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Abstract—Outline social media networks (OSMNs) such as
Twitter provide great opportunities for public engagement and
event information dissemination. Event-related discussions occur
in real time and at the worldwide scale. However, these dis-
cussions are in the form of short, unstructured messages and
dynamically woven into daily chats and status updates. Compared
with traditional news articles, the rich and diverse user-generated
content raises unique new challenges for tracking and analyzing
events. Effective and efficient event modeling is thus essential for
real-time information-intensive OSMN:s.

In this work, we propose ETree, an effective and efficient event
modeling solution for social media network sites. Targeting the
unique challenges of this problem, ETree consists of three key
components: (1) an n-gram based content analysis technique
for identifying core information blocks from a large number
of short messages; (2) an incremental and hierarchical modeling
technique for identifying and constructing event theme structures
at different granularities; and (3) an enhanced temporal analysis
technique for identifying inherent causalities between information
blocks. Detailed evaluation results using 3.5 million tweets over
a 5-month period demonstrate that ETree can efficiently and
incrementally generate high-quality event structures and identify
inherent causal relationships with high accuracy.

I. INTRODUCTION

With the fast growth of online population and rapid de-
velopment of Web 2.0 technologies, online social media
networks (OSMNs), which leverage both media and social
networking by supporting easy web publishing and social
interactions of online users, have become increasingly popular.
A large amount of social media content is being generated
by individual users on a daily basis. For instance, users
of Twitter [1], [2], a popular microblogging social media
site, send 140 million tweets per day. Moreover, OSMNs
provide great opportunities for users to participate anytime
and anywhere. Such user-based, real-time content generation
is usually event driven. As events happen and evolve over
time, users stay informed by seeking and sharing information
through their social contacts (e.g., “following” and “follower”
networks in Twitter). As a result, OSMNs have become the
online gathering place for public engagement when real-time
events happen and offer unique new opportunities for tracking
and analyzing events. This has been demonstrated in various
application domains, such as disease surveillance [3] and
hazardous situations [4]. By sharing and receiving information
among trusted and/or close social contacts, information related
to specific events can be generated and disseminated in a
highly effective and efficient fashion.

However, such user-generated event-related information in
OSMN:s is usually unstructured, and it is very difficult for
individual users to capture a complete yet concise structural
view of events using their social network-based information
propagation channel. Moreover, as ongoing events evolve
quickly and new messages are generated, the structural view of
events should be adjusted to reflect the new developments in
a real-time fashion. For instance, at Twitter, over 1 million
tweets were generated by over 460,000 users in 128 days
about the movie Avatar and every second, there may be some
new updates about the event. As a result, users are con-
stantly swamped by long streams of unstructured, redundant,
and sometimes irrelevant messages, while at the same time
lacking a comprehensive and well-organized view of events.
Event modeling, which aims to identify inherent, evolving
event structures and potential causal relationships, has become
increasingly important for OSMNs and has the potential to
significantly enhance our capabilities for information and
knowledge management.

Event modeling for OSMNs is a challenging problem due
to the following reasons:

o First, messages posted by users at social media sites

tend to be short. For example, each tweet message has
a maximal length of 140 characters. Also, messages
generated by individual users tend to be unstructured,
informal and differ in writing style. Such data sparseness,
lack of context, and diversity of vocabulary make it
difficult for traditional text analysis techniques to capture
the semantic similarity among different messages [5].

o Second, different events may enjoy different popularity
among users, and can differ significantly in content, num-
ber of messages and participants, time periods, inherent
structure, and causal relationships [6].

o Third, large amounts of event-related information are
continuously generated by OSMN users in real time. The
event modeling process needs to be highly efficient, and
incremental such that new information can be quickly
incorporated into the event structure model.

