
RC25201 (W1108-027) August 8, 2011
Computer Science

IBM Research Report

A Comprehensive Approach to Naming and Accessibility in
Refactoring Java Programs

Max Schäfer
Oxford University

Andreas Thies, Friedrich Steimann
Fernuniversität in Hagen

Frank Tip
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Comprehensive Approach to Naming and Accessibility in
Refactoring Java Programs

Max Schäfer
Oxford University

Dept. of Computer Science

max.schaefer@cs.ox.ac.uk

Andreas Thies Friedrich Steimann
Fernuniversität in Hagen

andreas.thies@fernuni-hagen.de
steimann@acm.org

Frank Tip
IBM T.J. Watson
Research Center

ftip@us.ibm.com

Abstract
Automated tool support for refactoring is now widely
available for mainstream programming languages such as
Java. However, current refactoring tools are still quite
fragile in practice and often fail to preserve program be-
havior or compilability. This is mainly because analyz-
ing and transforming source code requires consideration
of many language features that complicate program ana-
lysis, in particular intricate name lookup and access con-
trol rules. This paper introduces JL, a lookup-free, access
control-free representation of Java programs. We present
algorithms for translating Java programs into JL and vice
versa, thereby making it possible to formulate refactor-
ings entirely at the level of JL and to rely on the transla-
tions to take care of naming and accessibility issues. We
demonstrate how complex refactorings become more ro-
bust and powerful when lifted to JL. Our approach has
been implemented using the JastAddJ compiler frame-
work, and evaluated by systematically performing two
commonly used refactorings on an extensive suite of real-
world Java applications. The evaluation shows that our
tool correctly handles many cases where current refactor-
ing tools fail to handle the complex rules for name binding
and accessibility in Java.

1 Introduction
Refactoring is the process of restructuring a program by
means of behavior-preserving source code transforma-
tions, themselves called refactorings [5, 13]. Over the
past decade, automated tool support for refactoring has

become available for mainstream programming languages
such as Java and C#, and popular IDEs such as Eclipse
and VisualStudio support a growing number of refactor-
ings. However, even state-of-the-art tools are still quite
fragile, and often render refactored programs uncompi-
lable or silently change program behavior. As a result,
despite an evident need for refactoring in software devel-
opment, acceptance of refactoring tools seems to be lag-
ging [14].

An important cause for this lacking robustness is the
fact that refactoring tools analyze and transform programs
at the source level, which is significantly more challeng-
ing than working on some convenient intermediate repre-
sentation, as compilers do. Source level programs contain
many features such as nested classes, method overload-
ing, and access modifiers that require great care when ap-
plying program transformations and that writers of com-
piler optimizations simply do not have to worry about.

In the context of Java, two particularly vexing prob-
lems are name lookup and access control. Java’s rules
for finding the declaration that a type or variable name
refers to are quite intricate and context dependent. The
combination of inheritance and lexical scoping, in par-
ticular, makes name lookup highly non-modular so that
any change in the binding of names to declarations can
have repercussions throughout the program. Determining
whether a declaration is accessible at a given position in
the program is a similarly knotty problem, and of course
the two problems are intertwined, since accessibility can
influence the result of name lookup.

However, naming and accessibility are omnipresent in
refactoring: any refactoring that introduces, moves or

1

deletes a declaration runs the risk of upsetting the pro-
gram’s binding of names to declarations. Similarly, when
a refactoring moves a reference to a declaration, great care
has to be taken to ensure that it still binds to the same
declaration after the move. Failure to do so may either
lead to an uncompilable output program or, even worse,
a program that still compiles but behaves differently due
to changed name resolution. Examples from both cate-
gories are easy to find even with state-of-the-art refactor-
ing tools [19] such as the refactoring engines of Eclipse
JDT [12] and IntelliJ IDEA [9].

In this paper, we propose a comprehensive solution
to these issues in the form of JL, a lookup-free, ac-
cess control-free representation of Java programs. In JL,
declarations are not identified by potentially ambiguous
names but by unique labels, and are accessed by locked
bindings that directly refer to a label without any lookup
or access control rules; consequently, a transformation
cannot accidentally change name bindings or introduce
unbound names. We provide translations from Java to JL
and vice versa, allowing refactorings to be formulated di-
rectly at the level of JL. This higher level of abstrac-
tion allows the implementer to concentrate on the essence
of a refactoring, with the complexities of name binding
and access control preservation being taken care of by the
(refactoring-independent) translation to and from Java.
Our translation from JL to Java is based on two key tech-
niques:

1. Reference construction. We observe that the prob-
lem of unlocking the locked bindings in JL, i.e.,
replacing them with normal Java names, is easily
solved using a reference construction algorithm that,
given a declaration, constructs a (possibly qualified)
name which binds to this declaration. We show
that such an algorithm can be systematically derived
from a suitable specification of name lookup.

2. Accessibility constraints. We observe that adjusting
accessibilities requires updating declarations rather
than names, and show that accessibility requirements
can be captured using constraint rules relating the ac-
cessibilities of different declarations. A solution to
these constraints indicates how declared accessibili-
ties have to be adjusted to ensure that the resulting
Java program adheres to the access control rules.

JL and the translations to and from Java form the basis
of the JRRT system [20], a prototype refactoring engine
built on the JastAddJ Java compiler front end [3], which
supports a growing number of popular refactorings [17].
We evaluate this implementation both on the internal test
suite of the Eclipse refactoring engine and on a large suite
of real-world applications, showing that it correctly han-
dles many cases where existing state-of-the-art tools fail
or produce incorrect results.

In summary, our work makes the following main con-
tributions:

• We propose JL, a lookup-free, access control-free
representation of Java programs, and show how ex-
isting refactorings become simpler and more power-
ful when expressed on that representation.

• We show how an algorithm for constructing poten-
tially qualified references referring to a given dec-
laration from a given program point can be derived
from a suitable specification of Java name lookup.

• We demonstrate how the access control rules of Java
can be captured by constraint rules which can be ap-
plied to a program yielding a set of constraints that
are used to constrain possible refactoring transfor-
mations to avoid generating uncompilable programs.

• We combine reference construction and accessibility
constraints into an algorithm for translating from JL
to Java and report on an experimental evaluation of a
refactoring tool built on this approach.

The remainder of this paper is organized as follows:
Section 2 motivates the need for a systematic treatment
of naming and accessibility by means of some examples.
Section 3 surveys the name binding rules of Java and
shows how to derive a reference construction algorithm
from a suitable implementation of name lookup. Section 4
gives an overview of the access control rules of Java and
demonstrates how they can be captured using constraint
rules. These two techniques are then integrated in Sec-
tion 5 to yield a translation from JL to Java. An imple-
mentation of our approach is presented in Section 6 and
evaluated in Section 7. Finally, Section 8 puts our work
into the broader context of the literature, and Section 9
concludes.

2

1 c l a s s A {
2 i n t x ;
3 A (int newX) {
4 x = newX ;
5 }
6 }

7 c l a s s A {
8 i n t x ;
9 A (int x) {

10 this.x = x ;
11 }
12 }

(a) (b)

Figure 1: A simple example of RENAME

2 Motivating Examples
In this section, we will demonstrate by means of examples
that naming and accessibility are among the core prob-
lems in tool-supported refactoring for Java: they make
their appearance in almost every refactoring imaginable,
from simple structural refactorings such as RENAME to
complex type-based ones such as EXTRACT INTERFACE,
and they are handled quite poorly by current state-of-the-
art refactoring tools. This often leads to uncompilable
refactored programs, or, even more insidiously, to pro-
grams that still compile but behave differently.

Due to their ubiquity, a comprehensive treatment of
these issues is called for. At the end of this section
we give an overview of our approach, which employs a
novel lookup-free, access control-free representation of
Java programs that allows addressing naming and acces-
sibility problems in a refactoring-independent way.

2.1 Basic Naming Problems
The paradigmatic example of a refactoring that needs to
deal with naming issues is, of course, the RENAME refac-
toring which allows the programmer to change the name
of a declared entity (such as a class, field or method) and
consistently updates all references to this entity to use the
new name while avoiding name capture.

A simple example of this refactoring is shown in Fig. 1.
In the original program, shown on the left, the constructor
of class A has a parameter newX that is used to initialize
field x. Let us assume that the programmer wants to re-
name newX to have the same name as the field that it ini-
tializes. A refactoring tool should then produce the pro-
gram on the right-hand side, where we have highlighted
changes in gray: both the parameter declaration and its

13 c l a s s A {
14 long x ;
15 A () {
16 x = 42 ;
17 }
18 A (long v) {
19 x = v+19;
20 }
21 }
22
23 c l a s s C {
24 A a1 = new A () ,
25 a2 =
26 new A (2 3) ;
27 }

28 c l a s s A {
29 long x ;
30 A (int x) {
31 this.x = x ;
32 }
33 A (long v) {
34 x = v+19;
35 }
36 }
37
38 c l a s s C {
39 A a1 = new A (42) ,
40 a2 =
41 new A ((long) 23) ;
42 }

(a) (b)

Figure 2: A simple example of INTRODUCE PARAMETER

single use have been updated to use the new name, and
the reference to field x has been qualified with this to
ensure that the reference still binds to the field after the
renaming operation and is not captured by the renamed
parameter.

In general, a plausible correctness criterion for RE-
NAME is that it should preserve the program’s binding
structure: names should bind to the same declaration in
the refactored program as in the original program.1 Due
to the complex lookup rules of Java and the delicate in-
terplay between inheritance and lexical scoping this is not
always easy to ensure. Section 3 will introduce a system-
atic way of constructing names that bind to a given decla-
ration, making binding preservation easy to guarantee.

The preservation of name bindings is also desirable in
many other refactorings. For instance, the INTRODUCE
PARAMETER refactoring turns a constant expression ap-
pearing inside a constructor or method body into an ad-
ditional parameter and adjusts call sites accordingly. An
example of this refactoring is shown in Fig. 2, again with
the original program on the left and the refactored pro-
gram on the right. This refactoring has to deal with two
naming issues: first, the introduced parameter should not
lead to any name capture; this is avoided in the exam-

1This does not quite imply behavior preservation in Java, since the
names of classes, interfaces, fields and methods can be determined by
reflection. We do not tackle this notoriously difficult problem here.

3

43 package a ;
44 c l a s s A {
45 a .B b ;
46 }
47
48 package a ;
49 c l a s s B {}

50 package a ;
51 c l a s s A {
52 b .B b ;
53 }
54
55 package b ;
56 public c l a s s B {}

(a) (b)

Figure 3: A simple example of MOVE CLASS

ple by qualifying the reference to field x on line 31 as
in the previous example. Second, the changed signature
of the constructor leads to a change in overloading resolu-
tion for the new expression on line 26: whereas originally
constructor A(long) was the most specific choice, the
constructor A(int) would now be selected; to avoid this
unwanted change in program behavior, we have inserted
an upcast to long on the argument, thus enforcing the
same choice as before.

Given these two adjustments, the refactoring is bind-
ing preserving. Similar precautions have to be taken for
any refactoring that introduces, moves or deletes decla-
rations. Even in cases where we do want name bindings
to change, for instance with the ENCAPSULATE FIELD
refactoring where field references are turned into calls to
accessor methods, we generally want them to change in a
controlled manner.

This argues for a more high-level approach to name
binding, in which a refactoring does not directly manipu-
late raw Java names with their complex qualification and
lookup rules, but instead specifies which names are to
keep their binding, and which ones are supposed to bind
to different declarations. A common naming framework
then takes care of introducing qualifiers or upcasts where
necessary to achieve the desired binding structure.

Current state-of-the-art refactoring tools fail to handle
name bindings correctly in many cases. Eclipse correctly
diagnoses the shadowing problem in Fig. 1, but simply
emits an error message and refuses to perform the renam-
ing, while IDEA inserts the desired qualification. Both
mishandle the example in Fig. 2: Eclipse fails to recog-
nize either of the naming issues, while IDEA notices the
shadowing but fails to prevent the change in overloading
resolution.

57 package a ;
58 p u b l i c c l a s s A {
59 void m ()
60 {
61 /∗ . . . ∗ /
62 }
63 void n () {
64 ((A) new a .B ())
65 .m () ;
66 }
67 }
68
69 package a ;
70 p u b l i c c l a s s B
71 ex tends a .A {
72 void m ()
73 {
74 /∗ . . . ∗ /
75 }
76 }

77 package a ;
78 p u b l i c c l a s s A {
79 protected void m ()
80 {
81 /∗ . . . ∗ /
82 }
83 void n () {
84 ((A) new b .B ())
85 .m () ;
86 }
87 }
88
89 package b ;
90 p u b l i c c l a s s B
91 ex tends a .A {
92 protected void m ()
93 {
94 /∗ . . . ∗ /
95 }
96 }

(a) (b)

Figure 4: An example of MOVE CLASS involving dy-
namic binding

2.2 Basic Accessibility Problems

Like name bindings, accessibility concerns also are han-
dled poorly by current tools. For instance, consider a sit-
uation where the MOVE CLASS refactoring is applied to
move class B in the Java program in Fig. 3 into another
package, b. In order for B to remain accessible in the
declaration on line 45, its accessibility has to be raised to
public, as shown on line 56. Eclipse fails to notice this
problem and produces an uncompilable program; IDEA
emits a warning, but does not attempt to fix the issue.

While this problem is detected by the compiler and
easily responded to, failure to adjust accessibility can be
more detrimental in presence of dynamic binding. For in-
stance, moving class B in Fig. 4 (a) to package b leaves
the code compilable, but changes the meaning of the pro-
gram, because it changes the status of A.m from being
overridden to not being overridden, so that calling m()
on a receiver of static type A and dynamic type B will no
longer dispatch to the implementation in B. In Eclipse ,
this change of meaning goes unnoticed; IDEA warns that
class A contains a reference to class B, but this is not in-
dicative of the problem. An accessibility-aware refactor-

4

ing tool could instead suggest increasing the accessibility
of A.m, and with it that of B.m (required by [7, §8.4.8.1]),
to protected, as shown in Fig. 4 (b).

