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Abstract—The adaptation of virtualization technologies and the 
Cloud Compute model by Web service providers is accelerating. 
These technologies commonly known as Cloud Compute Model are 
built upon an efficient and reliable dynamic resource allocation 
system. Maintaining sufficient resources to meet peak workloads 
while minimizing cost determines to a large extend the profitability 
of a Cloud service provider. Traditional centralized approach of 
resource provisioning with global optimization and statistical 
strategies can be complex, difficult to scale, computational 
intensive and often non-traceable which adds to the cost and 
efficiency of Cloud operation, especially in industrial 
environments.  As we have learned in real life, the most efficient 
economic system is the one that provides individuals with 
incentives for their own decisions.  It is also true for computing 
systems.  In this paper, we present an architecture for dynamic 
resource provisioning via distributed decisions.  We will illustrate 
our approach with a Cloud based scenario, in which each physical 
resource makes its own utilization decision based on its own 
current system and workload characteristics, and a light-weight 
provisioning optimizer with a replaceable routing algorithm for 
resource provisioning and scaling. This approach enables 
resource provisioning system to be more scalable, reliable, 
traceable, and simple to manage. In an industrial setting, the 
importance of these characteristics often exceeds the goal of 
squeezing the absolute last CPU cycles of the underlying physical 
resources.    

Keywords-Cloud computing; scalability; virtualization; 
virtual machine 

I.  INTRODUCTION 
Virtualization based Cloud Computing [1,2,3] is 

becoming an increasingly popular enterprise computing 
model in which applications share the underlying computing 
resources by running in isolated Virtual Machines (VMs). 
The vast processing power of Cloud Computing is made 
possible though distributed, large-scale computing clusters, 
often in concert with server virtualization software, like 
VMware ESX Server [4] and Xen [5], and parallel 
processing.    The Cloud Computing model enables users to 
access supercomputer-level computing power elastically on 
an on-demand basis, freeing the users from the expense of 
acquiring and maintaining the underlying hardware and 
software infrastructure and components.  With the Cloud 
computing model, the providers who achieve the maximum 
economies of scale while maintaining client satisfaction will 

result in increased profit.  The key to achieving the 
maximum economies of scale in a Cloud environment is a 
flexible and efficient provisioning and scaling system that 
fully utilizes the underlying physical hosts and adjusts to 
changing workload demand. Typically, efficient provisioning 
requires two distinct steps or processes: (1) initial static 
planning stage: the initial set of VMs are grouped, classified 
and deployed onto a set of physical hosts; and (2) dynamic 
resource provisioning [6,7,8]: the provisioning of additional 
resources, creation and migration of VMs, dynamically 
responds to  fluctuating workload.   In contrast to Step 1 
which is usually performed at the initial system set up time 
and may only be repeated for overall cleanup and 
maintenance on a monthly or semi-annually schedule,   step 
2 runs continuously at production time.  Step 1 has been 
researched extensively with various optimization techniques 
and strategies while step 2 becomes increasingly important 
as the size of the Cloud environment [9] grows with complex 
workload patterns. This paper focuses on step 2.  

Traditional approach utilizes a centralized provisioning 
and scaling system to continuously monitor the performance 
and capacity characteristics of each of the VMs and their 
physical hosts and makes provisioning and scaling decisions 
based on the overall utility of the entire cluster as a whole.  
The centralized decision making system [10] assumes that a 
single decision maker will have access to all of its managed 
systems and possesses all available knowledge and 
information related to them and has to make decisions in 
order to achieve a certain objective. These decisions are 
often based on statistical models [11,27,28] and are often 
difficult to trace should problems arise.  The centralized 
approach works well as long as the number of VMs and 
physical resources remains manageable, but becomes 
computationally expensive and difficult to manage as the 
number of VMs and physical hosts grows. More importantly, 
centralized systems may ignore the specific characteristics of 
each of the VMs and physical hosts due to their inherent 
complexity, each of them may be unique, e.g. some systems 
are more expensive to operate, some may be offline soon for 
maintenance. In the extreme cases, it will put pressure on the 
limited sources and affects the performance of the entire 
Cloud infrastructure. As Cloud computing grows in 
acceptance and service providers [9] expand with physical 
and software resources scattered and shared around multiple 
locations and even across continents, these resources become 



so diverged and large in number that a classical centralized 
allocation system is inefficient and impractical. All these 
reasons make decentralized [12,13] or distributed resource 
allocation decision making a viable and practical solution.  
This raises the need to explore and structure the 
decentralized decision process so that the outcomes of the 
combined individual effort of each of the distribution 
decisions will achieve or closely match the defined objective 
of the overall systems.   

