ec2/.

[10] Centralized and decentralized computing:
http://www.brainbell.com/tutorials/Networking/Centralized_And_Dis
tributed_Computing.html

[11] A.C.Davison. “Statistical Models”. Dept of Math, Swiss Institude of
Technology. http://statwww.epfl.ch/davison/SM/SMsample.pdf.

[12] L. Kleinrock. “Distributed System”.Communications of the ACM
28(11):1200-1213, November 1985.

[13] Emin Gun Sirer, Robert Grimm, Arthur J. Gregory, Brian N. Bershad
(University of Washington), “Design and implementation of a
distributed virtual machine for networked computers” Proceedings of
the 17th ACM Symposium on Operating Systems Principles (SOSP),
Charleston, South Carolina, December, 1999: pp: 202-216

[14] J.H. Saltzer, D.P. Reed and D.D. Clark. “End-To-End Arguments in
System Design” ACM Transactions on Computer Systems, 4(4):277-
288, November 1984

[15] Websphere Application Server. http://www-
01.ibm.com/software/webservers/appserv/was/

[16] David Parmenter. “Implemnenting and Using KPIs”, John Wiley and
Sons, 2009 - Business & Economics

[17] L. He, S. Smith, R. Willenborg, Q. Wang, “Automating deployment
and activation of virtual images”, IBM developerWorks, Aug. 2007.
http://www.ibm.com/developerworks/websphere/techjournal/0708_he
/0708_he.html

[18] Pual Horn, “Autonomic Computing: IBM’s Perspective on The State
of Information Technology”, IBM Corp,
http://www.research.ibm.com/autonomic/manifesto.

[19] J.O Kephart, D.M. Chess, “The Vision of Autonomic Computing”,
IEEE Computer Magazine, Jan 2003.

[20] J.O Kephart, W.E. Walsh, “An Artificial Intelligence Perspective on
Autonomic Computing Policies”, Policies for Distributed Systems
and Networks, 2004.

[21] S. R. Safavin and D. Landgrebe. A survey of decision tree classifier
methodology. IEEE Trans. on Systems, Man and Cybernetics,
21(3):660-674, 1991

[22] V. Ungureanu, B. Melamed, and M.Katehakis, “Effective Load
Balancing for Cluster-Based Servers Employing Job Preemption”,
Performance Evaluation, 65(8), July 2008, pp. 606-622.

[23] L. Aversa and A. Bestavros. “Load Balancing a Cluster of Web
Servers using Distributed Packet Rewriting”, Proceedings of the 19th
IEEE International Performance, Computing, and Communication
Conference, Phoenix, AZ, Feb. 2000, pp. 24-29.

[24] V. Cardellini, M. Colajanni, P. S. Yu, “Dynamic Load Balancing on
Web-Server Systems”, IEEE Internet Computing, Vol. 33, May-June
1999, pp. 28 -39.

[25] Y. Ajiro and A. Tanaka. “Improving packing algorithms for server
consolidation.”. In Proceedings of the International Conference for
the Computer Measurement Group (CMG).

[26] N. Bobroff, A. Kochut, K. Beaty. “Dyankic Placement of Virtual
Machines for Managing SLA Violations”. In Proceedings of the 10th
IFIP/IEEE International Symposium on Integrated Network
Management(IM), 2007

[27] M. N. Bennani and D. A. Menasce. “Resource allocation for
autonomic data centers using analytic performance In IEEE
International Conference on Automatic Computing (ICAC), 2005.

[28] J. Rolia, L. Cherkasova, M. Arlit, and A. Andrzejak. “A capacity
management service for resource pools”. In International Workshop
on Software and Performance 2005.