Because of their simplicity, both of the above problems
require only a local analysis to detect and fix insufficient
access modifiers. In real programs, however, there may
be ripple effects that are difficult to foresee, and also non-
obvious side conditions that prevent necessary fixes. For
instance, if class B has a subclass C

package c ;
p u b l i c c l a s s C ex tends a .B {

p u b l i c vo id m () { /∗ . . . ∗ / }
}

in the above example, then the MOVE CLASS refactor-
ing must be rejected because raising the accessibility of
B.m as required for maintaining the overriding in Bwould
make C.m override B.m (which it previously did not),
causing invocations of method m() on receivers of static
type A or B and dynamic type C to dispatch to the (newly
overriding) method C.m, potentially changing the mean-
ing of the program.

2.3 Naming and Accessibility problems in
EXTRACT INTERFACE

For a somewhat more involved example of the subtle in-
teractions of naming and accessibility with other language
features and each other, let us consider the EXTRACT IN-
TERFACE refactoring. The purpose of this refactoring is
to encourage loose coupling by creating a new interface I
that declares some of the methods defined in a given class
C, and then updating declarations throughout the program
to refer to I instead of C wherever possible [5, 28, 27].

While the essence of this refactoring is concerned with
types, naming and accessibility issues also have to be han-
dled. Consider, for instance, the example program of
Fig. 5(a). For the purposes of this example, we will as-
sume that the programmer wants to extract from class C
an interface I that declares the method m.

Figure 5(b) shows the program after applying the refac-
toring. The new interface I appears on lines 117–119 of
Fig. 5(b), and on line 121, type C was made to implement
this new interface. We now explain the other changes.

Types The goal is to use the new interface wherever
possible. However, some declarations that refer to type

C cannot be changed to I.
For example, c2’s type on line 131 cannot be changed

because then the call to n on line 132 would not be type-
correct as interface I does not declare a method n. On the
other hand, o’s type on line 131 and c1’s type on line 130
can both be updated safely.
Accessibility Class C.B is declared private, mean-
ing that it is not accessible outside class C. In particular, it
is not accessible in the newly created interface I unless its
accessibility is increased to at least package accessibility,
as shown on line 122.

The newly created method I.m is implicitly public,
hence method C.m, which overrides it, must be made
public as well (line 123).
Names References to nested classes such as C.B must
be qualified outside of their declaring class. Hence the
signature of method I.m must use a qualified name
(line 118).

A similar issue arises on line 135 where the type B of
field f has become ambiguous as a result of increasing
the accessibility of class C.B. This is resolved by using
the qualified type name J.B.
Overloading Changing c1’s type on line 130 to I ren-
ders the call to D’s constructor on line 133 ambiguous be-
cause neither constructor is now more specific than the
other. This ambiguity is resolved by inserting an upcast2

on line 133.
While this example is arguably quite contrived, it

shows that a complex interplay exists between typing,
access control, and naming (including overloading reso-
lution) that refactoring tools must be aware of. Neither
Eclipse nor IDEA can carry out the example refactoring,
since they require the extracted methods to be public al-
ready. If we change the example, making m public to
begin with, both tools still fail to carry out some neces-
sary adjustments, producing uncompilable output without
a warning.

2.4 Naming and Accessibility Problems in
PULL UP METHOD

Of course, EXTRACT INTERFACE is not the only refac-
toring that potentially faces such complications. Con-

2This cast only serves to ensure that the call is resolved to the correct
declaration at compile-time and always succeeds at run-time.

5

97 c l a s s C {
98 p r i v a t e c l a s s B { }
99 void m (B b) { }

100 void n () { }
101 }
102
103
104
105
106
107 i n t e r f a c e J { c l a s s B { } }
108
109 c l a s s D ex tends C implements J {
110 D (C c1 , D d) { c1 .m (n u l l) ; }
111 D (C c2 , C o) {
112 c2 .n () ;
113 D d = new D (c2 , n u l l) ;
114 }
115 B f ;
116 }

117 interface I {
118 void m(C.B b); / / type name qualified
119 }
120
121 c l a s s C implements I {
122 c l a s s B { } / / acc. increased
123 public void m (B b) { } / / acc. increased
124 void n () { }
125 }
126
127 i n t e r f a c e J { c l a s s B { } }
128
129 c l a s s D ex tends C implements J {
130 D (I c1 , D d) { c1 .m (n u l l) ; } / / type of c1 changed
131 D (C c2 , I o) { / / type of o changed
132 c2 .n () ;
133 D d = new D ((I)c2 , n u l l) ; / / cast inserted
134 }
135 J.B f ; / / type name qualified
136 }

(a) (b)

Figure 5: Example application of the EXTRACT INTERFACE refactoring. Part (a) shows the original program; part (b)
shows the program after the programmer has extracted from class C an interface I that declares method m(C.B).

sider, for instance, the example program in Fig. 6(a),
and assume the programmer wants to pull up method
C.foo(A) into class B using the PULL UP METHOD
refactoring. We observe the following about the refac-
tored code in Fig. 6(b):
Accessibility Method foo(A) calls C.baz, a
private method that is not accessible in B. This issue
is resolved by increasing baz’s accessibility to package
on line 164.
Names Accessing the static method baz outside of
its declaring class requires explicit qualification of the
method call on line 160.
Overloading Moving method foo(A) into class B
makes the call foo(null) on line 169 ambigu-
ous because neither of the methods B.foo(A) and
E.foo(String) is more specific than the other. This
is resolved by adding an upcast on line 169.

In general, the PULL UP METHOD refactoring also
needs to preserve certain subtype relationships. For ex-
ample, consider a scenario where a programmer attempts
to pull up method foo(A) into class A. In this sce-
nario, the refactoring cannot be applied because the type

of the argument this in the method call baz(this)
on line 147 would become A, causing the call to become
type-incorrect.

In summary, PULL UP METHOD requires careful ana-
lysis to respect subtyping, accessibility constraints, name
and overloading resolution. Again, the example exceeds
the capabilities of Eclipse and IDEA, who reject it.

2.5 Our Solution
The examples in this section have demonstrated that nam-
ing and accessibility issues are pervasive in refactoring.
However, their treatment is largely orthogonal to the pur-
pose of the refactoring: the goal is to preserve name bind-
ing in most cases, rebind names where necessary, and ad-
just access modifiers to satisfy access control rules.

Ideally, refactorings should work on a language where
name bindings are always preserved except when they are
explicitly rebound, and where access modifiers are auto-
matically adjusted as necessary. The JL representation
we introduce in this paper is just such a language. In JL,
normal Java names are abolished in favor of locked refer-
ences, written ↑ l, where l is a label uniquely identifying

6

141 c l a s s A { }
142 c l a s s B ex tends A {
143 }
144 c l a s s C ex tends B {
145 p r i v a t e s t a t i c vo id baz (B p) { }
146 p u b l i c vo id foo (A q) {
147 baz (t h i s) ;
148 }
149 }
150 c l a s s E ex tends B {
151 p r i v a t e s t a t i c vo id foo (String r)
152 { }
153 void bar () { foo (n u l l) ; }
154 }

157 c l a s s A { }
158 c l a s s B ex tends A {
159 p u b l i c vo id foo (A q) {
160 C.baz (t h i s) ; / / qualification added
161 }
162 }
163 c l a s s C ex tends B {
164 s t a t i c vo id baz (B p) { } / / acc. increased
165 }
166 c l a s s E ex tends B {
167 p r i v a t e s t a t i c vo id foo (String r)
168 { }
169 void bar () { foo ((String) n u l l) ; } / / cast added
170 }

(a) (b)

Figure 6: Example application of the PULL UP METHOD refactoring: pulling up method C.foo(A) into B.

a declaration. These references directly bind to the decla-
ration they refer to without regard to normal lookup and
access control rules.

Of course, JL is only to be used as an intermediate
representation that simplifies the specification and imple-
mentation of refactorings. To make a JL-based approach
practical, we need a way to translate from Java to JL and
back. In the following two sections we will develop the
technical machinery needed for this translation by show-
ing how to construct references that bind to a given dec-
laration from a given position in the program, and how
to capture Java’s accessibility rules using constraint rules.
Section 5 will then show how to integrate these two tech-
niques, and how to upgrade a Java-based refactoring spec-
ification to work on JL, revisiting some of the examples
in this section.

3 Reference Construction
In this section, we consider the problem of how to con-
struct a (possibly qualified) reference that binds to a given
declaration from a given program point.

More precisely, assume name lookup is given as a par-
tial function

lookup : ProgramPoint× Reference⇀ Declaration

that determines the declaration d = lookup(p, r) a refer-
ence r at point p binds to, if any.

We want to define a complementary reference construc-
tion function

access : ProgramPoint×Declaration⇀ Reference

that constructs a reference r = access(p, d) under which
declaration d can be accessed from point p. The correct-
ness of this function with respect to lookup is expressed
by the condition

∀p, d.lookup(p, access(p, d)) = d. (1)

In other words, if function access produces a reference
r under which to access declaration d from point p, then
that reference really does bind to d at p: access is a (par-
tial) right inverse to lookup.

Given access , we can eliminate locked bindings from
a program by simply replacing every locked binding ↑ l
occurring at some program point p with the reference
access(p, l). If access(p, l) is undefined, indicating that
an appropriate reference cannot be constructed, the refac-
toring is aborted.

A trivial implementation of access that is undefined ev-
erywhere vacuously satisfies Equation 1, but is not useful
for eliminating locked bindings. In this section, we will
show how a declarative specification of Java name lookup
using the attribute grammar formalism of the JastAdd sys-
tem [4] can be systematically (if not quite automatically)
inverted, yielding a practical implementation of access .

7

3.1 Name Lookup in Java

The Java Language Specification (JLS) introduces eight
kinds of declared entities [7, §6.1]: packages, class types
(including enum types), interface types (including annota-
tion types), type parameters, methods, fields, parameters,
and local variables. An entity is introduced by a decla-
ration and can be referred to using a simple or qualified
name.

Like the JLS, we will use the term reference type to
mean “class type, interface type or array type” and vari-
able to mean “field, parameter or local variable”.

Every declared entity e has a scope [7, §6.3], which en-
compasses all program points at which e can be referred
to using a simple name, as long as it is visible. If, how-
ever, the scope of another entity e′ of the same name is
nested inside the scope of e, then e′ is said to shadow e [7,
§6.3.1]. Inside the scope of e′ entity e is no longer visible,
and it is not possible to refer to e by its simple name; a
qualified name has to be used instead.

Shadowing is distinct from hiding [7, §8.3]: a field dec-
laration in a reference type T hides any declaration of a
field with the same name in superclasses or superinter-
faces of T , subject to accessibility restrictions detailed
in Section 4. Similarly, static method declarations hide
methods with the same signature in superclasses or super-
interfaces [7, §8.4.8.2].

Shadowing and hiding are both distinct from obscur-
ing [7, §6.3.2]: in some syntactic contexts, it is not a priori
clear whether a name refers to a package, a type or a vari-
able. In this case, variables are given priority over types,
and types over packages. This means that there may be
program points p where it is impossible to refer to a type
or package e1 by its simple name even though it is visible,
because p belongs to the scope of a variable or type e2 of
the same name; e2 is then said to obscure e1 at p.

We illustrate these concepts by means of an example in
Fig. 7. This example program consists of a single com-
pilation unit belonging to package p. The compilation
unit declares five classes: Super, Outer, Inner and
two classes named A. In addition, it uses the primitive
type int. The classes Super and Outer are top level
classes, while Inner is a member class of Outer.

Class Super declares an instance field f, a member
class A, an instance method m, and a static field length;
these are referred to as its local members. Likewise,

173 package p ;
174
175 c l a s s Super {
176 i n t f ; /∗¬∗ /
177 c l a s s A { }
178 i n t m (i n t i) { re turn 4 2 ; }
179 s t a t i c i n t length = 5 6 ;
180 }
181
182 c l a s s Outer {
183 i n t f ; /∗­∗ /
184 i n t x ;
185 c l a s s A { }
186 c l a s s Inner ex tends Super {
187 i n t f ; /∗®∗ /
188 i n t y ;
189 i n t m (i n t f /∗¯∗ /) {
190 A a1 ;
191 Outer .A a2 ;
192 p .Outer .A a3 ;
193 i n t [] Super = {} ;
194 re turn x + y
195 + f / / → ¯
196 + t h i s .f / / → ®
197 + super .f / / → ¬
198 + Inner . t h i s .f / / → ®
199 + Inner . super .f / / → ¬
200 + Outer . t h i s .f / / → ­
201 + ((Super) t h i s) .f / / → ¬
202 + Super .length ;
203 }
204 }
205 }

Figure 7: Example for name lookup in Java

8

Outer declares fields f and x, and two classes A and
Inner. The latter class itself declares two fields f and y,
as well as a method m. In addition to its local members,
Inner also inherits the member class A from Super;
thus, the scope of the class A declared on line 177 includes
the bodies of both Super and Inner.

Class Inner does not inherit field Super.f, since
the locally declared field Inner.f hides it, and it does
not inherit method Super.m, since the locally declared
method Inner.m overrides it. Also note that the field f
of class Outer is shadowed, and hence not visible, inside
the body of Inner, even though that body is part of its
scope.

Method m has a parameter f that shadows the field f of
its host type Inner. The declarations of the local vari-
ables a1, a2, and a3 in method m demonstrate different
kinds of type names. A type name can be a simple name,
as in the declaration of a1, which refers to class A from
Inner, not its shadowed namesake from Outer. To re-
fer to the latter type, we have to qualify it with the name of
its enclosing type (line 191), which may itself be qualified
by the name of its package (line 192).

Lines 194–202 show examples of qualified variable and
method references. Line 194 refers to variables x and y
by their simple names, which is possible since they are
visible. This would still work if y were declared in class
Super, or x in a superclass of Outer, but not if y were
declared in an enclosing class of Super. Parameter f of
m is also visible, and can thus be accessed by its simple
name at line 195, as indicated by the comment.

The following lines show different ways of qualified
field access expressions. Field f of class Inner, which
is shadowed by the parameter f, can be referred to by
qualifying with this (line 196). The field f from
Super, although hidden by the field f in Inner, is ac-
cessible through a qualification with super (line 197).
We can access the same two fields through qualifica-
tion with Inner.this (line 198) and Inner.super
(line 199), although such qualified this accesses are
more usually employed to access shadowed fields of en-
closing classes, as with the reference Outer.this.f
(line 200). Note that for fields, the access super.f
is equivalent to ((Super)this).f (line 201), except
that it has slightly more relaxed accessibility rules [7,
§6.6.2].

