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  Accurate 3D  Capacitance of  Parallel Plates from  2D Analytical Superposition 
 
            Richard Matick and Albert Ruehli 
 
ABSTRACT 
The two conductor strip line is a classic transmission line structure which has been extensively 
studied and used in endless applications for decades. Such lines with assumed zero thickness 
conductors have been used as a standard for calculation validations, comparisons and for many other 
uses. Unfortunately, the exact  determination of the  3D electromagnetic E and H field of even this  
basic case is analytically intractable for all but the most simple cases,  and hence is either 
approximated  with 2D solutions by assuming infinite length, or by large scale numerical 
computations which are rather complex and time consuming. The 2D solutions  assume the fields are 
uniform in the direction of the line length  and hence neglect any fringe fields in this orthogonal 
direction. Simple methods to achieve the full 3D solution  with high accuracy are thus highly 
desirable and the subject of this work. It will be shown that  accurate values of the total 3D 
capacitance of  a parallel plate capacitor having thin plates of  any length, width, and separation can 
be determined from the superposition of  the  exact 2 dimensional capacitance obtained from an 
analytic solution using elliptic integrals, in a very simple manner. The accuracy is determined for  a  
range of cases  by comparison of the analytic values with those obtained from a 3D numerical 
calculation using a 64-bit  work station with very large memory and processing capability. For most 
cases, the accuracy of the capacitance obtained by this superposition method  falls nearly within the 
bounds of the numerical accuracy of the 3D model and the  elliptical integral evaluations. This 
superposition method is far more accurate than would normally be expected. 
 
Introduction 
 
    It is well known that  the fringe field capacitance per unit length of  a pair of parallel plates (or 
single plate above a ground plane) can be estimated from 2D exact calculations when the plates are 
very long compared to the conductor width and  separation.[1]     When the plates are not long, the 
orthogonal  fringe fields in both length and width directions must be included. There is no known 
method for determining such 3D  cases analytically. Thus these cases are typically determined by 3D 
numerical calculations in which the conductors are "broken" into many individual elementary cells. 
Each such cell  is assumed to have a partial element capacitance with all the other cells within some 
range of influences, i.e. a limited many body problem. The capacitance of these individual cells is 
evaluated assuming point charges at the appropriate distances, which results is a set of linear, 
simultaneous equations.  Additional accuracy is obtained by use of an analytical method to calculate  
the charge density within each cell [2] 
 
  For many typical problems, such a calculation requires a very powerful computing system and 
sophisticated numerical program.  It will be shown that for a wide range of parallel plate parameters 
which require a 3D solution, the capacitance can be estimated quite accurately  by the superposition 
of exact, analytical 2D solutions.1 The latter can be obtained from the application of elliptic integrals 

                                                 
1  Capacitance calculations of integrated circuit, multi-conductor  metal layers often make use of  additions of  partial 
capacitance between various portions of  line segments. Such procedures represent a different form of  field addition than 
that use in this paper,  and typically  require curve fitting to match the  simple approximations to more accurate 3D 
calculations, e.g.  [8] and [9].  
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to construct a universal curve applicable for all cases, as will be seen. The accuracy of the 
approximation has been determined for a  wide range of conductor dimensions with zero thickness. 
 
Capacitance in 3 dimensions: the problem 
 
   Consider a  pair of parallel plate conductors separated by a distance, S, having a  length of Wx in 
the x direction and width Wy  in the y direction as shown in Fig 1.  If a voltage is applied between 
these two conductors,  the electric field, E, will have only a z component (no x nor y component) 
within an infinitesimally small xy area of length  Wx1 and width Wy  at the exact geometric center 
line at which x = y = 0 as indicated in Fig. 2.  Except for this small region around the center, there 
will be x , y and z components of E everywhere else within the space between and around the 
conductor plates, with the magnitude of the x and y components increasing as we move away from 
the center. For a fixed value of x, the E field varies with y and z approximately as indicated in Fig. 2. 
Similarly, in the orthogonal direction,  for a fixed value of y, the field in the xz plane varies in a 
somewhat similar fashion with the exact pattern depending on the width and length of the 
conductors.  
 
It is this spatial variation of E which gives rise to the non-uniform charge density on the conductor 
surface and makes the capacitance evaluation difficult for the general case.  
   