The advantages of distributed decision making have been 
researched extensively [14].  In this paper, we will present a 
distributed resource provisioning decision making system 
and a Cloud based scenario with Web applications installed 
in VM instances that are dynamically deployed on a Cloud 
setting via distributed decision making,  and the same 
scenario but the provision and scaling decisions are made by 
a centralized decision maker.  Using this Web application 
scenario, we show the operation and advantages of the 
distributed decision making system as compared with the 
centralized decision making process. In the rest of this paper, 
section 2 describes a typical Cloud based Web application 
usage scenario for dynamic resource allocation. Section 3 
describes the classical centralized decision making 
provisioning and scaling system while section 4 introduces 
the distributed decision making provisioning and scaling 
system. In section 5, we compare the centralized and 
distributed provisioning and scaling systems. Section 6 
briefly describes related work and section 7 concludes.  

II. WEB APPLICATION SCENARIO 
      We consider a typical Cloud-based commercial Web 
application scenario to provide quality of services with 
potentially unlimited number of users accessing the services 
at any time.   Such services demand short response time, 
uninterrupted reliability and availability from the 
application. Thus, the Cloud service provider must 
provision resources to guarantee performance under all 
workload conditions or risks losing customers.  Due to the 
unpredictable nature of workload patterns, the amount of 
resources to be provisioned is critical to the profitability of 
the Cloud service providers.  Over-provision results in 
lower profit margin while under-provision certainly results 
in customer dissatisfaction.  Obviously, the solution is to 
scale the resources dynamically based on workload demand.   

 The scenario system uses a front-end load balancer to 
dynamically route user requests to back-end VM based Web 
servers [15] that host the Web application. An Apache HTTP 
Load Balancer is used as a single point of entry for service 
requests and it routes requests to the underlying servers that 
host the target Web applications. The Web applications are 
deployed in Apache HTTP servers installed in Linux VMs. 
These VMs are initially provisioned and started on-demand 
by their provisioning and scaling system. The number of 
Web servers (VMs) will automatically scale up or down 
according to the number of current active sessions in each 
Web server instance in order to meet the service quality 
requirements. 

The major scaling indicator [16] selected is the number 
of active sessions or logon sessions in each Web application. 
These indicators correlate closely with the capacity and 
performance of the web application according to the results 
of a performance and scalability study (reference?). Study 
shows that each Web application can support up to about 
40,000 active, concurrent sessions. Above this threshold, the 
performance of the Web server system deteriorates rapidly 
and the system crashes imminently.  

The mechanism for the actual resource provisioning of 
VM instances with web app and physical hosts is beyond the 
scope of this paper.  However, for completeness, we will 
briefly describe the “Image-based provisioning” (IbP) 
technique we use in our system -- IbP is a deployment and 
activation mechanism that clones a “golden” virtual image to 
create new virtual machine instances.  Automating the 
provisioning of new VMs with unique configuration from a 
“golden” image template [17] can be accomplished by a 
combination of template-based automation capabilities and 
external automation scripts.   

III. CLASSICAL CENTRALIZED DECISION MAKING 
PROVISIONING AND SCALING SYSTEM 

Figure 1 shows a scalable architecture of a centralized 
provisioning and scaling management system (PSMS) in a 
Cloud Computing environment.  The architecture design 
includes a front-end load-balancer (as described in Section 
4), VMs with Web application, the collection of physical 
hosts, a centralized management system which includes a 
provisioning and scaling sub-system, and a service monitor 
sub-system embedded with a dynamic scaling algorithm. 

The monitoring service of PSMS periodically retrieves 
performance and capacity data from each of monitoring data 
collecting agents provided by the application, the VMs and 
their physical hosts as scaling indicator metrics. The moving 
averages of these scaling indictors are used as inputs to a 
threshold based scaling algorithm which makes decision on 
adjusting resources on each of the active physical hosts to 
match current workload.  Resource adjustment decision is 
executed by the provisioning service sub-system to initiate 
actions to scale up or down the current active set of physical 
resources.   

The scaling algorithm is implemented as part of 
monitoring service of the PSMS. Figure 2 shows the 
algorithm in pseudo procedures; it is based on the scaling 
indicator Ai in each virtual machine instance in the Cloud.  
For simplicity, we choose a scaling indicator in our 
implementation that corresponds to the number of active 
sessions in the web application of each instance.  