Line 202 shows an example of obscuring: in the ex-

pression Super.length, name Super could either re-
fer to a type or to a variable (though not to a package).
Since this expression occurs within the scope of the local
variable Super declared on line 193, the latter interpre-
tation is chosen; at runtime, this expression evaluates to
the length of the array referenced by Super, which is 0,
and not to the value stored in the static field length of
class Super. To refer to the latter field, we would have
to use p.Super.length instead.

One feature of Java name lookup that we have not illus-
trated in this example is method overloading [7, §8.4.9]:
at any given program point, several different candidate
methods with the same name but different signatures may
be in scope; to determine which method declaration an
invocation refers to, the number and types of actual argu-
ments are matched against the signatures of the candidate
methods, and the closest match is chosen. If a unique
closest match does not exist, the program is rejected with
a compile-time error. The same process is also used to
determine which constructor a class instance creation ex-
pression (i.e., a new expression) or explicit constructor
invocation [7, §8.8.7.1] refers to.

In the following, we will use the (non-standard) term
reference to cover package names, type names, field ac-
cess expressions, expression names (i.e., names referring
to variables), method invocations, class instance creation
expressions, and explicit constructor invocations. It will
also be convenient to consider constructors as declared
entities, although the JLS does not do so.

3.2 Modular Specification of Name Lookup
Although the JLS defines name lookup in a global, static
manner in terms of declaration scopes and their nesting, it
is possible to give a more local, modular specification of
name lookup that determines what declaration a reference
binds to by considering its location within the program.
For the purposes of inverting lookup to obtain a reference
construction algorithm, this algorithmic style is more con-
venient. We will hence briefly outline its implementation
in the JastAddJ Java compiler [3, 2].

JastAddJ is implemented in JastAdd [4], an extension
of Java with attribute grammar features. Programs are
represented by their abstract syntax trees (AST), and anal-
yses are implemented as parameterized attributes on the
nodes of the AST. Name lookup is mostly handled by a

9

210 eq TypeDecl .getBodyDecl (i n t i) .
211 lookupVar (String name) {
212 Variable res = memberField (name) ;
213 i f (res != n u l l)
214 re turn res ;
215 res = lookupVariable (name) ;
216 i f (res != n u l l)
217 i f ((inStaticContext () | | isStatic ())
218 && res .isInstanceVariable ())
219 re turn n u l l ;
220 re turn res ;
221 }

Figure 8: Variable lookup from inside a type declaration

trio of attributes for looking up types, variables and meth-
ods by their simple name, which are declared in JastAdd
as follows:

inh TypeDecl ASTNode .lookupType (String n) ;
inh Variable ASTNode .lookupVar (String n) ;
inh Set<MethodDecl>

ASTNode .lookupMeth (String n) ;

The first declaration declares an attribute lookupType
that is defined on every AST node, as indicated by the re-
ceiver type ASTNode, and is parameterized by the name
of the type to look up, which is a (Java) string. When
evaluated on a node p with a name n as its argument, the
attribute yields a TypeDecl, which is itself a node rep-
resenting the declaration that type name n binds to at p.

Similarly, lookupVar is an attribute computing the
variable declaration (which may declare either a field,
a local variable or a parameter) that a given name
refers to if interpreted as an expression name. Attribute
lookupMeth returns not a single method, but a whole
set of candidate methods that a method name may refer
to, from which one is selected by overloading resolution.

The keyword inh appearing in all three declarations
indicates that these are inherited attributes, meaning that
they are defined by equations matching on the syntactic
context of the node on which they are defined.

A typical example of an equation for lookupVar,
slightly simplified for presentation purposes, is given in
Fig. 8.

The equation is of the form
eq TypeDecl .getBodyDecl (i n t i) .

lookupVar (String name) { . . . }

indicating that it defines the value of attribute
lookupVar on any BodyDecl node that is the
ith child of a TypeDecl node: such a node represents a
declaration or initializer block appearing in the body of a
class or interface type declaration.3

The attribute computation itself is given as a regular
Java method body, which is executed with this bound
to the parent node, in this case the type declaration, and
not the child node (i.e., the body declaration).

To determine the variable declaration that a simple ex-
pression name n refers to at the program point given by a
body declaration node inside a type t, the following com-
putation is performed (see Fig. 8):

• Attribute memberField is invoked on line 212 to
look up n as a member field of t; if a member
field named n is found, its declaration is returned
(line 214).

• Otherwise, lookupVar is recursively invoked on
t itself in line 215 to search enclosing scopes.
This yields a lexical scoping discipline where inner
classes can see member fields of enclosing classes.
The test in line 213 prevents recursion if a member
field of the same name exists, implementing shadow-
ing.

• Finally, the result of the recursive invocation is fil-
tered in line 217: if t is itself declared as static or
occurs in a static context, instance variables cannot
be accessed inside t [7, §6.5.6.1].

Other equations for lookupVar implement lookup of
local variables and parameters inside methods, and of stat-
ically imported fields in a similar manner.

The most important auxiliary attribute used in the defi-
nition of lookupVar is memberField, whose imple-
mentation we show in Fig. 9. In contrast to lookupVar,
memberField is a synthesized attribute, as indicated by
the JastAdd keyword syn, meaning that the attribute is
computed on the node itself as opposed to its parent node.

We show the definition of memberField for class
types only, the definition for interface types is very simi-
lar: first, the given name is looked up among the locally
declared fields using attribute localField (line 226),

3We refer to the literature for a more detailed discussion of the syntax
of JastAdd attribute definitions [3].

10

224 syn Variable ClassDecl .memberField
225 (String name) {
226 Variable f = localField (name) ;
227 i f (f != n u l l)
228 re turn field ;
229 i f (hasSuperclass ()) {
230 f = superclass () .memberField (name) ;
231 i f (f != n u l l)
232 i f (f .isPrivate () | |
233 !f .accessibleFrom (t h i s))
234 re turn n u l l ;
235 re turn f ;
236 }
237 / / s e a r c h t h r o u g h i n t e r f a c e s o m i t t e d
238 re turn n u l l ;
239 }
240
241 syn Variable ClassDecl .localField
242 (String name) {
243 f o r (BodyDecl bd : getBodyDecls ())
244 i f (bd i n s t a n c e o f FieldDecl) {
245 FieldDecl fd = (FieldDecl)bd ;
246 i f (name .equals (fd .getName ()))
247 re turn fd ;
248 }
249 re turn n u l l ;
250 }

Figure 9: Member field lookup

which simply iterates over all body declarations of the
class looking for a field declaration with the appropriate
name. If such a field is found, it is returned as the re-
sult of the lookup (line 228). Otherwise, memberField
is invoked recursively on the superclass, if there is one,4

(line 230) and on all superinterfaces (omitted from the fig-
ure). This implements inheritance, with line 233 filtering
out members that lack sufficient accessibility. Hiding is
implemented by aborting the search for inherited fields
when a local field of the same name is found.

The defining equations for lookupType and
lookupMeth are similar to what we have shown for
lookupVar, using the same recursion patterns to im-
plement lexical scoping with shadowing and inheritance
with hiding, and additional filtering steps to account for
accessibility rules and static members.

In JastAddJ there is no single attribute implementing
a lookup function for resolving an arbitrary reference at
an arbitrary program point. Instead, a solution based on
AST rewriting is adopted, which is somewhat subtle and
not well-suited for our purposes, since the algorithm is
distributed over several attributes and rewrite rules; for
details see [2].

In order to be able to reason at least informally about
the correctness of the reference construction algorithm to
be derived in the remainder of the section, we distill a
composite algorithm for looking up arbitrary references
that incorporates syntactic classification and disambigua-
tion to handle obscuring.

A somewhat simplified version of this algorithm
for resolving package, type and variable references
(but not method or constructor invocations) is shown
in Fig. 10. We assume that simple names are
represented by AST nodes of type SimpleName,
and qualified names (including field access expres-
sions) by nodes of type Dot, and both types
implement interface Reference. The attributes
SimpleName.lookupAt and Dot.lookupAt look
up, respectively, a simple name and a qualified name at a
program point represented by a node nd.

Crucial to both is the attribute nameKind which
determines what kind of name is expected at a given
AST node. This can be PACKAGE NAME (indicating
that this node must be a package name), TYPE NAME

4Note that only class java.lang.Object has no superclass.

11

251 syn Decl ASTNode .lookup (Reference r) {
252 re turn r .lookupAt (t h i s) ;
253 }
254
255 syn Decl SimpleName .lookupAt (ASTNode nd)
256 {
257 String n = t h i s .getName () ;
258 sw i t ch (nd .nameKind ()) {
259 case EXPR_NAME :
260 re turn n .lookupVar (n) ;
261 case AMBIGUOUS_NAME :
262 Decl res = n .lookupVar (n) ;
263 i f (res != n u l l)
264 re turn res ;
265 res = n .lookupType (n) ;
266 i f (res != n u l l)
267 re turn res ;
268 re turn n .lookupPackage (n) ;
269 / / o t h e r c a s e s e l i d e d
270 }
271 }
272
273 syn Decl Dot .lookupAt (ASTNode nd) {
274 Expr l = getLeft () ;
275 String n = getRight () .getName () ;
276 sw i t ch (nd .nameKind ()) {
277 case EXPR_NAME :
278 re turn l .type () .memberField (n) ;
279 case AMBIGUOUS_NAME :
280 Decl d = nd .lookup ((Reference)l) ;
281 i f (d i n s t a n c e o f PkgDecl) {
282 PkgDecl p = (PkgDecl)d ;
283 Decl res = p .memberType (n) ;
284 i f (res != n u l l)
285 re turn res ;
286 re turn p .subPackage (n) ;
287 } e l s e i f (d i n s t a n c e o f TypeDecl) {
288 TypeDecl t = (TypeDecl)d ;
289 Decl res = t .memberField (n) ;
290 i f (res != n u l l)
291 re turn res ;
292 re turn t .memberType (n) ;
293 } e l s e {
294 re turn l .type () .memberField (n) ;
295 }
296 / / o t h e r c a s e s e l i d e d
297 }
298 }

Figure 10: Lookup of general references (simplified)

(for type names), EXPRESSION NAME (for a name re-
ferring to a variable), or one of the ambiguous kinds
PACKAGE OR TYPE NAME and AMBIGUOUS NAME, the
latter indicating that nothing at all can be said about the
expected kind of name. We do not detail the implemen-
tation of this attribute as it is provided by JastAddJ and
follows closely the rules described in the JLS [7, §6.5.1].

To resolve a simple name, we compute the name kind
of the node at which it is looked up, and then dispatch to
the appropriate simple lookup attribute; we only show the
code for kind EXPR NAME and for AMBIGUOUS NAME,
which is the most complicated case. For instance, the
simple name Super on line 202 in Fig. 7 has name kind
AMBIGUOUS NAME, hence it is first looked up as a vari-
able; since this lookup yields a result, no type or package
lookup is attempted.

To resolve a qualified name, we first extract the qual-
ifying expression l, which may either be another name
or a more general expression such as a qualified this or
super,5 and the name n to the right of the dot.

Again the name kind is consulted to determine what
kind of lookup to perform. If it is an expression name,
the name is looked up as a field of the type of the left
hand side expression. For simplicity, we have elided the
definition of attribute type. If the name is ambiguous,
the expression on the left hand side must itself be a name,
so we look it up recursively. If the result is a package
declaration, we first try to look up n as a type within that
package; failing this, it must refer to a subpackage. If,
on the other hand, l refers to a type, n is looked up as a
member field of that type, or as a member type if there is
no such field.

The full version of lookupAt also checks that acces-
sibility rules are respected (see Section 4) and that non-
static members are not accessed inside a static context,
and performs overloading resolution for methods and con-
structors.

3.3 Inverting Variable Lookup

We now describe how name lookup rules such as the ones
just presented can be inverted to yield reference construc-
tion rules.

5Note that JastAddJ considers super an expression; this is a sim-
plification, but deviates from the JLS.

12

...

... A3

C2 B2 A2

· · · C1 B1 A1

Figure 11: Schematic illustration of field lookup

Ideally, we would like to invert every attribute in isola-
tion, for instance defining an attribute accessVar that
is right inverse to lookupVar in the sense of Equa-
tion 1. But such an accessVar attribute would be a
rather poor reference construction algorithm: since its re-
turn type would have to be String, it would return the
name of the variable to refer to if that variable is visible,
or null otherwise. In particular, a RENAME refactoring
based on this algorithm would never be able to add a qual-
ification to evade shadowing as shown in the example of
Fig. 1.

Another possibility would be for accessVar to di-
rectly construct a Reference, possibly including qual-
ifications. However, its correctness would then have to
be argued for with respect to the general lookup function
lookup, not only lookupVar, destroying the symme-
try between lookup and reference construction.

Instead, we opt for a middle way: reference construc-
tion attributes such as accessVar construct an abstract
reference, which contains enough information to build
an actual reference, and we carefully formulate individ-
ual correctness properties relating these attributes to their
corresponding lookup attributes. In a second step, the
abstract references are converted into actual references,
with the individual correctness properties ensuring that
the constructed reference satisfies Equation 1.

To motivate the concept of an abstract reference, con-
sider the lookup algorithm for fields presented above in
Fig. 9. In general, this lookup proceeds in an “outward

299 c l a s s AbstractVarRef {
300 String name ;
301 boolean visible ;
302 TypeDecl source , bend ;
303 / / s t a n d a r d c o n s t r u c t o r e l i d e d
304 }

Figure 12: Abstract references

and upward” motion as illustrated in Fig. 11: starting from
inside some class A1, memberField first traverses A1

and its superclasses A2, A3 and so on. If the field is not
found anywhere, lookupVar is evaluated recursively on
the class B1 enclosing A1, searching through the super-
classes of B1 in turn. The field is ultimately found in a
type C2, which is a supertype of a type C1 enclosing A1.

The path from the point of reference to the declaration
can be visualized as an outwards motion through enclos-
ing classes until reaching a “bend” at C1, and then pro-
ceeding upwards the inheritance hierarchy until reaching
the “source” C2. Consequently, we will refer to C1 as the
bend type and toC2 as the source type of this field lookup.
We do not require the target field to be a local member of
C2, it may just as well be inherited from its supertype C3.

If the field is visible in A1, i.e. there are no shadowing
or hiding fields in A1, A2, A3, . . . , B1, B2, C1, it can be
referred to by its simple name, say x. However, even if
it is not directly visible, it can still be referred to using
the qualified field access ((C2)C1.this).x. As dis-
cussed below, this access can be simplified depending on
the inheritance and nesting relationship ofC1, C2 andA1.