For many applications, the length of interconnecting lines, indicated as Wx in Fig. 1 will be, or is 
assumed to be very much larger than the width Wy.   The fringe field component, Ex, in the x 
direction can thus be neglected at the ends in the long direction and the 3D problem is reduced to a 
2D case such as that shown in Fig. 2.  This is equivalent to evaluating the capacitance  per unit 
length of only  a short length of line, Wx1, and width Wy taken from the mid-section, as indicated 
in Fig. 1, and using this same capacitance  per unit length  for the entire length of line.  This is  
referred to as the 2D approximation  and is  reasonable  for long lines with Wx >> Wy  There will be 
negligible x components of E field in this short unit length Wx1 section, and the y and z components 
will be similar to that shown very approximately in Fig. 2.  However, if a small section such as that 
represented by  Wx2  in Fig. 1, is taken nearer the edge of Wx, there will be considerable x 
components of the E field so the 2D solution is an approximation for any finite length.  Depending 
on the actual dimension ratios, the capacitance determined by this approximation are sometimes not 
adequate because the line are not sufficiently long,  or better accuracy is needed  for various reasons.  
 
 Approximate 3D Calculations  (Quasi- 3D Calculations using superposition of 2D solutions) 
 
 It is possible to  estimate the capacitance of  3D geometries by the simple superposition  of  exact 
2D analytical calculations. The accuracy varies slightly for different  dimensions, as would be 
anticipated, but the error is typically less than inherent errors in the numerical calculations 
themselves, as will be seen. Only the capacitance of very thin parallel plates are included in this 
study. 
 
The essential idea and fundamental assumptions are as follows.   
The total capacitance of a general parallel plate capacitor is the sum of  a parallel plate portion which  
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arises only from  uniform Ez field components, plus a portion  arising from only Ey components , 
and lastly a portion arising from only Ex components of  field distortion. The approximation used 
here is that the C per unit length due to Ey components of field can be obtained from a 2D 
calculation of the Cap per Wx which is equivalent to using the Wx1  center region (x=0)  in Fig. 1 
where there is no Ex field components. This same C per  Wx  is then used for the entire  Wx 
length, even where there are significant  Ex components.  The C portion arising from the Ex field 
components is done in an analogous manner, by  2D calculation of the  C per Wy which is 
equivalent to that at a center region (y=0)  where there is no Ey field components, then use this same 
C per  Wy for the entire  Wy length, even where there are significant  Ey components.  The 
inherent assumption is that  near the plate corners where both Ex and Ey have  significant 
amplitudes, they do not interfere.  This is, in fact, an interesting, fundamental question, namely, if 
the 2D field pattern of Fig. 2 were to be drawn for an x value near the  x end of the plates, how much 
would it change.  The 3D approximation used here assumes  that it does not change at all, and we 
will show that this is a good approximation for all Wx except  for cases where Wx/S  is less than 
roughly 0.5.     
 
Another, perhaps more direct way to see this is to consider the charge density on the plates. For a 
true, parallel plate approximation with no fringe fields, i.e. no x nor y components of E,  the charge 
density would appear only on the inner surfaces of the top and bottom plates, and would be        
constant (uniform charge) for all  x and y. In an actual 3D geometry, the charge density distribution 
on the inner surface of the  plates will be similar to that shown in Fig. 3(a), where darker shading 
indicates higher density.  The charge density will increase as we progress from the plate center 
toward the  edges as indicated. For a 2D approximation such as in Fig. 2, only Ey fringe fields are 
calculated, Ex implicitly assumed everywhere to be zero. For such a case, the charge density along 
the y axis will increase from the center toward the plate edge but will be a constant as a function of 
x, as shown in Fig. 3(b).  Likewise, for a 2D approximation in the orthogonal direction,  charge 
density along the x axis will increase from the center toward the plate edge but will be a constant as 
a function of y, as shown in Fig. 3(c).  The 3D approximation used here assumes that the sum of 
charges in 2D cases of (b) plus (c) essentially equals that for the actual 3D case of (a).  This cannot 
be an exact representation since the 2D approximation neglects some small fields at the exact 
corners. For instance, the E field configuration at the edges will be something like that shown in Fig. 
4 --  the fields at the corners, shown in heavy, red lines,  curves out around the sharp edges. 
However, our approximation does not have any way to include these. The magnitude of these 
neglected fields (and resulting charges)  will typically be small, resulting in small errors in 
capacitance.  The exact, numerical 3D calculations include these fields and will provide justification 
for this approximation.   
  