To address these challenges, we have developed ETree,
an effective and efficient event modeling solution targeting
event-related information generated in OSMNs. Given all
messages related to a specific event !, ETree identifies the

'Messages related to specific events can be identified via keyword-based
text search and user-based social network search. In this work, we assume
messages related to an event are already identified and focus on event
modeling.



major themes (different aspects) of the event, the key message
clusters (information blocks) and their hierarchical structure
within each theme, as well as possible causal relationships
(i.e., one led to the other) between information blocks. For
example, people who are interested in the Haitian earthquake
event may want to track various aspects of the event, such
as new statistics, rescue efforts, donation information, etc.
Our solution provides updated snapshot of the event in an
easy-to-read hierarchical tree structure, along with identified
causalities within the event structure. Specifically, our work
makes the following key contributions:

1) An n-gram based content analysis technique for identi-
fying core information blocks from a large number of
short messages;

2) An incremental and hierarchical modeling technique to
efficiently identify and construct event theme structures
at different granularities, which can be dynamically
adjusted as events evolve;

3) Animproved event life cycle analysis technique for iden-
tifying potential causalities between information blocks;
and

4) A detailed evaluation study using 3.5 million tweets over
a 5-month period, which demonstrates the effectiveness
and efficiency of the proposed solution.

The remainder of the paper is organized as follows. We
firstly survey related work in Section II. Section III presents
the problem formulation and an overview of the proposed
solution. Sections IV, V, and VI describe in detail the
proposed techniques for information block identification, in-
cremental construction of hierarchical theme structure, and
causal relationship detection, respectively. Detailed evaluation
results are presented in Section VII. Finally, Section VIII
concludes the paper.

II. RELATED WORK

This work aims to identify inherent event theme structures
and causal relationships in real-time information-intensive of-
fline social media networks. It draws upon research in several
related fields, including text summarization, time-based event
evolution, as well as recent research that is specific to the
Twitter social media network site.

Text summarization. Much research has been conducted in
the area of text summarization, focusing mostly on news data
and email data. Summaries of news articles included temporal
single-sentence summaries [7], centroid-based summaries of
multiple documents [8], reference relationships among distinc-
tive phrases [9] and semantic relation based key phrase extrac-
tion [10]. Fung et al. used traditional bisecting k-means clus-
tering algorithm to model news hierarchy [11]. Trieschnigg
et al. made this type of clustering algorithm more scalable for
large data sets by randomly sampling the corpus [12]. The
obtained event hierarchy may not be meaningful since news
articles are always partitioned into a fixed number of clusters
(e.g., 2). Targeting email data, Carenini et al. investigated
the problem of discovering important hidden emails using

fragment quotation graph and generating email summaries
using clue words [13]. Our solution differs from these works
in that it handles short messages (tweets), generates both
summaries and hierarchical theme structures without the need
to specify the number of themes beforehand, and adjusts the
event models incrementally as new content is continuously
generated in a real-time fashion.

Time-based event evolution. This line of work focuses on
the temporal changes/relationships of events. Kleinberg iden-
tified (emerging/changing) themes in document streams (e.g.,
emails, research papers) based on their temporal burstiness
and hierarchical structure [14]. To understand how an event
emerges, changes, and disappears, Subasic et al. separated
each event into several stages with equal time period and
represented each stage by building a network of salient terms
based on their co-occurrence frequency and time relevance
[15]. From a stream of news articles, some researchers tried
to detect and track new events in real time [16], [17]. The
problem of identifying event causal relationships has also
been investigated by researchers [6], [18]. These techniques
consider both content similarity and temporal proximity in
order to identify possible causal relationships in events. Our
work follows this rationale, but considers the more precise
temporal distribution information rather than the beginning and
ending time of events. As a result, our solution achieves higher
precision and recall in causal relationship identification.

Twitter-specific research. Twitter has attracted much atten-
tion in the research community during the recent years. Star-
bird et al. analyzed the rapid generation of Twitter communi-
cations in the Red River flood event and identified generative,
synthetic, derivative and innovative properties [4]. Sakaki et al.
utilized tweets as social sensors to successfully detect events
like earthquake or typhoon [19]. By analyzing the top trending
topics, Kwak et al. found the fast information diffusion prop-
erty [20]. User intentions of using Twitter’s microblogging
and community services have also been studied [21], [2]. A
recommendation system has been built based on both content
and collaborative filtering techniques [22]. Users’ tweet his-
tory is used for determining their locations, enabling better
personalized services [23]. These works are complementary
to our work, as they did not consider the problem of event
modeling at Twitter, but nevertheless provided useful insights
into the various properties of Twitter.