This suggests that in order to construct a qualified ref-
erence to a target field f from some program point p, it
suffices to know the source class, the bend class, the name
of f and whether it is visible at p. These pieces of infor-
mation are encapsulated into a class AbstractVarRef
as shown shown in Fig. 12.

We will now show that the name lookup equations of
the previous subsection can be systematically inverted to
compute such abstract references.

We start by considering the counterpart to the lookup
function localField, accLocalField, which is
shown at the bottom of Fig. 13. Instead of iterating over
the body declarations of a class looking for a field of a
given name, it looks for the given field itself, and returns

13

305 eq TypeDecl .getBodyDecl (i n t i) .
306 accessVar (Variable v)
307 {
308 AbstractVarRef r = accMemberField (v) ;
309 i f (r != n u l l)
310 re turn r ;
311 r = accessVar (v) ;
312 i f (r != n u l l) {
313 i f ((inStaticContext () | | isStatic ())
314 && v .isInstanceVariable ())
315 re turn n u l l ;
316 i f (memberField (v .getName ()) != n u l l)
317 r .visible = f a l s e ;
318 }
319 re turn r ;
320 }
321
322 eq ClassDecl .accMemberField
323 (Variable v)
324 {
325 AbstractVarRef r = accLocalField (name) ;
326 i f (r != n u l l)
327 re turn r ;
328 i f (hasSuperclass ()) {
329 r = superclass () .accMemberField (name) ;
330 i f (r != n u l l) {
331 i f (v .isPrivate () | |
332 !v .accessibleFrom (t h i s))
333 re turn n u l l ;
334 i f (r .visible &&
335 localField (name) == n u l l)
336 r .source = t h i s ;
337 e l s e
338 r .visible = f a l s e ;
339 r .bend = t h i s ;
340 re turn r ;
341 }
342 }
343 re turn n u l l ;
344 }
345
346 eq ClassDecl .accLocalField (Variable v)
347 {
348 f o r (BodyDecl bd : getBodyDecls ())
349 i f (bd == v)
350 re turn new AbstractVarRef (v .getName () ,
351 true , t h i s , t h i s) ;
352 re turn n u l l ;
353 }

Figure 13: Reference construction

an abstract reference, recording the name of the field; both
source and bend are equal to the declaring class, and the
field is directly visible.

The correctness of this function with respect to
localField can be expressed by the following prop-
erty, which is easily seen to hold (remembering that in
Java a class cannot declare two fields of the same name):

Property 1. For any class c and field declaration f,
if c.accLocalField(f) evaluates to a reference r
then r.bend = r.source = c, r.visible is true,
and c.localField(r.name) = f.

Attribute accMemberField shown in the same
figure corresponds to memberField. Paralleling
the control structure of the latter, it first invokes
accLocalField to try and construct a reference to the
target variable v as a locally declared field. If this fails, it
recursively invokes itself on the superclass (and superin-
terfaces). Abstract references returned from these recur-
sive invocations have to be adjusted to update information
about visibility and the source and bend types as shown in
lines 334–339.

These adjustments ensure that the following property
holds (taking Property 1 above into account):

Property 2. For any class c and field declaration f,
if c.accMemberField(f) evaluates to reference r,
then

1. c = r.bend is a subclass of r.source; if
r.visible then r.bend = r.source;

2. r.source.memberField(r.name) = f.

Finally, attribute accessVar, of which one equation
is shown at the top of Fig. 13, iterates over enclosing
classes in the same way as localVar, and is inverse to
it in the following sense:

Property 3. For any node nd and variable declaration v,
if nd.accessVar(v) evaluates to a reference r, then

1. r.bend encloses nd; it is a subclass of
r.source;

2. if r.visible then r.bend = r.source and
nd.lookupVar(r.name) = v.

14

The other equations of lookupVar can all be inverted
in a similar fashion to yield corresponding reference con-
struction attributes. It remains to discuss the algorithm
for converting an abstract reference to an actual reference
node, which is outlined in Fig. 14. The name kind of the
node at which the reference node will eventually be in-
serted needs to be checked to ensure that a variable ref-
erence is allowed at this place. If this is the case and
the abstract reference indicates that the variable is visi-
ble, a simple SimpleName node suffices: from Fig. 10
and Property 3 above it is easy to see that this reference
will be resolved as intended.

Otherwise, a qualified field access has to be con-
structed. We only show two cases. In the simplest case,
both source and bend are equal to the enclosing class T,
i.e., the variable to refer to is a field of T; in this case, a
this-qualified access should be constructed. Otherwise,
we construct a fully qualified access explicitly referring
to both source and bend using locked type bindings ↑ S
and ↑B. Hence, eliminating one locked binding may in-
troduce new locked bindings that have to be eliminated in
turn.

There are several other opportunities for constructing
simpler qualified accesses, which we have elided for sim-
plicity. We have also omitted additional checks for acces-
sibility and references to static members; these tests are
precisely the same as those performed during lookup, and
can hence be taken over directly from JastAddJ.

3.4 Inverting Type and Method Lookup
Since the lookup rules for types and methods are broadly
similar to the variable lookup rules, corresponding refer-
ence construction rules can be obtained in the same way.

When constructing an actual type reference from an ab-
stract type reference, care has to be taken to avoid obscur-
ing: even if the abstract reference indicates that the type
is visible, it must additionally be checked if an obscuring
variable is in scope; if so, the type name must be qualified
by either its package (for top level types) or its enclos-
ing type (for member types). These checks can be carried
out using the lookupVar and nameKind attributes of
JastAddJ.

Abstract method references additionally track informa-
tion about other methods with the same name as the target
method. When constructing an actual reference, the over-

354 Reference ASTNode .mkRef (AbstractVarRef r)
355 {
356 i f (nameKind () == EXPR_NAME | |
357 nameKind () == AMBIGUOUS_NAME) {
358 SimpleName n= new SimpleName (r .name) ;
359 i f (r .visible)
360 re turn n ;
361 TypeDecl T = enclosingType () ,
362 S = r .source , B = r .bend ;
363 i f (S == B && B == T)
364 / / r e t u r n a c c e s s this.n
365 e l s e
366 / / r e t u r n a c c e s s ((↑S)↑B.this).n
367 }
368 re turn n u l l ;
369 }

Figure 14: Skeleton of algorithm for constructing an ac-
tual reference from an abstract one

loading resolution machinery of JastAddJ is used to check
whether any of these methods would take precedence over
the target method; if so, additional type casts are inserted
on the method arguments to ensure the desired method is
selected.

Note that locked bindings do not by themselves pre-
vent changes in dynamic dispatch behavior. For instance,
Fig. 15 shows two programs that have the same (static)
binding structure, yet different dynamic dispatch behav-
ior: while in the program of Fig. 15(a) method B.m over-
rides method A.m, the renamed method B.n of Fig. 15(b)
no longer does. Hence, the method invocation on line 376
returns 42, while its counterpart on line 392 returns 23,
although both of them bind to method A.m.

In JL, we treat method overriding by the mechanism
of explicit overriding (see Section 5): every method is
annotated with the set of methods it (directly) overrides;
just as for locked names, this annotation does not change
unless the refactoring explicitly alters it. When translating
back to Java, we use accessibility adjustments, discussed
in the next section, to enforce or prevent overriding where
necessary, and abort the refactoring if this cannot be done.

3.5 Summary
To unlock locked bindings, it is necessary to construct
a possibly qualified reference that binds to a given vari-

15

370 c l a s s A {
371 i n t m () {
372 re turn 2 3 ;
373 }
374 i n t f () {
375 A a = new B () ;
376 re turn a .m () ;
377 }
378 }
379
380 c l a s s B ex tends A
381 {
382 i n t m () {
383 re turn 4 2 ;
384 }
385 }

386 c l a s s A {
387 i n t m () {
388 re turn 2 3 ;
389 }
390 i n t f () {
391 A a = new B () ;
392 re turn a .m () ;
393 }
394 }
395
396 c l a s s B ex tends A
397 {
398 i n t n () {
399 re turn 4 2 ;
400 }
401 }

(a) (b)

Figure 15: Example of a change in dynamic dispatch in
spite of same binding structure

able, type or method from a particular program point. We
have shown that it is possible to derive an implementation
of such a reference construction algorithm from a name
lookup algorithm. The two algorithms exhibit a very fine-
grained correspondence, with every lookup rule paralleled
by a reference construction rule, ensuring that no corner
case of the lookup rules is overlooked when implement-
ing reference construction. While we have only shown
a handful of representative rules, the construction scales
to the full Java language: in Section 6 below we will re-
port on an implementation of reference construction that
handles all name lookup features of Java 5.

Since lookup rules take access control into account, so
does reference construction: if a declaration is not acces-
sible at a program point, the algorithm will detect this and
fail to produce a reference. In the next section, we will
take a closer look at how to adjust accessibilities to en-
sure references are accessible wherever needed.

4 Accessibility Constraints
In this section, we consider the role of access modifiers
in refactoring. In particular, we observe that access mod-
ifiers do not only serve to control access to declared en-
tities, but also have an effect on inheritance, overriding,

hiding, and subtyping. Because all these effects depend
not only on access modifiers, but also on the relative lo-
cations of the involved declared entities and references,
any refactoring that changes locations must consider ac-
cess modifiers. As we will see, the locking of bindings as
introduced in the previous section is insufficient to con-
trol the many forces on access modification; instead, a
constraint-based approach will be needed.

4.1 Access Modifiers and Accessibility in
Java

Access modifiers such as private or public let the
programmer exert control over accessibility6 of types and
their members from different parts of a program. To de-
termine which access modifier is sufficient to access an
entity depends on the location of the declaration of the
accessed entity in the program code, and on the location
of the accessing reference. For instance, public acces-
sibility is required to access a top level type, unless the
type and the accessing reference reside in the same pack-
age, in which case package accessibility suffices.7 The
example of Fig. 3 showcased how this rule affects refac-
toring: Moving a class with package accessibility from
one package to another renders it inaccessible for refer-
ences from its former package, thereby necessitating an
increase of declared accessibility to public.

For the access of type members the situation is slightly
more differentiated:

• If the accessed member and the accessing reference
reside in the same top level type, private is gen-
erally sufficient.

• Else, if the accessed entity and the reference reside
in the same package, at least package accessibility
is required.

• Else, if the accessing reference resides in a subclass

6Accessibility is not to be confused with visibility, introduced in the
previous section.

7Note that Java has no keyword for package accessibility; in-
stead, top level types and all members and constructors of classes are
package accessible unless an explicit access modifier is specified. For
this reason, package accessibility is often referred to as default ac-
cessibility, but this is misleading: interface members, for instance, are
public by default, and enumeration constructors are private.

16

of the class in which the accessed entity is declared,
at least protected accessibility is required.

• Else, public accessibility is required.

Figure 16 illustrates some of these accessibility rules. For
instance, the private method A.n can be accessed from
inside an inner class of A at line 412, while the package
accessible method A.p cannot be accessed from a differ-
ent package on line 425. However, protected accessi-
bility suffices to access method A.q from within the body
of B, which is a subtype of A, at line 429, even though this
reference is in a different package and appears not in B
itself but in an inner class.

The above rules are merely a short summary; the full
rules are considerably more involved, and will be pre-
sented in detail in Section 4.5.

4.2 Other Effects of Access Modifiers in
Java

Accessibility and inheritance In Java, access modi-
fiers do not only govern access, they also contribute to
inheritance:

• If a member is to be inherited at all, its accessibility
must be greater than private.

• If a member is to be inherited by a subclasses de-
clared in a different package, its accessibility must
be greater than package.

Note that, in Java, members can only be inherited from
immediate supertypes; if they are, they become members
of the inheriting type, and can then be further inherited by
immediate subtypes of that type and so on [7, §8.2]. This
means that if type B is a subtype of type A in a different
package, and type C is in turn a subtype of type B, then
C does not inherit a package accessible member from
A, even if C and A are in the same package.

Figure 16 has examples of this: the package accessi-
ble method A.p is not inherited by subtypes in different
packages (line 424), and also not by subtypes in the same
package (line 437), if there is an intervening type (here B)
from a different package. The private method A.n is not
inherited at all, not even by an inner type of its declaring
type (line 411).

Accessibility and overriding Although one might
expect the two notions to be closely connected, the rules
for overriding in Java differ from those of inheritance in
that it is possible for a type to override a method it would
not inherit otherwise.

For instance, as shown in Fig. 16, the method A.o de-
clared with package accessibility can be overridden in
the same package (line 436) even though it would not
be inherited otherwise (just as A.p is not inherited; cf.
above). On the other hand, just like for inheritance, A.o
is not overridden in line 423, which is located in a differ-
ent package, and the private method A.m cannot be over-
ridden anywhere, not even in the scope of the same type
(line 410).

Altogether, the requirements for overriding are as fol-
lows:

• For a method to be overridden by another one de-
clared in the same package, package accessibility
suffices.

• For a method to be overridden by another one de-
clared in a different package, protected accessi-
bility suffices.

• Overriding is transitive, i.e., a method overriding an-
other method also overrides all methods the other
method overrides [7, §8.4.8.1].

The first two points mean that a method can override two
instance methods none of which overrides the other. The
last point means that a method m1 can indirectly override
a package accessible methodm2 in a different package,
namely if an interjacent subtype in that package overrides
it with protected accessibility.

Note that whether one method overrides another has se-
mantic implications, since overriding is a prerequisite for
dynamic binding. For this reason, the return type of the
overriding method must be a subtype of that of the over-
ridden method, and their throws clauses must be com-
patible. It is also not permitted to override a static method
with an instance method [7, §8.4.8.1].