The algorithm uses statistically determined active 
sessions thresholds to make resource scaling decision. If all 
instances have active sessions above the upper threshold, a 
new VM with Web application instance will be provisioned 
by the Provisioning Service, started, and then added to the 
front-end load-balancer. 

 
 



 
 
 Figure 1. Centralized Provisioning and Scaling Management System 

(PSMS) in a Cloud Environment. 
 
 If a VM instance has active sessions below a given lower 

threshold and with at least one idle instance (no active 
session) in the active pool, the idle instance will be removed 
by the provisioning service from the load-balancer and be 
shutdown and removed from the system.  Consequently, the 
load factors for all newly created and remaining active 
instances will be recalculated and applied to the load-
balancer for workload re-distribution. 

 
For an instance i in NInstance 
         If (Ai/SMax >= TUpper) then  
     Increment NExceed 
         If (Ai/SMax < TLower) then  
     Increment N Below  
         Record and sort all indexes J in ascending of Ai/SMax  
If (NExceed == NInstance) then 
         Provision and start a new instance  
         Increment number of instances: NInstance 
         Add new instance to Load-Balancer 
If (NBelow >= 2) then  
         Set m equal first index in J  
         If (Am == 0) then 
     Remove instance m from Load-Balancer 
     Shutdown instance m 
     Decrement number of instances: NInstance 
     Decrement NBelow and remove index m from J 
     If (NBelow >= 2) then  
          Set n equal first index in J 
          Remove instance n temporary 
          Decrement number of instances: NInstance 
          Set normalized load factor Ln = 0 
For an instance i in NInstance 
         Evaluate normalized load factor:   
      Li = (1-Ai/SMax) / Sum k=1,Ninstance [1-Ak/SMax] 
 Apply new load factors Li  to Load Balancer 
 

 
where  Ai: Number of active sessions in instance i 
           SMax: Maximum sessions per instance (e.g. 40,000) 
          Tupper : Session upper-threshold (e.g. 80% or 0.8) 

           TLower : Session lower-threshold (e.g. 60% or 0.6) 
            NInstance: Number of existing instances 
            NExceed: Number of instances exceeding session 
upper-threshold 
            NBelow: Number of instances below session lower-
threshold

Figure 2. Dynamic Scaling Algorithm for Virtual Machine Instances in  
Cloud. 

Once the scaling decision to scale up is made, the 
provision service will scan the current capacity and 
performance data from each of the physical hosts, and find 
the host with the most capacity for the additional VM 
deployment, and add new physical host if needed.  
Periodically, the Provision Service will perform maintenance 
service to consolidate VMs and remove idle physical hosts.  

This architecture represents a classical centralized control 
design in which a single entity possesses all information (via 
communication with local agents), performs analytics, and 
makes decisions for the benefit of the entire system.   As the 
number of VMs and physical resources increases and scatter 
across many geographic and political boundaries, it becomes 
more difficult to analyze, scale and manage. It efficiency 
decreases as it does not take into consideration the specific 
characteristics of each physical systems and VMs.   
Maintenance and trouble shooting become costly which adds 
to the operating costs of the service provider.  An alternative 
approach of resource provisioning decision is necessary, 
which led us to explore the distributed decision making 
provisioning and scaling system. 

IV. DISTRIBUTED DECISION MAKING PROVISIONING 
AND SCALING SYSTEM 

Figure 3 shows a scalable architecture of a distributed 
provisioning and scaling management system (DPSMS) in 
virtualized Cloud Computing environment with the same 
scenario.  The basic architecture design is similar to its 
counter part except that there is an Capacity and Utility 
Agent (CUA) deployed on each physical host under a 
dedicated service VM running continuously trying to 
maximize its own utility and PSMS is replaced by the 
Distributed Capacity Agent Manager (DCAMgr) (Figure 4) 
which is a light weight agent management system 
responsible for managing and communicating with the 
participating agents and directing the resource adjustment 
actions to the target systems.   Below is a description the 
analytic and capacity agent and the agent management 
system. 

Figure 4 shows the VMs with apps, the service VM with 
CUA within a physical host. The CUA is designed as an 
autonomic agent [18,19,20], a default CUA is initially 
installed in the service VM and boot-started with the 
Hypervisor as soon as the host system is active. Each agent 
includes a pluggable Capacity Index (CI) calculator which 
takes an input XML file describing the specific conditions 
and parameters unique to the physical host (default calculator 
and input xml are usually replaced by the user due to their 
own requirements and conditions).   
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Figure 3. Distributed Provisioning and Scaling Decision Making System 

(DPSMS) in a Cloud Environment. 