III. PROBLEM FORMULATION AND SYSTEM OVERVIEW

The problem of event modeling for OSMNs can be
decomposed into several sub-tasks. Given a specific event, we
first collect event-related information/messages via keyword-
based search (more details of this process is described in
Section VII). How to detect events is beyond the scope
of this paper. With scattered messages related to a certain
event, we firstly cluster messages into information blocks
(with high efficiency) to gain a basic understanding of the
various “pieces” of an event (i.e., fundamental information
units of semantically-similar messages). Next, to capture
the overall structure of an event, we construct hierarchical
theme structures, which represent the various aspects of
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an event at different levels of details. Using the identified
information blocks as leaf nodes, we incrementally construct
hierarchical theme structures for the event. Finally, we detect
potential causal relationship between pairs of information
blocks. For instance, rain drenched quake survivors in the
tent camps may lead to people appealing to help those slum
refugees. Identifying such causal relationships within an event
structure helps us to better understand how an event evolves
over time. Figure 1 illustrates the workflow and key tasks of
event modeling for OSMNs. A formal definition of the event
modeling problem is given as follows:

Event Modeling Problem: Let E be an event and

E={(my,t1), -+, (mi, ti), (Mit1,tiv1), -},

where (m;,t;) refers to a message m; posted at time t;,
and messages are sorted in ascending temporal order (i.e.,
t; < tiy1). Our goal is to organize these messages into an
augmented, hierarchical event tree structure, i.e., £ = X =
{B, H,C} that consists of the following:

o Information blocks B: Each event contains a number
of information blocks B = {by,bs,---} and each in-
formation block b € B contains multiple messages that
are semantically coherent, i.e., representing a specific
semantic meaning.

o Hierarchical theme structures H: {B;, B, --} are
combined hierarchically and at the highest level, an event
can be represented by a set of theme structures H =
{h1,ha,---}, where hq,ha,--- have zero or minimum
similarity. Each theme structure h € H is a hierarchical
subtree of X with a few information blocks as the leaf
nodes. The whole hierarchical theme structures will be
adjusted as the event evolves.

o Causal relationships C: For two information blocks
b;,b; € B, if b; is caused by b;, then (b;,b;) € C.

IV. INFORMATION BLOCK IDENTIFICATION

Given a stream of messages that are related to a specific
event, our first step is to group these messages into infor-
mation blocks such that each block contains messages that
share (almost) the same semantic meaning. Combining similar
messages efficiently, as the goal of this step, will reduce the
number of information units which will be used in the next

ETRee: Effective and efficient event modeling for real-time online social media networks — System overview.

two steps and is essential for real-time event modeling. Note
that users of OSMNs can generate a huge number of mes-
sages (e.g., 140 million tweets per day at Twitter). Moreover,
these messages are usually short, unstructured, and represent
different writing styles of individual users. Simply clustering
messages based on their cosine similarity is infeasible due to
its low efficiency in large-scale message processing. To address
this issue, we propose a technique that considers key phrases
in event-specific messages.

As messages are propagated in OSMNs and new messages
are generated, people tend to reuse the key phrases about an
event. This is similar to the traditional “word of mouth” model,
in which information is passed from one person to another.
By identifying such key phrases in event-specific messages,
we can then identify the core information blocks of an event.

Specifically, we propose an n-gram based content analysis
technique, which works in two stages. The first stage detects
frequent word sequences (i.e., n-grams, or key phrases) among
a large number of event-related messages; each frequent se-
quence represents an initial information block. In the second
stage, messages that are semantically coherent are merged into
the corresponding information blocks.

N-gram based techniques have been studied previously and
are considered effective and efficient for identifying word
patterns in documents [24]. Given the short length of the
messages people generate at OSMNs, it is important that
we choose the appropriate n, which is the minimum word
sequence length. Similar to the work by Leskovec et al. on
identifying key phrases from news articles [9], we choose
n =4 as it performs well in our experiments.