Accessibility and hiding Method hiding is primarily
a problem of name resolution and therefore can be dealt
with by locking bindings as shown in Section 3. However,
as with overriding it is an error for a static method to hide
an instance method [7, §8.4.8.2]. Since the definition of

17

402 package p ;
403 p u b l i c c l a s s A {
404 p r i v a t e vo id m () {}
405 p r i v a t e vo id n () {}
406 void o () {}
407 void p () {}
408 p r o t e c t e d void q () {}
409 c l a s s C ex tends A {
410 @Override void m () { / / 8 cannot override
411 t h i s .n () ; / / 8 not inherited
412 A . t h i s .n () ; / / 4 but accessible
413 }
414 @Override void o () { / / 4 can override
415 t h i s .p () ; / / 4 inherited
416 A . t h i s .p () ; / / 4 accessible
417 }
418 }
419 }
420
421 package q ;
422 a b s t r a c t p u b l i c c l a s s B ex tends p .A {
423 @Override void o () { / / 8 cannot override
424 t h i s .p () ; / / 8 not inherited
425 ((p .A) t h i s) .p () ; / / 8 not accessible
426 }
427 c l a s s C {
428 @Override q () { / / 8 cannot override
429 B . t h i s .q () ; / / 4 but accessible
430 }
431 }
432 }
433
434 package p ;
435 p u b l i c c l a s s C ex tends q .B {
436 @Override void o () { / / 4 can override
437 t h i s .p () ; / / 8 not inherited
438 ((A) t h i s) .p () ; / / 4 but accessible
439 }
440 }

Figure 16: Meaning of access modifiers (“accessibility”)
for member access, inheritance, and overriding

hiding hinges on accessibility (the hidden member must
be accessible from where the hiding occurs [7, §8.4.8.2]),
care must be taken that an increase of accessibility of
an instance method necessitated by some other condition
does not lead to illegal hiding by a static method. For
instance, in the simple program

c l a s s A { p r i v a t e void m () {} }
c l a s s B ex tends A { s t a t i c vo id m () {} }

accessibility of A.m must not be increased, since other-
wise the declaration of B.m causes a compile error.

Accessibility and subtyping Last but not least, ac-
cessibility interacts with typing: Because subtyping de-
mands that instances of a subtype have accessible what
is declared accessible by the supertype, accessibility of
instance methods overridden in subtypes must not de-
crease.8 For instance, in the example of Fig. 4, the in-
crease of accessibility of A.m required to preserve the
overriding of B.m had to be complemented by an increase
of accessibility of B.m, but not to maintain overriding, but
to respect subtyping. Interestingly, Java extends this rule
to static methods, but not to fields.

4.3 Accessibility and Refactoring
It is obvious that due to its dependence on location, ac-
cessibility plays a central role in all refactorings that
move program elements, including MOVE CLASS, MOVE
MEMBER, PULL UP MEMBER, and PUSH DOWN MEM-
BER [5]. In addition, accessibility needs to be consid-
ered for type-related refactorings, including type gener-
alization refactorings (such as GENERALIZE DECLARED
TYPE, USE SUPERTYPE WHERE POSSIBLE, EXTRACT
INTERFACE, and EXTRACT SUPERCLASS [28]), which
require that the supertypes and their members are accessi-
ble to the clients of the generalized type), as well as refac-
torings changing the type hierarchy (such as and INFER
TYPE [22] and REPLACE INHERITANCE WITH DELEGA-
TION, the latter of which removes a subclass relationship
and thus may render protected entities inaccessible from
the former subclass [10]).

The unlocking algorithm of Section 3 also has to deal
with accessibility in order to avoid constructing a qual-

8Note that this rule allows redefinition of a package accessible in-
stance method as private in a subtype, if that subtype belongs to a
different package.

18

ified reference that violates accessibility rules. Last but
not least, changing accessibility may be the immediate
purpose of a refactoring, for instance to achieve data en-
capsulation by making fields private (as is done by the
ENCAPSULATE FIELD refactoring [5]). In all these refac-
torings, failure to adjust access modifiers, or incorrect ad-
justment of access modifiers, may lead to non-compiling
programs or, worse still, to silent change of behavior. Like
with the naming problems dealt with in the previous sec-
tion, the solution is to record all relationships before the
refactoring, and to compute additional changes required
to make sure that they still hold afterwards. The difference
is that for accessibility, the additional changes pertain to
declarations (adaptation of access modifiers) rather than
references.

As it turns out, this difference necessitates a wholly dif-
ferent approach. While adjusting references cannot inter-
fere with any other part of the program, accessibilities are
necessarily adjusted at the declaration site, and thus may
cause new problems with other references and declara-
tions. In particular, since access modifiers also influence
inheritance and overriding and are further constrained by
subtyping and hiding as outlined above, finding an access
modifier that preserves all relationships involved in com-
pilability and the bindings of a program (both static and
dynamic) is basically a search problem.

4.4 Computation of Required Accessibility
as a Constraint Satisfaction Problem

From a refactoring perspective, changing the accessibility
of a declared entity is somewhat analogous to changing
its type: like the new type, the new accessibility must not
only suit all references to the entity, but must also harmo-
nize with the accessibilities of other entities it is related
to, which in turn must suit all of their references and so
on. This analogy suggests viewing accessibility refactor-
ing as a constraint satisfaction problem, as has been done
before for type refactoring [28]. The main difference is
that the variables in the constraint system represent ac-
cess modifiers, rather than type annotations, of declared
entities.

The constraints required for a constraint-based refac-
toring are usually generated by applying so-called con-
straint rules to the program to be refactored (see, e.g.,

[28, 25, 24]). Such a constraint rule is generally of the
form

program query
(RULENAME)

constraints

where program query stands for an expression selecting
those elements of the program to which the rule is to ap-
ply, while constraints represents a set of constraints ex-
pressing relationships between those properties of the se-
lected program elements that are to be constrained by the
rule.

For instance, the rule

interface-member(m)
(IMEMBER)

〈m〉 = public

expresses that the accessibility of an interface member
m, represented by the constraint variable 〈m〉, must be
public. When applied to the program

i n t e r f a c e I { void m () ; }
c l a s s C implements I{ p u b l i c vo id m () {} }

it generates the constraint 〈I.m〉 = public, preventing
any changes to the accessibility of I.m. Applying the
subtyping rule

overrides(m2,m1) ∨ hides(m2,m1) (SUB)
〈m2〉 ≥A 〈m1〉

to the same program generates the additional constraint
〈C.m〉 ≥A 〈I.m〉 expressing that the declared accessi-
bility of C.m must be greater or equal (≥A) than that of
I.m; together, the two constraints prevent any lowering
of the accessibility of C.m.

Since both queries and constraints are relations, they
can be exchanged for each other to a certain extent. In
fact, as has been noted elsewhere [24, 23], the main dif-
ference between a query and a constraint is when it is
evaluated: While queries are evaluated during constraint
generation (and hence entirely based on the old program),
constraints are evaluated during constraint solving, when
some of the constraint variables have been given new val-
ues to reflect the intended changes, and when new values
are being computed for others. Therefore, the (hypotheti-
cal) rule

19

Domains:
P the packages of the program Prog to be refactored
T the reference types of Prog
TA ⊆ T the access modifiable types in Prog , i.e., T excluding local and anonymous types
M the (local) members and constructors of the types in T
Ttop := T \M the top level types in Prog
D := TA ∪M the access modifiable declared entities in Prog
R the references to members of D in Prog
A the set of access modifiers of Java; A = {private,package,protected,public}

Orderings:
≤T⊆ T × T the (reflexive, transitive) subtype relation of Prog
≤N⊆ T × T the (reflexive, transitive) type nesting relation of Prog
<A⊆ A×A the total ordering of access modifiers:

private <A package <A protected <A public

Location functions:
π : D ∪R→ P π(e) is the package in which e is located
τ : D ∪R ⇀ T for m ∈M , τ(m) is type of which m is a local member;

for r ∈ R, τ(r) is the innermost type enclosing r, if any
τtop : D ∪R ⇀ Ttop τtop(e) is the t ∈ Ttop with τ(e) ≤N t; only defined when τ(e) is defined

Accessibility functions:

α : (R ∪M)×D → A α(e, d) :=


private if τtop(e) = τtop(d)
package else, if π(e) = π(d)
protected else, if ∃t ∈ T : τ(e) ≤N t <T τ(d)
public else

ι : T × T → A ι(ti, td) :=

{
package if ∀t ∈ T, ti ≤T T <T td : π(t) = π(td)
protected else

ω :M ×M → A ω(m2,m1) :=

{
package if π(m2) = π(m1)
protected else

Figure 17: Definition of the functions α, ι, and ω determining the minimum required accessibility for access, inheri-
tance, and overriding, respectively

20

〈m〉 = public

〈m〉 = public

is neither circular nor tautological: it just expresses that
what was declared public before the refactoring must
be declared public after (for instance to preserve the
API of a program).

4.5 The Constraint Rules of Accessibility
As elaborated above, to determine which access modifier
a declaration requires is not only constrained by the ac-
cesses of the declaration present in the program, but also
by the existing (and non-existing) inheritance, overriding,
hiding, and subtyping relationships. However, the impact
of access modifiers on compilability and meaning is sel-
dom spelled out explicitly in the JLS.

In this subsection, we will discuss some representative
constraint rules in detail; a full listing of all rules is given
in Appendix A.

To formulate queries and constraints, we make use of
several basic relations and functions defined in Fig. 17:
relations ≤T and ≤N model the program’s inheritance
hierarchy and type nesting structure, respectively, while
functions π, τ and τtop determine the package, immedi-
ately enclosing type and top level type in which a decla-
ration or reference is located. Both τ and τtop are unde-
fined for top level types, which by definition do not have
enclosing types, and for references that occur outside the
body of a top level type declaration, for instance in an
extends or implements clause.

The functions α (for accessibility), ι (for inheritance)
and ω (for overriding) determine minimum accessibili-
ties needed for access, inheritance and overriding, respec-
tively. For a reference r and a declaration d, α(r, d) is the
minimum accessibility needed for d to be accessible for
r; its definition is basically a transcription of §6.6.1 in the
JLS [7]. The first argument of α can also be a member
m, in which case α(m, d) gives the minimum accessibil-
ity necessary for d to be accessible from where m is de-
clared; this is needed to correctly model the definition of
hiding.

For two types ti and td, ι(ti, td) is the minimum ac-
cessibility a member of td needs to have in order to be
inherited by ti: as discussed above, this is package if
all types between td and ti in the subtype hierarchy are

in the same package, and protected otherwise. Fi-
nally, ω(m2,m1) is the minimum accessibility a method
m1 needs to have to be directly overridden by method
m2, which is package if m1 and m2 belong to the same
package, and protected otherwise. Strictly speaking,
this predicate should only be defined if the enclosing type
of m2 is a subtype of the one of m1, but for convenience
we define it for all methods.

To streamline the formulation of program queries, we
will use additional query predicates, such as predicates
overrides and hides introduced above. For now we in-
formally explain the predicates when we use them; full
definitions are given in Appendix A.

The first, and most fundamental, accessibility con-
straint rule for Java is the (ACC-1) rule:

binds(r, d)
(ACC-1)

〈d〉 ≥A α(r, d)

Using the binds predicate to query the binding structure
of the program, it states that whenever a reference r binds
to a declared entity d, the accessibility of d must be no
less than the minimum accessibility needed for d to be ac-
cessible at the position of r. As an illustration of this rule,
consider the example of Fig. 3. On the original program,
taking d to be the declaration of class B and r the reference
in line 45, we see that α(r, d) = package, so the con-
straint 〈d〉 ≥A package is generated. On the refactored
program, we have α(r, d) = public, so the constraint is
now 〈d〉 ≥A public, indicating that B must be declared
public. Constraints generated by this rule also explain
the compile error on line 425 of Fig. 16, whereas the con-
straints for lines 412, 416, 429 and 438 are satisfied.

A second, somewhat related constraint rule addresses
the access of inherited members:

binds(r,m) receiver-type(r, t) t <T τ(m)
(INHACC)

〈m〉 ≥A ι(t, τ(m))

The program query matches any reference r binding to a
member m such that m is not locally declared in the re-
ceiver type t of r: such a member must be inherited, so its
declared accessibility must be no less than the minimum
accessibility required for t to actually inherit m, as com-
puted by ι. This rule explains the accesses on lines 411,
415, 424, and 437 in Fig. 16.

21

A third constraint rule, preventing the loss of overriding
exemplified in Fig. 4, is (OVRPRES):

overrides(m2,m1) (OVRPRES)
〈m1〉 ≥A ω(m2,m1)

Here, we use the predicate overrides to find all pairs of
methods (m2,m1) such that m2 directly overrides m1.
The generated constraint requires that m1 has at least the
minimum accessibility needed for the overriding to take
place as computed by ω. While this rule only applies to
direct overriding relationships, its comprehensive appli-
cation to all methods in the program ensures that indirect
(transitive) overriding is preserved as well.

As shown in the example at the end of Section 4.2, a
static method m2 may not hide an instance method m1.
Similarly, the return type of m2 must be a subtype of
the return type of m1, and their throws clauses must be
compatible [7, §8.4.8.3]. We define a predicate may-hide
to check these conditions, and use it to define a constraint
rule (HID) that lowers the accessibility ofm1 if necessary
to prevent invalid hiding:

τ(m2) <T τ(m1) static(m2)

override-equiv(m2,m1) ¬may-hide(m2,m1) (HID)
〈m1〉 <A α(m2,m1)

Note that although this rule is about hiding, it does not
use the query predicate hides. This is necessary since we
are looking for a pair (m2,m1) of methods such that m2

would hidem1, were it not for the low accessibility ofm1.
Using ¬hides(m2,m1) as a query instead would produce
all pairs of methods (m2,m1) such that m2 does not hide
m1: this is true for many pairs of completely unrelated
methods, for which this accessibility constraint would be
unjustified. We will see this pattern frequently in the full
listing of all constraint rules, as given in the Appendix A.

Also note that the definition of hiding, although rely-
ing on accessibility as expressed by α, is independent of
any concrete reference, and thus uses the hiding method
in place of a reference as argument; to cover this, the do-
main of the first argument of α in Fig. 17 is extended to
include M , allowing it to address hypothetical accessibil-
ity as required by the definition of hiding [7, §8.4.8.2].

The constraint rule (SUB) ensuring the conditions of
subtyping as required by the extension of the example of

Fig. 4 in Section 2.2 has already been given in Section 4.4;
for the case of hiding (rather than overriding) members, it
is implicitly restricted to (static) methods, i.e., the rule
does not apply to fields.

4.6 Summary
We have shown how the rules for accessibility in Java can
be encoded as constraint rules. Based on the syntactic
structure, type hierarchy, name bindings and overriding
relationships of a program, these rules generate a set of
constraints on the accessibilities of declarations that have
to be satisfied in order to avoid compile errors and main-
tain dynamic dispatch behavior.

In the next section, we show how these constraints can
be integrated with the binding unlocking algorithm of the
previous section, yielding a comprehensive framework for
maintaining and updating bindings.