   Thus the essential idea is to approximate the total  3D capacitance of two parallel plates of any 
width, length, and separation as the summation of  three components: 
 
   1.  Capacitance Cpp  of parallel plates assuming no fringe fields so there exists only a uniform Ez 
field everywhere i.e.  total  Cpp =  Wx *Wy/S 
   
 2  Fringe Capacitance per unit length,   Cfy / Wx,  due only to  fringe field in y direction caused by 
finite Wy , as in Fig. 2,  assuming no Ex fringe fields, i.e. as though Wx was actually infinite; Cfy  is 
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assumed to be exclusive of the  parallel plate component, Cpp, and thus only due to the non-uniform 
E field caused by Ey components 
 
3. Fringe Capacitance per unit length,  Cfx / Wy  due only to  fringe field in x direction caused by 
finite. Wx ,  assuming no Ey fringe fields , i.e. as though Wy  was actually infinite;  Cfx  is assumed to 
be exclusive of the  parallel plate component, Cpp, and thus only due to the non-uniform E field 
caused by Ex components 
 
 To get a 3D approximation,  we need all three components above. The first component is obtained 
directly from the well known parallel plate equation as given in (1) above. The remaining  
components require determination of the exact 2D  capacitance for the two cases of  2 and 3 above, 
namely  Cfx / Wx  and  Cfy   / Wy . These are easily calculated separately by use of elliptical 
integrals. Note that such calculations, shown below,  give the total 2D capacitance which includes 
the parallel plate component,  Cpp, in addition to the pure fringe component. In other words, for the 
y-fringe field, and x-fringe field  evaluation,  the 2D analytical expression  gives  a total capacitance, 
Cty,  and Ctx,   respectively,  of  
        Cty = Cfy + Cpp            Ctx = Cfy + Cpp                 (1) 
 
where subscript  t refers to “total”  and  f to ”fringe only”. 
 
Since we only want one value of  Cpp  in the final total, not two, we must subtract one Cpp from the 
sum of  Cty / Wx   and Ctx / Wy . The final  3D approximation is obtained as follows. Since the 2D 
calculations are all per unit length, we must be careful to enter correct total length for each 2D value.  
Hence  
 
 Total  C3D approx  =  [Cty / Wx  ]* Wx   +   [Ctx / Wy  ]* Wy   -   Wx *Wy/S        (2) 
 
 
    Cpp = 8.85* Wx (Wy/S)*10-3   fF    for  W and S  in microns                   (3) 
 
    Cty / Wx    fF per unit lengh  is obtained from 2D exact analytical calculation of   C per unit 
length as in Fig 2 with plate width of Wx 
   Ctx / Wy    fF per unit length  is obtained from 2D exact analytical calculation  analogous to that 
above  but with plate width of  Wx .  
Both of these components can be obtained from one, universal curve which is derived  and shown 
below. 
 
Exact, 2D Analytical Calculations using Elliptic Integrals. 
    The exact 2D capacitance per unit length of  a parallel plate configuration such as that shown in 
Fig 2,  can be determined  by using  Swartz Christoffel transformation as described by Palmer[1]. 
This requires the evaluation of elliptic integrals. Since these functions are transcendental, the 
capacitance cannot be directly expressed in terms of W/S. Rather, we must   assume some value for 
m, the modulus (argument) of  the elliptic integrals. This modules is used to first calculate another 
argument, ,  for the elliptic integrals. Then W/S and the corresponding total capacitance are 
obtained using m and    in appropriate elliptical integral expressions as given in detail below. 
    Assuming some value of m, the argument  is obtained from  
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 and total  capacitance per unit length from 
 
               Ct/L = ( 0/4 ) K'/K   in   statfarads/cm                  {Palmer}               (6) 
 
  By use of the conversion factor 
      1 Farad = 9 * 1011 statfarads    or   1.111 * 10-12  Farads = 1 statfarad 
 
 the  RMKS  equivalent formula is 
 
   Ct/L     =      K'/ K  =  8.85 * 10-12  r  K'/ K     farads/meter          { RMKS}  (7) 
 
This 2D capacitance can be made universal, independent of dimensions by dividing by the total 
parallel plate capacitance per unit length, Cpp/L    =   W/S  to yield 
 