Once we have identified the frequent n-grams and their
corresponding information blocks, we consider the remaining
messages, i.e., messages that do not contain any of the frequent
n-gram patterns. For each of these messages m;, to measure
the similarity between message m; and an information block
b;j, we consider the words that belong to both m; and b; and
calculate their TF-IDF [25] weights in b;. We then compute
the weighted cosine similarity between each message and each
information block. Messages that have high similarity with
some information blocks are merged into the corresponding
information block. In addition, messages that belong to a
specific “conversation thread” (e.g., tweets “in reply to” other
tweets) are merged into the corresponding information block.



V. INCREMENTAL HIERARCHICAL THEME STRUCTURE
CONSTRUCTION

In this section, we present our design for constructing
hierarchical theme structures using the information blocks
we have identified. We describe first the static construction
process, then the incremental process, which integrates newly-
generated messages and information blocks into the hierarchi-
cal theme structure to keep the event structure up to date.

As we have mentioned, each event may consist of multiple
themes representing the different aspects of the event, such
as “rescue” and “donation” of the Haitian earthquake event;
“cast”, “animation” and “reviews” of the movie Avatar. Gen-
erally it is difficult to discover themes agreed by everyone,
since themes could be defined differently by different people.
So again a simple clustering approach does not meet the needs.
Instead, each theme can be represented as a tree structure
with information blocks as the leaf nodes and subtopics as
the internal nodes. Such hierarchical theme structures enable
a systematic organization of event-related information that is
comprehensive yet concise, and allow users to explore an event
from different aspects and at different granularities.

Algorithm 1 Hierarchical Structure(B)

Input: set of information blocks B
Output: hierarchical theme structures H
H=¢
for each block b; € B do
create node n; = (b;, M;); add n; to H
end for
< Mg, ny, 85 >=maxSim(H)
while similarity s; ; > 0 do
create a new parent node n, for n; and n;
ReStructure(ny)
add n, to H
< ng,ny, S 5 >=maxSim(H)
end while
add a virtual root node; return H

A. Static Theme Structure Construction

In a hierarchical theme structure, child nodes contain more
specific information while parent nodes are more general
and may represent the common topic of its child nodes. For
instance, a parent node about “donation for earthquake” may
have child nodes talking about “U.S. donation for earthquake”
and “China donation for earthquake”. Intuitively, the desired
hierarchical theme structures should satisfy the following
properties:

1) A parent node’s meaning should be more general than
that of its child nodes and the difference should be
significant enough;

2) Nodes with similar meanings should be sibling nodes;

3) Meanings of sibling nodes should not be the same or
the subset of one another.

Algorithm 2 ReStructure(ny)

Input: a new parent node 7,
for each internal child node n; of n, do
if M; == M, then
remove n; and attach all its children to n,,
end if
end for
for each child pair (n;,n;) of n, do
if M; O Mj then
attach node n; to n; as its child
else if M; == M; then
if n; and n; are both internal nodes then
attach n;’s children to n;; remove n;
else if n; is leaf node A n; is internal node then
attach n; to n; as its child
end if
end if
ReStructure(n;) if n; has new child
end for

We formally define the Meaning of each individual node
in the event hierarchical structure as follows:

Definition 1: A leaf node’s Meaning M; is the set of
keywords K; of its corresponding information block b;; and
an internal node’s Meaning M; is the intersection of its
child nodes’ meanings () M;.

The set of keywords for each information block can be
obtained by selecting the words with high TF-IDF weights.
Two nodes are considered different if their Meaning contain
different sets of keywords.

Algorithm 1 shows the process of constructing the hierar-
chical theme structures. Starting with the information blocks
as the leaf nodes, this process iteratively selects two nodes
(¢ # j and nodes n;, n; have no parent node) with the highest
similarity using the maxSim(H) procedure, and merges the
two nodes into a new parent node, thus ensuring Property
2. This new parent node is then restructured (Algorithm 2)
to ensure Property 1 and 3. First, if an internal child node
has the same meaning as the parent node, that child node
is removed and its children are attached to the parent node.
Next, we examine sibling nodes. If one node’s meaning is
more specific than that of its sibling node, that node becomes
the child of its sibling. If two sibling nodes have exactly the
same meaning, then the two sibling nodes and their children
are merged into one. This restructuring process continues until
all nodes in the hierarchical theme structures satisfy all three
properties discussed above.