5 JL and Java
In this section, we give a more detailed presentation of JL,
our lookup-free, access control-free representation of Java
programs, and present algorithms for converting between
Java programs and their JL representations.

5.1 Lookup-free, Access Control-free Rep-
resentation of Java Programs

A JL program is, syntactically speaking, almost a Java
program, except for three differences:

1. Every declaration is annotated with a globally unique
label. In example JL code we write the label as a
superscript on the declaration.

2. There are no simple names, instead there are locked
bindings that directly refer to a declared entity by its
label. In example JL code we write a locked binding
referring to a declaration labelled l as ↑ l.
While simple names are replaced by locked bind-
ings, JL programs can still contain qualified names
as well as field access expressions and method invo-
cation expressions, but instead of simple names they
are composed of locked bindings.

22

3. Every instance method declaration in the program
has an explicit overriding annotation of the form

o v e r r i d e s m1, . . . ,mn

where the mi are locked bindings enumerating all
the methods this method directly overrides.

We say that a JL program P ′ represents a valid Java
program P if the following three conditions are met:

1. P and P ′ are syntactically the same, except that
overriding annotations are removed in P , declared
accessibility levels of declarations may differ, locked
bindings in P ′ are replaced with normal references in
P , and method invocations in P may have additional
upcasts.

2. P and P ′ have the same name binding structure, i.e.,
for every locked binding ↑ l in P ′ the corresponding
reference in P resolves to the declaration labelled l
in P ′ by the lookup rules of Java.

3. P and P ′ have the same overriding structure, i.e.,
method m1 directly overrides method m2 in P iff
the overrides clause of m1 in P ′ contains ↑m2.

As an example, Fig. 18 shows the JL version of the
program in Fig. 5(a). We omit the overrides clauses
since they are all empty. Although the names and declared
accessibilities of declarations are unimportant in JL, we
retain them to allow reconstructing a Java program from
its JL encoding.

We will now present algorithms for translating Java
programs to corresponding JL programs and back.

5.2 Translating from Java to JL and Back
Finding a JL program to represent a given valid Java pro-
gram is easy: assign unique labels to every declaration,
resolve simple names by the standard lookup rules and
replace them with locked bindings, and finally determine
which methods every instance method (directly) overrides
and add an overrides clause to its declaration.

Translating in the other direction is not quite as easy,
but still fairly straightforward given the technical ground-
work presented in the previous sections: accessibilities
are adjusted to make declarations accessible anywhere

446 c l a s s Ct1 {
447 p r i v a t e c l a s s Bt2 { }
448 void mm1 (↑ t2 bv1) { }
449 void nm2 () { }
450 }
451
452 i n t e r f a c e Jt3 { c l a s s Bt4 { } }
453
454 c l a s s Dt5 ex tends ↑ t1 implements ↑ t3 {
455 Dc1 (↑ t1 c1v2 , ↑ t5 dv3) { ↑v2 . ↑m1 (n u l l) ; }
456 Dc2 (↑ t1 c2v4 , ↑ t1 ov5) {
457 ↑v4 . ↑m2 () ;
458 ↑ t5 dv6 = new ↑c1 (↑v4 , n u l l) ;
459 }
460 ↑ t4 fv7 ;
461 }

Figure 18: The JL version of the program in Fig. 5(a)

they are referenced and to enforce or prevent overriding,
and locked bindings are replaced by (possibly qualified)
references. The explicit overriding declarations can then
simply be removed.

Note, however, that binding unlocking and accessibility
constraint solving influence each other, and hence have to
be interleaved instead of being performed in sequence.

Binding unlocking may introduce qualifiers and up-
casts that refer to inaccessible types. Therefore, an iter-
ative approach is required: First, we generate and solve
accessibility constraints to make sure that at every locked
binding ↑ l the declaration labelled by l is indeed accessi-
ble. Then we unlock all locked bindings, which may gen-
erate new locked bindings, for which we again generate
and solve accessibility constraints before unlocking them
in turn, continuing until all locked bindings are gone.

This means, however, that during the translation the
program may contain both locked bindings and normal
references. Care must be taken when changing the ac-
cessibility of a declaration d in such a program, since
this change might change the binding of already unlocked
bindings. Clearly, such binding changes can only occur
for references to a declaration with the same name as d.
To avoid this issue, it is hence enough to additionally lock
all bindings to declarations with the same name as d any-
where in the program before changing its accessibility.

Figure 19 shows our algorithm for translating from JL
to Java. While there are still locked bindings to eliminate,

23

1: procedure Translate to Java (Program p):
2: while p contains locked names do
3: C ← accessibility constraints for p
4: if C is unsolvable then
5: abort
6: S ← solution of C
7: for all (d, a) ∈ S do
8: for all declarations d′ with same name as d do
9: lock all references to d′

10: set accessibility of d to a
11: unlock all bindings in p
12: remove all explicit overriding declarations

Figure 19: Algorithm for translating from JL to Java

the algorithm collects accessibility constraints and solves
them, aborting if this is not possible. A solution consists
of a set of pairs (d, a), where d is a declaration and a an
accessibility, indicating that the declared accessibility of
d has to be changed to a in order to satisfy the constraint
system. When changing the accessibility, we lock poten-
tially endangered names, and then unlock all names in the
program.

Termination of the algorithm follows from the fact that
starting from the second iteration of the loop only locked
type and package names remain, since name unlocking
never introduces other kinds of locked names. When un-
locking these remaining names, locked bindings referring
to their enclosing types or packages may be introduced.
Thus, the number of loop iterations is bounded by the
maximum depth of type and package nesting in the pro-
gram.

As an example, consider the program of Fig. 20(b),
which arises as the result of a JL-level application of
EXTRACT INTERFACE as detailed below. When comput-
ing accessibility constraints for this program, we find two
unsatisfied constraints. First, since the member type t2
is referenced on line 483 outside its declaring type, rule
(ACC-1) generates the constraint 〈t2〉 ≥ package, re-
quiring t2 to have at least package accessibility. With t2
being private, this constraint is not fulfilled. Second,
rule (SUB) generates the constraint 〈m1〉 ≥ 〈m3〉 requir-
ing method m1 to have at least the same level of acces-
sibility as m3, the method it overrides, which is not the
case.

We can solve both constraints by removing the
private qualifier from t2’s declaration, and makingm1

public. This change provides a solution to the whole
system of accessibility constraints (not just the two shown
here), and makes it possible to eliminate locked bindings.
The name unlocking algorithm takes care of inserting nec-
essary qualifications and casts, yielding the program pre-
viously shown in Fig. 5(b).

This small example shows that accessibility constraints
make name unlocking more powerful. Additionally, ad-
justing accessibilities allows us to enforce or prevent over-
riding: if, in the JL version of the program, some method
m is supposed to override another methodm′, rule (OVR-
PRES) will create a constraint ensuring that m′ is accessi-
ble at the point where m is declared. Conversely, if m is
not supposed to override m′ but would override it accord-
ing to Java’s overriding rules, (OVRPREV) will constrain
the accessibility of m′ to prevent the overriding after all.

On the other hand, locked bindings also enable more
flexible accessibility constraints: In the original formu-
lation of accessibility constraints given by Steimann and
Thies [25], there is a constraint rule that would, in the
above example, bar us from raising the accessibility of
t2. The rationale for this rule is to prevent a class like
D from inheriting two types of the same name from both
a superclass and an interface, since these types can then
not be accessed by their simple names. We can dispense
with this rule, since name unlocking will insert qualifiers
if necessary. Two other rules for preventing name cap-
ture due to hiding and changed overloading resolution are
likewise rendered obsolete.

5.3 Refactoring on JL

Many refactorings become simpler and more powerful if
they are formulated at the level of JL rather than on plain
Java. The most striking illustration of the benefits of JL
is provided by type-related refactorings such as EXTRACT
INTERFACE, which was briefly introduced in Sec. 2.

Tip et al.’s work on type-related refactorings [28]
presents 38 type constraint rules for Java 1.4 in detail
and gives an algorithm for determining updatable dec-
larations for EXTRACT INTERFACE based on the gener-
ated constraint system. Apart from these genuinely type
correctness-related constraints, the authors also briefly
sketch some additional constraints that are not needed for

24

462 i n t e r f a c e It6 {
463 void mm3 (↑ t2 bv8) ;
464 }
465
466 c l a s s Ct1 implements ↑ t6 {
467 p r i v a t e c l a s s Bt2 { }
468 void mm1 (↑ t2 bv1) o v e r r i d e s ↑m3 { }
469 void nm2 () { }
470 }
471
472 i n t e r f a c e Jt3 { c l a s s Bt4 { } }
473
474 c l a s s Dt5 ex tends ↑ t1 implements ↑ t3 {
475 Dc1 (↑ t1 c1v2 , ↑ t5 dv3) { ↑v2 . ↑m1 (n u l l) ; }
476 Dc2 (↑ t1 c2v4 , ↑ t1 ov5) {
477 ↑v4 . ↑m2 () ;
478 ↑ t5 dv6 = new ↑c1 (↑v4 , n u l l) ;
479 }
480 ↑ t4 fv7 ;
481 }

482 i n t e r f a c e It6 {
483 void mm3 (↑ t2 bv8) ;
484 }
485
486 c l a s s Ct1 implements ↑ t6 {
487 p r i v a t e c l a s s Bt2 { }
488 void mm1 (↑ t2 bv1) o v e r r i d e s ↑m3 { }
489 void nm2 () { }
490 }
491
492 i n t e r f a c e Jt3 { c l a s s Bt4 { } }
493
494 c l a s s Dt5 ex tends ↑ t1 implements ↑ t3 {
495 Dc1 (↑ t6 c1v2 , ↑ t5 dv3) { ↑v2 . ↑m3 (n u l l) ; }
496 Dc2 (↑ t1 c2v4 , ↑ t6 ov5) {
497 ↑v4 . ↑m2 () ;
498 ↑ t5 dv6 = new ↑c1 (↑v4 , n u l l) ;
499 }
500 ↑ t4 fv7 ;
501 }

(a) (b)

Figure 20: An application of EXTRACT INTERFACE on a JL program

type correctness, but rather to prevent inadvertent changes
to name binding and overloading resolution.

These additional constraints are not discussed in great
detail, and in particular the correctness proof presented for
EXTRACT INTERFACE does not consider them at all and
simply assumes that such binding changes cannot happen.
It is furthermore tacitly assumed that the necessary type
changes do not fail due to insufficient accessibilities.

If we reformulate refactorings such as EXTRACT IN-
TERFACE at the level of JL, these assumptions are au-
tomatically satisfied. We can concentrate on the type-
related issues germane to the refactoring, and leave it to
the translation from JL to Java to address naming and
access control by making the necessary changes. This
not only simplifies the specification of refactorings, but
also makes them more powerful: inadvertent binding
changes can often be fixed by adapting names and access
modifiers, while a purely type constraint-based approach
would have to reject the refactoring out of hand.

5.4 An Example of a JL Refactoring

Let us take another look at the example from Sec. 2,
and see how this application of EXTRACT INTERFACE

plays out in JL. The JL version of the input program
of Fig. 5(a) was shown in Fig. 18. Recall that we want
to extract from class C, or t1 in JL, an interface I with a
method m(C.B) for method m1 to implement.

The first step of this refactoring is easy: create the new
interface (we assign it the fresh label t6), insert a declara-
tion of the method we want to extract (labeled m3), and
have t1 implement t6, as shown in Fig. 20(a). In Java,
even such a simple transformation would be fraught with
peril: introducing the new interface might upset existing
name bindings; references to types in the parameter lists
of the extracted methods may need to be adjusted; and
sometimes, as in this case, one of these types may not
even be accessible. By formulating the refactoring on JL
instead, we can rely on the translation to Java to take care
of all these issues.

Since the new interface is, as yet, not mentioned any-
where in the program (except in the implements clause
of t1), this step does not change the program’s external be-
havior. It does, however, change overriding slightly, since
m1 now overrides its extracted counterpartm3. In JL, this
has to be made explicit by inserting an overrides dec-
laration as shown. More generally, for every method m to
which EXTRACT INTERFACE creates a counterpart m′ in

25

the new interface,m′ has to be added tom’s overrides
clause.

The more interesting part of the refactoring is the sec-
ond part of the transformation: now that we have the new
interface t6, we want to take advantage of it, and change
as many variables as possible from type t1 to t6. For this,
we rely on the algorithm for computing updatable decla-
rations that was presented in [28]. We note that all con-
straint rules presented for Java make sense for JL as well,
except for the ones aiming at preventing changes in name
binding or overloading resolution, which become unnec-
essary.

For the above example program, the algorithm deter-
mines that the types of the parameters v2 and v5 can be
updated from ↑ t1 to ↑ t6. We also have to update the
call to m1 on line 475 to bind to m3 instead as shown in
Fig. 20(b). This will, of course, not affect dynamic dis-
patch at runtime.

In general, to determine which calls have to be updated
we need to know the set E of expressions whose type is
updated, and the type they are updated to (here always I);
the algorithm in [28], for example, already computes this
set. For a virtual call e. ↑m(. . .) with e ∈ E, we deter-
mine the method m′ in I that m overrides, and replace it
with e. ↑ m′(. . .). This step, like the updating of over-
riding relationships above, is left implicit in formulations
of EXTRACT INTERFACE for Java, where the binding will
change silently, but is made explicit in JL.

5.5 Porting Type-related Refactorings to JL

The informal description of EXTRACT INTERFACE for JL
in the previous subsection is easily turned into a pseudo-
code algorithm, shown in Fig. 21. Note that every step of
the refactoring except for line 7, which updates overrid-
ing declarations, and line 13, which adjusts virtual calls,
would also occur in a Java-level specification.

To save space, we have not elaborated the precondi-
tions the refactoring needs to check in line 2: an actual
implementation should check, among others, that C is not
a library class, and that none of the methods to be ex-
tracted is static. Crucially, however, these preconditions
can all be taken be taken directly from a Java-based spec-
ification of the refactoring. We can, of course, omit any
preconditions designed to prevent name binding changes

or accessibility problems, since these issues are handled
instead in the translation from JL to Java.

Porting other type-related Java refactoring to JL is
analogous: take the Java specification, remove unneces-
sary preconditions, and make changes to overriding and
call targets explicit. PULL UP METHOD, for instance,
needs to update the overrides clauses of any meth-
ods that should override the pulled-up method after the
refactoring.9

The procedure Adjust Virtual Calls can be
reused by other refactorings: when using PULL UP
METHOD to pull up a method m from a class A to a class
B, all (unqualified) this accesses within m change their
type from A to B, so virtual method calls on these ac-
cesses have to be adjusted.