 

Figure 4. Capacity and Analytic Agent in the Service VM of a Physical 
Host   

The CUA collects capacity and resource data from each 
of the VMs and the underlying physical host via the 
Hypervisor APIs and optionally from a system profile which 
describes the characteristics of the physical host such as 
power usage and its usage priority. Using the data, it 
generates a CI based on its own goals and incentives and it is 
through this CI that the host system controls its own destiny.  
The CI ranges from 0 to 1, with 1 indicating that the host’s 
capacity is fully utilized and scaling up is needed urgently, 
and a value of 0 means the system is virtually idle.   Figure 5 
shows an example of a simple algorithm to determine the CI 
based on a few general systems performance indicators.  In 
contrast to CPSMS which performs all analytics and make 
all resource decisions centrally, in the DPSMS, each physical 
host in the DPSMS indicates its current states of capacity and 
utility and its willingness to accept new VMs, or its need to 
scale up through the published CI. 

The CUA analyzes the performance of the VM instances 
running on the local host (in this scenario, we follow the 
centralized system by using a single parameter “number of 
sessions” as Web app scaling indicator, and the same scaling 
algorithm (Figure 2) ) and decides if resource scale up/down 
is needed.  If resource scale up is needed and its CI is low, 
additional VMs will be created within the local host.  If 
resource scale down is needed, VMs will be removed from 

the local host.  All local VM deployment or removal actions 
will trigger re-calculation of the CI.   

The CI is sent to the DCAMgr if changed. The DCAMgr 
maintains a database for all the current CIs and formulate a 
plan based on them to adjust resources to maximize resource 
utilization while meeting workload requirements.   

 
 

CIm = % of current memory usage  
CIc  = % of current CPU utilization 
CId = % of disk utilized 
CIi =   % of IO capacity 
      

CI overall = max of (CIm, CIc, CId, CIi) *100 

Figure 5. Sample Algorithm to deterimine Capacity Index 

This algorithm can be replaced by the user’s calculator (a 
Java class implementing the CUA interfaces) [21] and is 
loaded at runtime during start up to reflect the characteristics 
of the applications on each of the VMs.  Figure 6 shows 
another example algorithm which takes into consideration of 
the priority of the underlying running applications.   

 

CI app1 CPU = actual % of CPU used by app1  
CI app2 CPU = actual % of CPU used by app2  
CI app3 CPU= actual % of CPU used by app3  
CI app4 CPU=   actual % of CPU used by app4  
 
Since Application 4 represents a higher-valued service, its 
importance is reflected with a factor >1. 
 
CI overall = max of (CI1 + Cl2 + Cl3 + 1.5Cl4)*100 <=1 

 
Figure 6. Sample Algorithm to deterimine Capacity Index  

Figure 7 shows an overview of the Distributed Capacity 
Agent Manager (DCAMgr), it provides basic services to the 
distributed CUAs such as discovery and registration and 
keeps a repository of the current CIs sent from the CUA of 
each of the physical hosts. 

 

                             
 

Figure 7. Distributed Capacity Agent Manager Overview 

DCAMgr includes 3 major services (1) The Host 
Capacity Index Repository service receives the capacity 
index from each of the CUAs under its watch and maintains 
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a copy of them in its database. (2) Provisioning and Scaling 
Planner service reviews periodically all the CIs and 
formulate a plan to re-adjust resource allocation, including 
provisioning and/or removal of VMs as well as physical 
hosts form the active pool.   The Planner includes a 
pluggable algorithm (a Java Class implementing the Planner 
interface) to determine the optimal resource allocation based 
on the indices from each of CAUs. Figure 8 shows an 
example threshold based allocation strategy which 
maximizes the CIs of each of the physical host with an 
acceptable margin. (3) The Provisioning Service carries out 
the allocation decisions made by the Planner, it includes 
functions to provision, remove and move VMs and physical 
hosts. 