                     Ct /Cpp  =  {K'/ K}/ (W/S)        dimensionless                        (8) 
 
This ratio will  always be greater than 1,  approaching 1 as Wy/S  in Fig 2 gets very large, with Wx 
equal infinity. A value of 1 for this ratio simply indicates the total capacitance is that of  parallel 
plates, i.e. no fringe fields.                                       
                  
Equations (4), (5), (7) and (8) are the expression and units used in this paper where 
             =  8.85 * 10-12  r  farads per meter 
         r  = relative dielectric constant = 1 for free space  
           K[m],  K[1-m]  = complete elliptic integral of 1st kind with modulus  m,  (1-m) respectively   
           K'  = complementary elliptic integral of 1st kind =  K[m’]  =   K[1-m] 
 
           E’   =   complementary elliptic integral of 2nd kind =  E[m’]  =   E[1-m] 
 
           E [m], E [1-m]  =  complete elliptic integral of 2nd kind with modulus m, (1-m) respectively  
 
          E[ , (1-m)] = incomplete integral of 2nd kind    
 
           F[ , (1-m)]  = incomplete integral of 1st kind   
           
             L = unit length in meter 
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             m’ = 1-m 
         
Typical values for W/S of, say 1 to 11 require m to  range from  approximately 0.01 to 10-16. Since m 
is the modulus in the elliptic integrals and becomes extremely small as W/S increases further, it is 
difficult to get 2D capacitance for very large W/S. 
 A universal curve for this 2D capacitance has been determined by running Mathematica elliptical 
integral evaluation on a large AIX  64 bit work station with large memory (up to 100 Gigabytes). 
This curve, shown in Fig. 5, can  and has been used in conjunction with Equation (2) to obtain all 
Quasi 3D calculation in this paper.   
 There are some inconsistencies and differences in the literature on definition of modulus 
(arguments) used for elliptic integral evaluation --- see Appendix A for important details as well as 
expressions in Mathematica which were used in this paper.  
 
 Numerical (Exact) 3D Calculations 
 
There are no known exact analytical solutions applicable to 3D configuration, hence any “exact” 3D 
capacitance must be obtained by large numerical calculations or approximations. In this paper, all 
3D capacitance calculations were obtained using a  Partial Element Equivalent Circuit (PEEC) 
model [3],  [4]. A graphical editor was available for entering the geometries. 
All models were processed on the same high performance AIX workstation as above,  with very 
large memory (up to 100 GBy). The solution for each specific geometry dimensions was typically 
completed for the smallest cell (body) size possible to insure maximum accuracy. This limit is set by 
the memory size available to accommodate the chosen number of cells, typically 50 GBytes. To 
achieve this and simultaneously limit simulation  run times to several hours, it was necessary to pick 
cell size such that the number of  capacitance  bodies was  approximately 5 to 7K. Any significantly 
larger number of cells could result in run times of a few days and unexpected program crashes (e.g. –
“out of memory”). 
 
 Needless to say, any numerical calculation will unavoidably  have some small errors, thus “exact” 
implies correctness to only within these limitations. Such  limits are difficult  to specify precisely for 
each case, but are estimated to be less than 5% error, in many cases even smaller.    
 
RESULTS and Comparisons  
 
Quasi-3D estimates of  total capacitance of 3D structures were determined using the described 2D 
elliptical integral superposition approximation,  for a family of curves in which the plate length, Wx, 
and separation, S, were held fixed and the plate width, Wy, was varied. The exact 3D capacitance 
was then determined numerically for the same cases. The value of S was held at 200 microns for all 
cases, and Wy was varied from 100 to 1500 microns. A family of curves was obtained for cases of 
Wx equal 2000, 1500, 1000, 500, and 200 microns. The total capacitance for these 3D  estimates 
from 2D super-positions, (Q3D), and “exact” 3D numerical calculation are shown in Fig. 6(a). The 
quasi-3D estimates are all shown in solid lines, while the exact 3D values are shown adjacent  to 
each, in dashed lines. It can be seen that for all cases considered, the quasi 3D estimates are very 
close to the actual results.  
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Fig 6(b) shows the curves of Fig 6(a) normalized to be universally useful. Total C is plotted vs Wy/S 
for various values of Wx/S comparing the exact 3D with the approximate Quasi- 3D evaluation. A 
magnified view of the lower part of  Fig. 6(a) is shown in Fig.6(c). 
 