In this way, existing refactorings can easily be lifted
from Java to JL by making changes in overriding explicit
and using Adjust Virtual Calls to rectify the tar-
gets of virtual calls.

6 Implementation

We have implemented our approach in the JRRT refactor-
ing tool [20]. JRRT is based on the JastAddJ front end,
which it uses for parsing and to provide syntax trees. We
have worked out specifications and implementations of
many commonly used refactorings, which have been eval-
uated and compared to other implementations in previous
work [17]. In this section, we will briefly highlight some
of the salient points of our implementation of JL and the
transformations from and to Java.

We implement locked bindings by introducing new
node types in the AST together with special lookup rules
that implement direct binding. Similarly, nodes corre-
sponding to method declarations are extended with an ad-
ditional field to record explicit overriding.

To speed up translation to and from JL, our implemen-
tation does not usually lock all bindings in the entire pro-
gram, instead it is up to individual refactorings to deter-
mine which names are in danger of changing their binding
and to replace them with locked bindings.

9Just as for a Java-level implementation, additional analysis is
needed to ensure that the changed overriding does not affect virtual
method dispatch.

26

1: procedure EXTRACT INTERFACEJL
(ClassDecl C,

String n, Set〈Method〉 M)
2: check Java-level preconditions
3: I ← new interface with qualified name n
4: for all m ∈M do
5: m′ ← new method with same return type,

parameters and thrown exceptions as m
6: insert m′ into I
7: add ↑m′ to overrides clause of m
8: add ↑I to implements clause of C
9: Ud ← updatable declarations

10: for all u ∈ Ud do
11: change type of u to ↑I
12: Ue ← updatable expressions
13: Adjust Virtual Calls(Ue, I)

14: procedure Adjust Virtual Calls
(Set〈Expr〉 Ue, Type T)

15: for all virtual calls c = e0. ↑m(e1, . . . , en) do
16: if e0 ∈ Ue then
17: m′ ← resolve c on T
18: replace c with e0. ↑m′(e1, . . . , en)

Figure 21: EXTRACT INTERFACE on JL

For the common case of refactorings that do not alter
the type hierarchy, a conservative over-approximation of
the set of endangered names can be determined as follows.

We consider a method or constructor affected by the
refactoring if its signature or location changes; similarly,
a class, interface, field or other variable is affected if its
name or location changes.

A constructor or method is considered potentially af-
fected if it has the same name and arity as an affected
method/constructor, and likewise for types and variables.
A reference is potentially affected if it either refers to a
potentially affected declaration, it is itself moved by the
refactoring, or the type of its qualifying expression or
one of its arguments (for method invocation expressions)
changes.

A refactoring then only needs to lock potentially af-
fected names, and only needs to introduce explicit over-
riding for potentially affected methods.

Refactorings like EXTRACT INTERFACE that do
change the hierarchy have to perform additional locking.

To implement name unlocking, we have implemented
the algorithm introduced in Sec. 3, taking all lookup rules
of Java 5 into account. Due to the concise syntax and well-
developed infrastructure of JastAddJ this can be achieved
in about 1400 lines of code, which is roughly the same as
the corresponding lookup rules.10

For accessibility handling, we have implemented a
module to collect and solve accessibility constraints. Be-
cause most queries contained in the constraint rule’s pre-
conditions (such as binds, overrides and receiver-type) are
directly provided by the JastAddJ front end, the imple-
mentation of the accessibility constraint generator could
be achieved with less than 650 lines of code and thus turns
out to be quite concise. The accessibility constraints are
then translated into constraints over integers and solved
using the Cream constraint solving library [26].

7 Evaluation

We will now present an evaluation of our approach and its
implementation with respect to correctness and scalabil-
ity.

10These and all following code size measurements were generated
using David A. Wheeler’s ’SLOCCount’ [31].

27

Renamed Total Inapp- Missing Rejected Same
Entity licable Feature by Eclipse Result
Package 35 17 4 0 14
Type 247 16 35 68 128
Method 235 26 18 15 176
Variable 215 30 18 33 134

Table 1: Evaluation of RENAME on Eclipse’s test suite

7.1 Correctness of Reference Construction

Ideally, we would like to formally verify that our naming
framework always constructs references that bind to the
intended declaration, and that the accessibility constraints
faithfully capture Java’s access control rules. However,
while there has been some work on the formalization of
access control [21], the name binding rules have, to our
knowledge, never been formally specified.

For this reason, we have chosen a more empirical ap-
proach to convince ourselves of the correctness of our
naming framework. We have implemented the RENAME
refactoring for packages, types, methods and variables
and tested them on the publicly available test suite for
Eclipse. All test cases consist of an input program, a de-
scription of the renaming to perform, and an expected out-
put program (none in the case of tests where the refactor-
ing is expected to be rejected). We adapted the test suite
to use our refactoring tool for performing the refactoring
instead of the JDT.

The results of evaluating our implementation of the RE-
NAME refactorings in this way are shown in Table 1. It
lists the four considered refactorings in the first column.
For every refactoring, the column labelled “Total” indi-
cates how many test cases are provided by Eclipse. The
remaining four columns classify these test cases into four
disjoint categories.

Category “Inapplicable” comprises those test cases that
we could not run through our implementation, most of
them because the input program does not compile: a side
effect of basing our implementation on a compiler front
end is that it cannot handle uncompilable programs, for
which no consistent syntax trees are generated by the front
end. While it would be nice to support refactoring of in-
valid code from a usability perspective, this is not a well-
defined problem since the input program has no behavior
that the refactoring could preserve. Also included in the

category of inapplicable tests are some test cases which
exercise details of Eclipse’s precondition checking algo-
rithm that have no counterpart in our approach.

Test cases in category “Missing Feature” test minor fea-
tures we have not implemented yet; notably, Eclipse can
rename similarly named elements along with the main el-
ement being renamed, or update what looks like names
contained in string literals. Again, these are heuristic fea-
tures that are not amenable to rigorous comparison.

Category “Rejected by Eclipse” encompasses test cases
that are supposed to be rejected by the Eclipse implemen-
tation, but which can be handled by our implementation.
This includes test cases where names have to be qualified
to avoid capture, which Eclipse does not attempt to do.

The final category, “Same Result”, are those test cases
on which both implementations produce the same result.

In summary, our implementation does quite well: while
we do not implement all the additional features that
Eclipse provides, our naming framework handles all test
cases correctly, and can indeed be used to perform renam-
ings on which Eclipse has to give up.

7.2 Scalability and Performance

To investigate issues of scalability, we performed an
experiment in which we systematically applied the
two refactorings EXTRACT INTERFACE and PULL UP
METHOD on a large collection of real-world Java appli-
cations, shown in Table 2. We were particularly inter-
ested in determining how often adjustment of accessibili-
ties and name qualification arises on real code, as these are
situations that current refactoring tools are ill-equipped
to handle. The subject programs are publicly available
and include frequently used frameworks such as JUnit and
Tomcat, comprising more than one million lines of source
code in total.

PULL UP METHOD We used our tool to move each
method in each class, along with all fields, methods and
member types of the same class used by that method, to
the immediate superclass, except in cases where the su-
perclass is a library class.

Table 2 shows, under the heading PULL UP METHOD,
the total number of methods to be moved for each subject
program (column “total”), next to the number of methods
for which the tool detected a potential problem that could

28

PULL UP METHOD EXTRACT INTERFACE
Name Size total rejected successful total rejected successful

total acc. names total acc. names
Apache Tomcat 6.0.x 169 4398 4396 2 1 0 1381 1261 1208 287 37
HSQLDB 2.0.0 144 280 226 54 14 0 577 84 493 138 37
Xalan-Java 2.4 110 3872 2921 951 567 58 839 118 721 271 10
W3C Jigsaw 2.2.5 101 3002 1875 1127 427 446 970 112 858 243 0
Lucene 3.0.1 84 4376 4136 240 136 34 962 77 885 374 34
JHotDraw 7.5.1 76 2522 2061 461 249 55 689 88 601 93 45
ServingXML 1.1.2 65 940 827 113 96 6 1257 34 1223 246 5
JGroups 2.10 62 1934 1880 54 27 3 516 76 440 160 23
Hadoop Core 0.22 49 1179 1007 172 139 55 622 126 496 194 21
JMeter 1.9 41 1556 967 589 287 340 404 26 378 39 0
Clojure 1.1.0 29 1167 983 184 51 53 252 29 223 98 83
Draw2D 3.4.2 23 1396 1021 375 209 42 277 22 255 89 2
HTMLParser 1.6 22 520 359 161 25 7 148 10 138 12 0
Jaxen 1.1.1 12 442 402 40 28 2 167 15 152 40 0
Commons IO 1.4 5 99 91 8 7 0 74 6 68 4 0
JUnit 4.5 5 241 204 37 20 3 108 21 87 6 5
JUnit 3.8.1 4 183 106 77 46 6 52 5 47 15 0
JUnit 3.8.2 4 149 99 50 29 6 48 5 43 13 0
Commons Codec 1.3 2 20 14 6 4 0 19 2 17 2 0
Jester 1.37b 2 5 2 3 0 0 30 4 26 0 0
total 1009 28281 23577 4704 2362 1116 9392 1033 8359 2324 302

Table 2: Quantitative evaluation; sizes in thousands of lines of source code

render the output program uncompilable or change its se-
mantics and hence rejected the refactoring (column “re-
jected”).

The following three columns list the total number of
successful refactoring applications (sub-column “total” of
column “successful”), the number of cases that required
at least one accessibility adjustment (sub-column “acc.”),
and the number of cases where a name adjustment was
made (sub-column “names”).11

Given the large number of refactoring applications, we
cannot give a detailed analysis of the situations where the
refactoring was rejected. To take the most extreme exam-
ple, of the 4398 possible refactoring applications on Tom-
cat 4396 were rejected, the most common reasons being
changes in the evaluation order of field initializers (2360
cases) and possible changes in dynamic method resolu-
tion (1602 cases). In other cases the numbers are not
quite so drastic, leading to such a large number of success-
ful refactorings that it was impractical to manually check
preservation of program behavior in each case. Instead,

11This category includes insertion of upcasts to rectify overloading
resolution, and of qualifiers to avoid name capture; we do not count the
fairly trivial case of qualifying types with their package name.

we checked that the output program was still compilable.
Averaging over all programs, accessibilities were ad-

justed in about 50.2% of all successful applications,
names in 23.7%. The need for accessibility adjustment
arose often when moving methods between packages,
with declarations referenced in the moved members be-
coming inaccessible. Naming issues occurred frequently
when moved methods held references to static members
or member types which needed further qualifications af-
terwards.

EXTRACT INTERFACE The final column group of
Table 2 shows the result of using EXTRACT INTERFACE
to extract an interface from each (non-anonymous) class
in each subject program, containing all the public non-
static methods of the class, to a new package where it
was to serve as a published interface. Accessibility ad-
justments were needed in 27.8% and name adjustments in
3.6% of all successful applications.

Given its prototype nature, our current implementa-
tion is not ready for a full-fledged performance evalu-
ation. Performance measurements taken while collect-
ing the data for Table 2 show that a single application
(whether successful or not) of any of the three refactor-

29

ECLIPSE INTELLIJ IDEA
Name cases succ. reject error succ. reject error
Xalan-Java 2.4 49 0 49 0 8 40 1
Lucene 3.0.1 30 2 26 2 7 22 1
Clojure 1.1.0 13 1 8 4 7 6 0
Jaxen 1.1.1 2 0 2 0 0 2 0
JUnit 3.8.1 6 0 6 0 0 6 0
total 100 3 91 6 22 76 2

Table 3: 100 PULL UP METHOD refactorings with ac-
cessibility and naming issues in Eclipse 3.6.0 and IntelliJ
IDEA 9.0.4

ings completes, on average, within 46 seconds or less,
even on the largest of our benchmarks.12 90% of all ap-
plications complete within 53 seconds, with occasional
outliers measured to take several minutes. This seems to
be due to external factors: when re-run in isolation, such
cases finished in well under a minute.

The strategy for approximating the set of names to be
locked during translation outlined in above is very effec-
tive in practice: we found that PULL UP METHOD, e.g.,
never locks more than 7% of all names and usually much
less than that, which never becomes a bottleneck. These
numbers show that while there is room for improvement,
our approach is practically feasible.

7.3 Comparison with Other Refactoring
Tools

To see how our implementation compares with other
refactoring tools we chose 100 cases where our PULL UP
METHOD had adjusted both accessibility and naming, and
manually performed these refactorings in Eclipse and In-
telliJ IDEA, with the results shown in Table 3.

The first column corresponds to the one in Table 2, the
second column gives the number of PULL UP METHOD
refactorings involving naming and accessibility issues.
While our tool succeeded (i.e., performed the refactoring
and produced compilable output) in all cases, Eclipse and
IntelliJ showed a rather different picture. Eclipse could
only successfully refactor in three cases, while IntelliJ
succeeded in 22 cases. In the majority of cases—91 for

12Timings obtained on a 2GHz Intel Centrino Duo running a Sun
HotSpot JVM version 1.6.0 21 on a 1.2 GB heap under Microsoft Win-
dows 7 [6.1.7600].

Eclipse and 76 for IntelliJ—both tools rejected the refac-
toring with an error message. In six and two cases, respec-
tively, the tools failed completely and performed changes
leading to uncompilable code. We could not perform a
similar comparison for EXTRACT INTERFACE, as Eclipse
does not support extraction into a different package.

7.4 Discussion
In our quantitative evaluation, we applied the refactor-
ings indiscriminately all over every subject program. The
fraction of cases where it would make sense to apply the
refactoring in order to improve a program’s design is, of
course, likely to be very small, but as our results show our
tool is robust enough to handle a wide variety of situa-
tions, including those where other tools fail.

Since we treat accessibility adjustment as a global con-
straint problem, our approach may sometimes end up sug-
gesting a large number of changes to many different parts
of the program. It may be doubtful whether a refactoring
that requires extensive changes in order to go through is
actually worth performing. However, we believe that this
is not for the refactoring tool to decide. Instead, this issue
is probably best handled in the user interface by provid-
ing a preview of the proposed changes to the programmer,
who can still choose to abort the refactoring if it is too in-
vasive.