The most time-consuming operation of this algorithm is
the recursive restructuring process. Nevertheless, it is a local
update process (only the subtree of n, need to be restructured),
which makes the algorithm more efficient than techniques
that require global updates, where the whole tree need to be
restructured every time a new node is added [26].



B. Incremental Structure Construction

As events happen and evolve over time, a large amount
of event-related information is continuously generated by the
users of OSMNSs. To keep the event models up to date, newly-
generated messages need to be integrated into the models in
a timely fashion. It would be time-consuming and extremely
wasteful if we have to reconstruct the whole structure from
scratch each time a new message is added. To address this
issue, we propose an incremental modeling process to maintain
dynamic hierarchical theme structures.

Newly-generated messages about an event either focus on
some existing topics, or contain new topics about the event.
In the former case, these new messages can be easily merged
into existing information blocks. While in the latter case,
new information blocks need to be created; we then need to
determine where to place the new blocks and adjust the overall
hierarchical theme structures as needed.

To handle these changes, our incremental structure con-
struction algorithm is designed to utilize a top-down update
process: Given a new message m, we first check n,, (initially,
ny is the root node), and its child nodes to select the one that
is most similar to m. Note that the Similarity() function
is the same as the weighted cosine similarity we define in
Section IV. If the most similar child node is an internal node,
this process continues recursively until the node most similar
to m is either n, or a leaf node. If the similarity value is
higher than a threshold ¢, message m is merged into that node.
Otherwise, a new node is created that contains only the new
message, and the new node is added as a child (or grandchild)
of n,. After m is inserted, the ReStructure() procedure is
called on n,, to restructure its subtree and ensure that the three
properties are still maintained.

VI. CAUSAL RELATIONSHIP DETECTION

Given the information blocks we have identified and the
hierarchical theme structures we have constructed, one more
question we want to answer in the event modeling process
is whether there exists any causal relationships between in-
formation blocks. Understanding such causal relationships is
important as it provides insights into how an event evolves
through multiple stages and how these stages impact each
other. However, finding exact causal relationships is a very
difficult task without incorporating domain knowledge [6].
Previous research [6], [18] has shown that two pieces of
information are more likely to be causally related if they
are similar in content. Also, the study by Yang et al. [27]
shows that the relevancy of two pieces of information increases
when they are temporally closer to each other. Based on
these observations, we aim to tackle our problem of causality
detection in OSMNs by considering both content similarity
and temporal relevance.

Given two information blocks b; and b;, let S and T be the
content similarity and temporal relevance between these two
blocks, respectively, we define the causal relationship C' as a
function of S and T, i.e.,

C=8xT 1)
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Fig. 2. Two cases demonstrating when ETree outperforms TSCAN.
For content similarity .S, we use the same weighted cosine
similarity as defined in Section IV. Next, we focus on defining
the temporal relevance 7.

Using the timestamped messages belonging to each infor-
mation block, we can calculate the following temporal infor-
mation of the block: (1) start/end time, which correspond to
the timestamps of the earliest and latest messages in the block;
and (2) temporal life cycle, which is a temporal distribution
reflecting the number (or percentage) of messages posted
within each time period. As the examples shown in Figure 2,
by examining the temporal intersection of two information
blocks, we can determine their temporal relevance in 2 stages.
Considering two blocks, one on the left and one on the right
of the time line, are approaching towards each other from far
away. Let critical point be the point when two blocks overlap
with each other and have the maximal temporal relevance, then

« Stage 1: Before the intersection reaches the critical point,
the temporal relevance should gradually increase from
minimum to maximum. In addition, the increasing speed
should be different when there is no overlap (called stage
1(a)) and when the intersection is smaller than the critical
point but greater than 0 (called stage 1(b));

o Stage 2: After passing the critical point, the temporal
relevance should gradually decrease. And when they
become completely parallel (i.e., happening at the same
time), the temporal relevance (and the causal relationship)
decreases to minimum.