Fig 7 shows  the percent ERROR between the capacitance calculations using the  Quasi 3D  and the 
exact 3D value, versus W/S.   Each of these curves represents the % difference between the  
corresponding pair of curves in  Fig. 6  with  % error  taken as (Q3D – Exact)/ Q3D. Positive values 
of  % error means capacitance  for the Q3D approximation is larger than the 3D calculated value 
while negative % indicated Q3D is smaller. --  from simple arguments, it would seem that the 
neglect of the corner fringe fields as per Fig 4 would cause the Q3D estimates to be smaller than the 
exact C for small values of Wy and Wx. because the neglected part is a significant portion of the 
total 3D capacitance.. This is indeed the case as can be seen in Fig. 7 at small values of Wy. As Wy, 
and/or Wx increases, the neglected corner fringe field contribution becomes a negligible fraction of 
the total C and the Q3D estimates then appear to become larger than the exact C as suggested by the 
positive value of % Error. Furthermore, the error  becomes nearly constant and is less than 3% for all 
cases shown.  However, it becomes difficult to attach a specific rationale for both the polarity and 
magnitude since  the % error is a combination of the  errors in the 2D approximation of the 3D case, 
as well as numerical accuracy errors in both the evaluation of the elliptical integrals, as well as the 
supposedly exact 3D calculations.  As a result, the main conclusion is that the Q3D approximation is 
quite accurate for nearly all the cases considered. A further, fundamental consequence is that the 
comparisons are clouded by a type of Heisenberg computational uncertainty in that both the exact 
analytical 2D solutions and 3D numerical solutions require numerical approximations whose 
accuracy cannot be tested against some absolute standard. We can keep improving the results with 
larger computational power and better models, but the basic problem is never eliminated.   
 
  
Determination of Error in using a 2D Capacitance  rather than  Q3D or Exact 
 
For integrated circuit interconnection lines that are thin, such as that shown in Fig.1, it is common to 
use the 2D capacitance per unit length, evaluated as though Wx were infinite, and multiply this value 
by the actual length, Wx, to obtain the total capacitance. This calculation includes only charges on 
the plates as depicted in Fig. 3(b), i.e. neglects the small capacitance due to charges on the ends of 
the line as depicted in Fig. 3(c). The error in doing this can easily be obtained by the use of Eq. (2)  
in combination with the universal curve of Fig. 5, which is Eq. (8).  The neglected component of  
capacitance is  Cfx  which can be determined as follows. We will use a specific case for clarity.  
Assume our plates have Wy = 200 um, S = 200 um,  Wx = 1000 um  giving Wy/S = 1 and  Wx/S = 
5.  Fig 5 gives total Ct/Cpp which includes the Cpp and 2D fringe component for any given  W/S.  
For Wy/S =1, Fig. 5 gives a Ct/Cpp of 2.1  where Ct is Cty since Wy was used for the x-axis. Thus, 
Cty = 2.1 Cpp which represents the total capacitance of the charge configuration of Fig. 3(b) and is 
the sum of  Cpp + Cyf  so   2.1 Cpp = Cpp + Cyf 
The capacitance due to finite value of Wx is obtained from Fig. 5 at Wx/S = 5 which is Ct/Cpp = 1.3 
where Ct is Ctx since Wx was used for the x axis. Thus, Ctx = 1.3 Cpp  = Cpp + Cfx.  We only want 
the neglected part, namely the Cfx component (don’t include Cpp twice) which is  Cfx = 0.3 Cpp.  
The ratio of the neglected capacitance to the capacitance used for the line is  0.3 Cpp/ 2.1 Cpp = 
0.143 or over 14% 
   We can generalize this error in neglected end capacitance as 
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 Neglected End C error = {Ct/Cpp [@ Wx/S] -1} / {Ct/Cpp [@Wy/S]}        
 
in fractional percent where Ct/Cpp are taken from Fig. 5 at the specified value of  W/S. If we 
changed only Wx in the above example from 1000 to 400 um, Wx/S is now 2 and Fig. 5 gives  
Ctx/Cpp [@Wx/S] = 1.63 while  Cty/Cpp remains at 2.1. The error in neglecting this end component 
is thus  (1.6 – 1)/2.1 or  nearly 30%. 
 