 
 
Sort indices in descending order  CI[n] // n=number of 
physical hosts 
Sort physical hosts in order according to their CIs: H(n) 
 
For each ci in CI[n] ; n from 0 to n-1 { 
  if ( i > upperlimit ) { 
     if  (ci of CI(n-1) < 0.6 ) { 
         createInstance in PH(n-1) 
         remove PH(n-1) from the list 
     } 
     if (numberOfHostCIBelowLimit < 2) { 
         addPhysicalHost(); 
     } 
  } 
} 
 
Sort indices in descending order  CI[n] // n=number of 
physical hosts 
Sort physical hosts in order according to their Is:PH(n) 
 
For each ci in CI[i] ; i from n-1 to 0 {   
    if (numberOfHostCIBelowLimit > 2) { 
         removePhysicalHost(i); 
        remove PH(i) from PH(n); 
     } 
}      
 

 
Figure 8. Sample Algorithm for provisioning 

This algorithm seeks to maintain a target overall CI of 
close to 0.9 for all of its participants. Resource adjustment 
actions are initiated either by scaling or provisioning new 
VM instances or physical hosts if any of its CUA reports 
index close to 1.  Similarly, instances and physical resources 
removal or consolidation actions are initiated if more than 1 
of its CUA reports index below 0.1. 

V. COMPARISON WITH CENTRALIZED PROVISIONING 
     As mentioned before, the success of an application and 
consequently its provider depends on the following factors:  
the application’s scalability, availability, reliability, 
management and maintenance cost, resource utilization, and 
mostly importantly, its responsiveness.   All these factors, 
especially in virtualized computing settings, to a large 
extend, depend on an efficient resource allocation system. 

Based on the initial implementation of the CPSMS and the 
proposed DPSMS architecture, the proposed distributed 
decision system offers the following advantages:  
 
Cost reductions:  Monolithic decision structure often fails to 
take advantage of the specific characteristics of its 
individual physical systems, which may result in over/under 
resource allocation, adding to the cost of operation. 
 
Benefits to users: Since most physical resources in a 
virtualized computing environment are shared among 
multiple users, administrators will have more flexibility in 
optimizing their resource usages by manually adjusting its 
CI. 
 
Improved decision-making: More accurate decisions can be 
made at the individual physical host level as data are readily 
available without network delay. System and geographic 
specific information can be incorporated into the decision 
making process to better reflect local system characteristics 
and requirements. 
 
Improved scalability: Adding or removing resources can be 
done incrementally by a simple registration operation; 
minimum communication is needed between the agents and 
its agent manager.  There is no need to re-compute the 
model due to resource changes.  
 
Improved decision speed: Most of the decision making and 
data collection processes are executed in the distributed 
systems which are analogous to parallel processing.   
Naturally, for a relatively large Cloud operation, it is orders 
of magnitude faster than a centralized decision making 
system. 
 
Improved maintenance:   Maintenance is much easier to be 
done at a smaller isolated environment, especially in trouble 
shooting should problems arise.  
 
Improved reliability: The crash of individual physical 
systems does not affect the overall operation. If a physical 
host crashes,   it simply disappears from the active resource 
pool and the load balancer will re-route the workload to 
other instances and the system will adjust accordingly. 
 
Distributed ownership:  Resources used by a Cloud service 
provider may scatter across geographic and political 
boundaries; the distributed resource allocation decision 
model is consistent with the current geographic and political 
landscape of the world. 

 

VI. FUTURE WORKS 
Scalability has been one of the principal topics discussed 

regarding Cloud Computing model and is the most important 



issue for the Cloud service providers. Dynamic resource 
allocation is unquestionably the preferred solution to 
efficiently manage a Cloud setting.  The coupling of 
autonomic computing principals [18,19,20] with distributed 
resource allocation decision making in a Cloud setting 
provides a new way of managing a Cloud,  and raise the 
question if a hybrid system of mixed centralized and 
distributed decision making will be more applicable in the 
Cloud setting.  All these are interesting areas for further 
exploration and its results will ultimately help the further 
acceptance of the Cloud service model. 

VII. CONCLUSION 
As we have learned in real life, the most efficient 

economic system is the one that provides individuals with 
incentives for their own decisions. It is also true for 
computing systems. In this paper, we have presented the 
overview architectures of both centralized and distributed 
decision making system for Cloud with a scenario.  In 
addition to its major advantage of scalability, the main benefit 
of distributed decision making for resource allocation is that it 
enables Cloud service provider to distribute the resource 
allocation decision to its basic root entities where information 
and analysis can be done quickly and accurately, and 
collectively they optimize their computing resources in an 
efficient and natural way.  The comparison of centralized and 
distributed systems have been studied extensively,  as a follow 
up to this paper and specifically for Cloud setting,  we will use 
simulated Web services data to study the efficiency of these 
systems with different workloads and sizes of Cloud. 
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