Then the question is how to determine the changing speed in
different stages. Based on the analysis by Chen et al. [18],
we assume that stage 1(b) and stage 2 have the same linear
changing speed as to the intersection but the former is positive
and the latter is negative. And the changing speed in stage 1(a)
follows the inverse proportion curve.

Based on this intuition, we define the temporal relevance T
between block b; and b; in Equation 2, where b; and b are the
start and end time of block b;, f; is defined as the intersection
frequency of two blocks at time point ¢, and the range of
the temporal relevance is (0,1]. Parameter 2 %60 (0 < 6 < 1)
defines the value of the critical point. In our experiments, 6 is
set to 0.2 based on the power law property analysis of message
generation frequency in the life cycle of information blocks.

/(b5 =05 + 3575), b3 >0
T={72=*%-1), 20 < F <2 )

A x(20-1-5), 0<F<20



where intersection
min(bg,b)
F = ! 3
Doy 3)

One work that is closely related to our causality relationship
detection design is the T'SC AN method proposed by Chen
et al. [18]. Here, we highlight the difference between our
method and theirs. Firstly, the causal relationships defined in
TSCAN are based on blocks in two different themes and
blocks within one theme are connected as a causal time line.
Usually, blocks in different themes can be very different in
content and most of the causal relationships identified across
themes may not be useful. While within the same theme,
potential actual causality between concurrent blocks is ignored
by T'SCAN. Secondly, when defining the time relevance,
TSCAN only utilizes the start and end time information of
blocks and directly defines two blocks as having the strongest
temporal relevance when there is no overlap. In our design, we
leverage the detailed temporal life cycle information of blocks.
And based on the observation that two blocks may have the
strongest temporal relation when they have certain overlap, we
utilize a parameter 6 to define the overlapping critical point
as described in Equation 2. By considering information blocks
within the same theme structure and more accurate event life
cycle distribution information, our design can achieve better
characterization of temporal relevance and causal relationships
than TSC AN, as demonstrated in the two cases in Figure 2.

In the left part of Figure 2, two blocks appear in chrono-
logical sequence which tells us these two blocks probably
have strong temporal relevance. However, according to the
definition in TSCAN, these two blocks are very close to
each other when only considering their start and end time,
so they are thought to be parallel and their temporal relevance
is considered weak. But our design can correctly capture the
strong temporal relevance by considering the small intersection
of the two blocks’ life cycles. In the right part of Figure 2,
according to the definition in TSC AN, the temporal relevance
is strong because the bottom block seems to appear directly
after the top one. Actually their climax almost overlap, which
means they probably happened in parallel, and therefore
unlikely to contain causal relationship.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate ETree, the proposed event
modeling solution for OSMNSs, using real-world events and
event-related messages generated by individual users. Our
evaluation aims to answer the following questions:

e Does our n-gram based information block identifica-
tion algorithm generate coherent information blocks with
good content coverage of each event?

o Does the hierarchical theme structure capture the various
aspects of an event at the appropriate granularities?

o Does the incremental modeling process achieve high
efficiency and generate good-quality intermediate results?

o Does our causal relationship detection algorithm achieve
high accuracy with regard to the identified causalities?

A. Dataset Description

The data used in our experiments are real-world messages
gathered from Twitter, one of the most popular online so-
cial media networks. Using Twitter’s APIs, we have col-
lected event-related information over a 5-month period. To
ensure diversity and scalability of the evaluation data set, we
manually selected 20 events spanning 7 different categories,
including World, Politics, Business, Health, Entertainment,
Science/Technology and Sports. The messages related to each
event are collected using the keyword-based text search API
provided by Twitter. Specifically, for each event, we handpick
a set of keywords and use the Twitter API to collect all tweets
that match at least one of the keywords. We also collected
tweets that belong to the same conversation threads as the
tweets returned by the search API.

A summary of the 20 events, including the number of
tweets, users and days, is listed in Table I. From this table,
we can see that the 20 events cover a wide range in terms of
category, popularity, scale, and life span; therefore ensuring
a comprehensive evaluation of the proposed solution under
different scenarios. In total, our data set consists of 3.5 million
tweets, and the total size of our data set is around 75GB.