Finite thickness plates         
 The evaluation of C for typical integrated circuit interconnecting lines has increasingly required the 
sidewall C of finite thickness conductors. Such calculations are not possible analytically and have 
given rise to many methods for approximation. [5] -- [9]    There may well be some quasi 3D 
superposition methods similar to that use here,  to give good estimates for such cases and are 
subjects for future investigations.  
 
Conclusion 
 
It has been shown that the 3-dimensional capacitance of thin  parallel plates over a wide range of 
parameters can be determined quite accurately from the superposition of the two,  2-dimensional 
analytical  components in the orthogonal directions. These 2D components are obtained from elliptic 
integrals  and can be expressed in a universal curve. The 3D capacitance obtained by such methods 
have been compared with accurate values obtained using advanced numerical calculations on a large 
AIX workstations with 100 GBytes of main memory. The error between the 2-D superposition 
estimates and the more exact 3D numerical calculations typically show an error of less than 3% over 
an unexpectedly wide range of  plate length, width, and separation. This error is approximately 
within the range of numerical accuracy of the calculations, thus providing  convincing support for 
the validity of this estimation method.      
 
 Appendix:  Definition of  elliptic functions in calculation of 2D capacitance 
MATHEMATICA was used for evaluating  elliptic integrals using the following program: 
 
In[11]:= 
m= { .1, .12, .14, .16,.18, .2, ------   etc, user entered, as desired} 
 
phi= ArcSin[((EllipticK[1-m]-EllipticE[1-m])/((1-m)*EllipticK[1-m]))^.5] 
 
WoverS=(EllipticK[1-m]*EllipticE[phi,(1-m)] - EllipticE[1-m]* 
          EllipticF[phi, (1-m)])/(((EllipticE[1-m] -EllipticK[1-m])* 
            EllipticK[m]) +EllipticK[1-m]*EllipticE[m]) 
 
Ctotal=EllipticK[1-m]/EllipticK[m] 
 
CoverCpp=Ctotal/WoverS 
Out[11]= 
Where m are numbers supplied by user (typed-in) 
WoverS = W/S calculated value corresponding to the given m value  
Ctotal = total 2D capacitance per unit length 
CoverCpp  = Ct/Cpp  = ratio of total capacitance to the parallel plate capacitance (with no fringe                       
                       fields ) 
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The  arguments (modulus)  of the elliptic integrals  used in some common tables [10], [11] are often  
k and k' rather than m and m’ The use of k or m is purely arbitrary and the relationship between 
these arguments is relatively simple, but  important, namely 
                              m = k2      and          m’ =  1-m =  k' 2    = 1 -  k2 . 
 Thus we have        
 
     K ==   EllipticK[k2]   == EllipticK[m]      
     K' = K[k' 2]    = EllipticK[m']      
Similar substitutions can be made for the remaining integrals. 
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(c) 2D charge density 
distribution on Wy edges 
sassuming only Ex fringe 
component, Ey=0 
everywhere
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(a) 3D charge density 
distribution on plate with 
both Ex and Ey fringe fields 
present, as in actual case
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Fig. 3  Capacitor plate charge density distribution  for  (a) total exact 3D distribution on all 4 edges, and  the 
assumed  2D charge density approximations on Wx edges in (b) and Wy edges in (c).   Darker shading 
indicates larger charge density.
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Fig 4  Corner fringe fields not included in 3D fringe field, approximation 

Corner fringe fields neglected  in 3D approximation 



Total 2D capacitance per unit length divided by parallel plate capacitance per 
unit length vs W/S
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Fig. 5.  Universal curve for estimating fringe capacitance for 3D plates using 2D approximation 
as described in this paper.  



Comparison of Q3D with Exact Capacitance vs Wy for families of fixed Wx : S = 
200u for all 
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Fig. 6(a)



Capacitance vs W/S
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Fig. 6(b) Normalized version of Fig 5(a) showing total C vs Wy/S  for various values of Wx/S comparing exact 3D with 
the Quasi-3D (i.e.  2D superposition for each Wx/S



Comparison of Q3D with Exact Capacitance vs Wy for families of fixed Wx : S = 
200u for all 
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Fig. 6(c) Magnified portion of Fig 6(a) for small Wx values



Fig. 7 Percent error between the exact 3D vs the Quasi-3D calculations of C for family of curves of Fig 5(a)
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