8 Related Work
Almost two decades after inception of the discipline as
marked by the theses of Griswold [8] and Opdyke [15],
refactoring is still a hard problem. This is evidenced
by a steadily growing body of literature on the subject,
still dealing with the same basic problem as the inaugu-
ral works: how to construct refactoring tools that are as
reliable as other programming tools like compilers and
debuggers.

Starting with the work by Opdyke [15] and
Roberts [16], most previous refactoring research has
relied on pre- and post-conditions to ensure that program
behavior is preserved. However, the presence of many
language constructs such as nested classes, overloading,
and access modifiers results in extremely complex
preconditions that are hard to get right. This is what

30

motivated Schäfer’s approach of formulating refactorings
in terms of dependency preservation [18, 17], of which
binding preservation is one instance.

Other work considered various programming language
features such as class hierarchies [28, 10], generics [1, 30,
6], design patterns [29, 11], and access modifiers [25].
Most of these works focus on a single language feature in
isolation, and do not consider the complex interactions be-
tween different features that have to be addressed to make
refactoring tools robust.

In recent work, Steimann et al. [24] explore the use of
conditional, quantified constraints as a unifying frame-
work for specifying and implementing refactorings and
show promising first results. An advantage of their purely
constraint-based framework over a combined approach
like ours is that there is no need to explicitly schedule dif-
ferent adjustments as we do with binding unlocking and
accessibility constraint solving. However, a constraint-
based specification is in general less well-suited to de-
scribe refactorings that introduce or delete program ele-
ments (as opposed to just moving them or manipulating
their attributes) since constraint solvers generally presup-
pose a fixed domain of elements to work on.

9 Conclusions
Implementing behavior-preserving program transforma-
tions is difficult, particularly at the source level. Modern
mainstream programming languages such as Java provide
many convenient idioms and syntactic sugar that make
it very hard not only to ensure that the transformed pro-
gram has the same behavior as the input program, but even
that it compiles in the first place. One particularly com-
plex, yet very fundamental problem is how to deal with
name binding, which is governed by a sophisticated set of
lookup and access control rules.

In this paper, we have introduced JL, a representation
of Java programs that abstracts away from the details of
name lookup and access control, instead providing a view
of the program in which references to declared entities
appear locked: they only change when explicitly rebound
by the refactoring, and otherwise keep their original bind-
ing. We have shown that refactorings become much more
robust and powerful when formulated at the level of JL.

In order for JL to be usable, we need translations from

Java to JL and vice versa. We have shown how such
a translation can be achieved with the help of a refer-
ence construction function and accessibility constraints:
the former constructs references binding to a target dec-
laration, the latter determine how declared accessibilities
have to be adjusted to satisfy access control rules. We
have implemented these translations and put them to work
by implementing several refactorings on top of them. To
evaluate our implementation, we have systematically ap-
plied two of these refactorings to a large body of real-
world Java applications, showing that our tool is able to
perform transformations that are beyond the scope of cur-
rent state-of-the-art refactoring engines.

While our current work specifically addresses Java, we
believe that the basic approach applies to other languages
as well. Languages such as C#, Scala or Eiffel have simi-
lar name binding and access control concepts as Java, al-
though details differ between languages. Refactorings for
these languages would almost certainly also benefit from
a lookup-free, access control-free program representation
such as JL.

References

[1] Alan Donovan, Adam Kieżun, Matthew Tschantz,
and Michael Ernst. Converting Java Programs
to Use Generic Libraries. In Object-Oriented
Programming, Systems and Languages (OOPSLA),
pages 15–34, 2004.

[2] Torbjörn Ekman and Görel Hedin. Modular Name
Analysis for Java Using JastAdd. In Generative
and Transformational Techniques in Software Engi-
neering (GTTSE), pages 422–436. Springer-Verlag,
2006.

[3] Torbjörn Ekman and Görel Hedin. The Jast-
Add Extensible Java Compiler. In Object-Oriented
Programming, Systems and Languages (OOPSLA),
pages 1–18. ACM Press, 2007.

[4] Torbjörn Ekman and Görel Hedin. The JastAdd
system—modular extensible compiler construction.
Science of Computer Programming, 69(1–3):14–26,
2007.

31

[5] Martin Fowler. Refactoring: Improving the Design
of Existing Code. Addison Wesley, 1999.

[6] Robert M. Fuhrer, Frank Tip, Adam Kieżun, Julian
Dolby, and Markus Keller. Efficiently Refactoring
Java Applications to Use Generic Libraries. In Euro-
pean Conference on Object-Oriented Programming
(ECOOP), 2005.

[7] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification. Addison
Wesley, 3rd edition, 2005.

[8] William G. Griswold. Program Restructuring as an
Aid to Software Maintenance. Ph.D. thesis, Univer-
sity of Washington, 1991.

[9] JetBrains. IntelliJ IDEA 10.5. http://www.
jetbrains.com/idea, 2011.

[10] Hannes Kegel and Friedrich Steimann. Systemati-
cally Refactoring Inheritance to Delegation in Java.
In International Conference on Software Engineer-
ing (ICSE), pages 431–440. ACM Press, 2008.

[11] Joshua Kerievsky. Refactoring to Patterns. Addison
Wesley, 2005.

[12] Eclipse Foundation. Eclipse 3.6 JDT. http://
www.eclipse.org/jdt, 2011.

[13] Torm Mens and Tom Tourwé. A Survey of Software
Refactoring. IEEE Transactions on Software Engi-
neering, 30(2):126–139, February 2004.

[14] Emerson R. Murphy-Hill, Chris Parnin, and An-
drew P. Black. How We Refactor, and How We
Know It. In ICSE, 2009.

[15] William F. Opdyke. Refactoring Object-Oriented
Frameworks. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 1992.

[16] Donald B. Roberts. Practical Analysis for Refactor-
ing. Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1999.

[17] Max Schäfer and Oege de Moor. Specifying and Im-
plementing Refactorings. In Martin Rinard, editor,
Object-Oriented Programming, Systems and Lan-
guages (OOPSLA). ACM Press, 2010.

[18] Max Schäfer, Torbjörn Ekman, and Oege de Moor.
Sound and Extensible Renaming for Java. In Gre-
gor Kiczales, editor, Object-Oriented Programming,
Systems and Languages (OOPSLA), pages 227–294.
ACM Press, 2008.

[19] Max Schäfer, Torbjörn Ekman, Ran Ettinger,
and Mathieu Verbaere. Refactoring bugs.
http://code.google.com/p/jrrt/
wiki/RefactoringBugs, 2011.

[20] Max Schäfer, Torbjörn Ekman, and Andreas Thies.
JRRT—JastAdd Refactoring Tools. http://
code.google.com/p/jrrt, 2011.

[21] Norbert Schirmer. Analysing the Java package/ac-
cess concepts in Isabelle/HOL. Concurrency - Prac-
tice and Experience, 16(7):689–706, 2004.

[22] Friedrich Steimann. The Infer Type Refactoring and
its Use for Interface-Based Programming. Journal
of Object Technology, 6(2):99–120, 2007.

[23] Friedrich Steimann. Constraint-Based Model Refac-
toring. In Jon Whittle, Clark, and Thomas Kühne,
editors, Model Driven Engineering Languages and
Systems (MoDELS). Springer-Verlag, 2011.

[24] Friedrich Steimann, Christian Kollee, and Jens von
Pilgrim. A Refactoring Constraint Language and its
Application. In European Conference on Object-
Oriented Programming (ECOOP), 2011.

[25] Friedrich Steimann and Andreas Thies. From
Public to Private to Absent: Refactoring Java
Programs under Constrained Accessibility. In
Sophia Drossopoulou, editor, European Conference
on Object-Oriented Programming (ECOOP), pages
419–443. Springer-Verlag, 2009.

[26] Naoyuki Tamura. Cream: Class Library for Con-
straint Programming in Java. http://bach.
istc.kobe-u.ac.jp/cream, 2009.

[27] Frank Tip, Robert M. Fuhrer, Adam Kieżun,
Michael D. Ernst, Ittai Balaban, and Bjorn De Sut-
ter. Refactoring using Type Constraints. ACM Trans.
Program. Lang. Syst., 33(3):9, 2011.

32

[28] Frank Tip, Adam Kieżun, and Dirk Bäumer. Refac-
toring for Generalization using Type Constraints. In
Object-Oriented Programming, Systems and Lan-
guages (OOPSLA), pages 13–26. ACM Press, 2003.

[29] Lance Tokuda and Don Batory. Evolving Object-
Oriented Designs with Refactorings. Automated
Software Engineering, 8(1):89–120, January 2001.

[30] Daniel von Dincklage and Amer Diwan. Converting
Java Classes to Use Generics. In Object-Oriented
Programming, Systems and Languages (OOPSLA),
pages 1–14, 2004.

[31] David A. Wheeler. SLOCCount. http://www.
dwheeler.com/sloccount/, 2006.

A Accessibility Constraint Rules
The constraint rules governing access modifiers are de-
fined as shown in Fig. 23; they rely on the program queries
listed in Fig. 17. The rules are explained as follows:

• (ACC-1): This is the basic rule for type and member
access [7, §6.6.1].

• (ACC-2), (CTORACC): If a member or constructor
of an object is accessed from outside the package in
which it is declared by code that is not responsible
for the implementation of that object, its accessibility
must be public [7, §6.2.2].

• (ACC-3): For a type member to be accessible, its
owning type must also be accessible, even if it is not
explicitly referenced [7, §6.6.1].

• (INHACC): This rule makes sure that members ac-
cessed through a type that inherits them are still ac-
cessible in the refactored program.

• (OVRPRES), (OVRPREV): These two rules make
sure that existing overriding relationships between
methods are preserved, and no new ones are intro-
duced.

• (HID): This rule prevents erroneous hiding.

• (SUB): Method hiding or overriding cannot decrease
accessibility, which is ensured by this rule.

• (INH-1), (INH-2), (INH-3): These rules cover sev-
eral subtle cases arising from multiple inheritance
of a method from both a superclass and a super-
interface, also known as interface inheritance [7,
§8.4.8.4].

• The remaining rules ensure various other accessibil-
ity requirements found in the language specification.

33

abstract ⊆ D abstract(d) holds if d is declared abstract
binds ⊆ R×D binds(r, d) holds if reference r binds to declaration d
constructor ⊆M constructor(m) holds if m is a constructor
enumeration ⊆ T enumeration(t) holds if t is an enumeration type
head-of-cu ⊆ T head-of-cu(t) holds if t has the same name as its compilation unit
hides ⊆M ×M hides(m1,m2) holds if method m1 hides method m2 [7, §8.4.8]
inherits ⊆ T ×M inherits(t,m) holds if type t inherits member m
interface ⊆ T interface(t) holds if t is an interface type
main-method ⊆M main-method(m) holds if m is a main method
may-hide ⊆M ×M may-hide(m1,m2) holds for static methods m1, m2 if the return type of m1 is return-

type substitutable for that of m2 and the throws clause of m1 does not conflict with
that of m2 [7, §8.4.8.3]

method ⊆M method(m) holds if m is a method
override-equiv ⊆M ×M override-equiv(m1,m2) holds if methods m1 and m2 have override equivalent signa-

tures [7, §8.4.2]
overrides ⊆M ×M overrides(m1,m2) holds if method m1 directly overrides method m2; that means m1

overrides m2 (as specified in [7, §8.4.8.1]) and there exists no other method m3 that
overrides m1 and that is overridden by m2

receiver-type ⊆ R× T for a field access or method invocation r, receiver-type(r, t) holds if t is the type on
which the field is accessed or the method invoked

same-decl ⊆M ×M same-decl(m1,m2) holds if m1 and m2 are declared in the same declaration statement
static ⊆M static(m) holds if m is declared static
super-qualified ⊆ R super-qualified(r) holds if r is a super field access or method invocation

Figure 22: Program queries used in the constraint rules of Fig. 23

34

binds(r, d)
(ACC-1)

〈d〉 ≥A α(r, d)

binds(r, d) receiver-type(r, t) π(r) 6= π(d) t 6≤T τ(r) ¬super-qualified(r) ¬static(d)
(ACC-2)

〈d〉 = public

receiver-type(r, t)
(ACC-3)

〈t〉 ≥A α(r, t)

binds(r, d) r = new C(. . .) π(r) 6= π(d)
(CTORACC)

〈d〉 = public

binds(r, d) receiver-type(r, t) t <T τ(d)
(INHACC)

〈d〉 ≥A ι(t, τ(d))

overrides(m2,m1)
(OVRPRES)

〈m1〉 ≥ ω(m2,m1)

τ(m2) <T τ(m1) override-equiv(m2,m1) ¬static(m2) ¬overrides(m2,m1)
(OVRPREV)

〈m1〉 <A ω(m2,m1)

τ(m2) <T τ(m1) override-equiv(m2,m1) static(m2) ¬may-hide(m2,m1)
(HID)

〈m1〉 <A α(m2,m1)

overrides(m2,m1) ∨ hides(m2,m1)
(SUB)

〈m2〉 ≥A 〈m1〉

τ(m1) = i interface(i) inherits(c,m1) inherits(c,m2) ¬abstract(m2) override-equiv(m2,m1)
(INH-1)

〈m2〉 = public ∨ 〈m2〉 < ι(c, τ(m2))

τ(m1) = i interface(i) inherits(c,m1) inherits(c,m2) ¬abstract(m2) ¬abstract(c) override-equiv(m2,m1)
(INH-2)

〈m2〉 = public

τ(m1) = i interface(i) c <T i c <T τ(m2) static(m2) override-equiv(m2,m1)
(INH-3)

〈m2〉 <A ι(c, τ(m2))

t[] ∈ T
(ARRAY)

〈t[]〉 = 〈t〉
same-decl(m1,m2)

(SAMEDECL)
〈m1〉 = 〈m2〉

method(m) abstract(m)
(ABSMETH)

〈m〉 > private

t ∈ Ttop
(TLTYPE-1)

〈t〉 ∈ {package,public}
t ∈ Ttop ∧ ¬head-of-cu(t)

(TLTYPE-2)
〈t〉 <A public

interface(τ(m))
(IMEMBER)

〈m〉 = public

constructor(c) enumeration(τ(c))
(ENUMCTOR)

〈m〉 = private

main-method(m)
(MAINMETH)

〈m〉 = public

Figure 23: The accessibility constraint rules

35