B. Quality of Information Blocks and Theme Structures

First, we evaluate whether our n-gram based information
block identification algorithm can capture the main content
of an event, and whether the identified hierarchical theme
structures have good quality.

We use C'overage as the metric to evaluate the effectiveness
of the information block identification algorithm. C'overage
of an event is defined as the percentage of messages which
are captured into one of the identified information blocks.
To calculate Coverage of an event, we calculate the sum
of the number of messages in all the information blocks
of that specific event, and divide it by the total number of
messages retrieved for that event. For the 20 events used in
the evaluation, the information blocks identified by our method
has high Coverage, ranging from 71% - 92% (84.2% on
average).

Besides information block C'overage of an event, another
measure of the quality of the event structure is the relevance
of the information blocks. Intuitively each theme in an event
should represent a certain aspect. To evaluate the quality of
identified themes of an event, we define C'oherence as the
percentage of coherent themes in an event and a theme is
considered coherent if more than half of its information blocks
are relevant. To calculate C'oherence of an event, we manually
examine the relevance of information blocks in each theme.
Based on our analysis, ETree has identified highly coherent
themes for almost all the 20 events, with Coherence values
ranging from 63% to 82% (76.9% on average).

C. Efficiency of Incremental Event Modeling

Next, we evaluate whether the incremental modeling process
of ETree achieves high efficiency and generates high-quality
intermediate theme structures at the same time.



TABLE I

L1ST OF EVENTS USED IN EVALUATION

[ID ] Event [ Category | #Tweets | #Users | #Days
1 Possibility and impact of China allowing its currency rising business 718 355 14
2 MySpace’s CEO was fired for not very good achievement business 1,749 1,022 11
3 Processed foods were recalled for containing HVP health 2,526 1,398 26
4 Apple filed a lawsuit against HTC for patent infringement business 4,908 2,576 18
5 Duke defeating North Carolina in a match of NCAA sports 6,279 5,321 6
6 | President Obama proposed a bank reform to save financial system politics 8,061 4,965 76
7 Many airports used body scanning to detect bombs world 9,088 5,863 57
8 A global outbreak of HINT1 influenza virus from 2009 health 12,138 3,832 46
9 | An TV series “Modern Family” were renewed for a second season entertainment 18,692 10,549 33
10 Will Google leave China? business 24,024 9,571 70
11 A magnitude 8.8 earthquake stroke Chile on February 27, 2010 world 31,814 13,712 41
12 Toyota had to recall millions of vehicles globally business 43,626 15,345 71
13 Obama health care reform was passed to become law politics 54,074 19,134 38
14 Google launched the extended release of Google Wave science/technology 58,511 30,505 114
15 | The 82nd Academy Awards ceremony was held on March 7, 2010 entertainment 87,449 49,356 33
16 2010 NBA all star game sports 112,318 57,174 27
17 Google announced a social networking tool Google Buzz science/technology 297,972 | 117,146 103
18 Apple released a table computer called iPad science/technology 410,297 | 112,300 101
19 A magnitude 7.0 earthquake stroke Haiti on January 12, 2010 world 479,982 | 180,076 99
20 A highly popular epic science fiction film in 2009: Avatar entertainment 1,001,530 | 463,128 128
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We compare the computation time of generating hier-
archical theme structures, using three different algorithms:
ETree, ETree without incremental modeling (ETree-NI), and
TSCAN [18]. TSCAN is a popular algorithm widely used,
which derives an event’s major themes from the eigenvectors
of a temporal block association matrix. Because neither ETree-
NI nor TSCAN supports incremental modeling, each incre-
ment of the tweets would cause the system to re-compute the
entire hierarchical structure. While in ETree, we only update
the original structure by incorporating the newly-created data.
Since the non-incremental algorithms take a long time to run
for each event, we choose three events with different size,
content and structure for this evaluation, including Event 7,
12 and 19.

Figure 3 shows the computation time in seconds for the
three event modeling algorithms. The results suggest that the
computation time of ETree is stable and much lower because
the main influential factor is the number of newly-created
tweets, while the computation time increases very quickly
for ETree-NI and TSCAN. For example, for event 12, the
computation time of ETree is between 100 seconds to 800
seconds for any 10% of the tweets, while the computation time
of ETree-NI increases from 300 seconds to 12600 seconds
and TSCAN from 2,000 seconds to 83,700 seconds as the
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Percentage of tweets
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Comparison of computation time of ETree, ETree-NI and TSCAN.

number of tweets increases. Apparently, this dramatic increase
makes it difficult for ETree-NI or TSCAN to generate up-to-
date theme structure in short time intervals when the number
of messages about an event becomes large. Note that we are
evaluating the efficiency of the algorithms on a single core
machine with limited memory, which means the absolute value
of excecution time will be improved significantly within state-
of-art hardware environment.

D. Quality of Detected Causal Relationships

We also evaluate how well our causal relationship detection
algorithm works for different events.

Since it is difficult to manually label all actual causal rela-
tionship pairs as the ground truth, we use TSCAN and ETree
to compute causal relationship pairs first, then manually verify
these pairs. To reduce the influence of subjective factors in the
verification process, two researchers worked independently to
cross check the results. We use three metrics to quantify the
results: Precision measures the fraction of identified causal-
ities that are true; Recall measures the fraction of true causal
relationships that are actually identified; and F'1 — measure
is defined as 2 * Precision * Recall/(Precision + Recall).

When we consider the quality of the identified causal
relationship pairs, events with a small number of identified
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Fig. 4. Causal relationship pairs detected by ETree and TSCAN
causalities are prone to random noises (due to the limited
size and information) and may easily skew the overall results.
Instead, we only consider 11 popular events (event ID from 10
to 20) and report their F'1 — measure values in Figure 4. We
can see that ETree outperforms TSCAN by 49% on average
for all these events.

E. Case Study

Next, we use the “Haitian earthquake” event as an example
to demonstrate the quality of our theme hierarchy in more
detail.

1) Hierarchical Theme Structures: We choose several easy-
to-understand themes in this event and show the structures
in Figure 5. Two observations can be drawn from the theme
structures: (i) most information blocks in a theme have rele-
vant content; and (ii) the hierarchical theme structure clearly
reflects the level of granularity of the theme. For example,
the theme chosen in the event “Haitian earthquake” talks
about the rainy season after earthquake. It contains four pieces
of detailed information: scientists’ prediction, rain adding to
misery, camps needed and only one piece plastic for every
Haitian family. Each piece of the information is followed by
more detailed messages. For example, block 6, 7 and 8 are
more specific discussions about the content of “rain adding
misery”.

2) Causal Relationships: Next, we examine the causal
relationship pairs that ETree has detected in this event. From
the themes shown in Figure 5, we can easily find some
causality pairs by reading the content. For example, block
7 talks about survivors in Haiti suffering from the rain and
block 6 talks about people appealing for help. Block 7 began
on Feb 12th and ended on March 14, while block 6 was
from Feb 15th to March 20th. When only considering the
start and end time, these blocks seem to have happened in
parallel. However, when considering the life cycle distribution,
we can see that the climax of block 7 was from Feb 12th to
March 1st and the climax of block 6 was from March 14th to
March 18th. This means when block 7’s popularity began to
decrease, block 6 began to become popular. These two blocks
actually did not occur in parallel. This causal relationship
pair clearly demonstrates the improved accuracy of ETree,
compared with prior mechanisms such as TSCAN (see the
first case in Figure 2, Section VI).

VIII. CONCLUSIONS

This paper presents ETree, an effective and efficient event
modeling solution for real-time and information-intensive

online social media networks. ETree utilizes an n-gram
based content analysis technique to group a large number
of event-related messages into semantically-coherent infor-
mation blocks, an incremental modeling process to construct
hierarchical theme structures, and a life cycle-based temporal
analysis technique to identify potential causal relationships
between information blocks. Detailed evaluation results using
20 real-world events and 3.5 millions tweets demonstrate that
ETree can generate high-quality event structures with high
efficiency. We anticipate to apply ETree to larger and more
noisy dataset and identify new research problems. We are also
interested in exploring more usage of social ties to improve
the quality of ETree.
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