RC25206 (W1108-076) August 26, 2011
Electrical Engineering

|BM Resear ch Report

Accurate 3D Capacitance of Parallel Platesfrom 2D
Analytical Superposition

Richard Matick, Albert Ruehli
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

— = Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.




Accurate 3D Capacitance of Parallel Platesfrom 2D Analytical Superposition
Richard Matick and Albert Ruehli

ABSTRACT

The two conductor strip lineis aclassic transmission line structure which has been extensively
studied and used in endless applications for decades. Such lines with assumed zero thickness
conductors have been used as a standard for calculation validations, comparisons and for many other
uses. Unfortunately, the exact determination of the 3D electromagnetic E and H field of even this
basic case is analytically intractable for al but the most simple cases, and henceis either
approximated with 2D solutions by assuming infinite length, or by large scale numerical
computations which are rather complex and time consuming. The 2D solutions assume the fields are
uniform in the direction of the line length and hence neglect any fringe fields in this orthogonal
direction. Simple methods to achieve the full 3D solution with high accuracy are thus highly
desirable and the subject of thiswork. It will be shown that accurate values of the total 3D
capacitance of aparallel plate capacitor having thin plates of any length, width, and separation can
be determined from the superposition of the exact 2 dimensional capacitance obtained from an
analytic solution using elliptic integrals, in avery simple manner. The accuracy is determined for a
range of cases by comparison of the analytic values with those obtained from a 3D numerical
calculation using a 64-bit work station with very large memory and processing capability. For most
cases, the accuracy of the capacitance obtained by this superposition method falls nearly within the
bounds of the numerical accuracy of the 3D model and the elliptical integral evaluations. This
superposition method is far more accurate than would normally be expected.

| ntr oduction

It iswell known that the fringe field capacitance per unit length of apair of parallel plates (or
single plate above a ground plane) can be estimated from 2D exact cal culations when the plates are
very long compared to the conductor width and separation.[1] When the plates are not long, the
orthogonal fringe fields in both length and width directions must be included. Thereis no known
method for determining such 3D cases analytically. Thus these cases are typically determined by 3D
numerical calculations in which the conductors are "broken™ into many individual elementary cells.
Each such cell isassumed to have a partial element capacitance with all the other cells within some
range of influences, i.e. alimited many body problem. The capacitance of these individual cellsis
evaluated assuming point charges at the appropriate distances, which resultsis a set of linear,
simultaneous equations. Additional accuracy is obtained by use of an analytical method to calculate
the charge density within each cell [2]

For many typical problems, such a calculation requires avery powerful computing system and
sophisticated numerical program. It will be shown that for awide range of parallel plate parameters
which require a 3D solution, the capacitance can be estimated quite accurately by the superposition
of exact, analytical 2D solutions.* The latter can be obtained from the application of elliptic integrals

! Capacitance calculations of integrated circuit, multi-conductor metal layers often make use of additions of partial
capacitance between various portions of line segments. Such procedures represent adifferent form of field addition than
that use in this paper, and typicaly require curve fitting to match the simple approximations to more accurate 3D
calculations, eg. [8] and [9].



to construct auniversal curve applicable for all cases, aswill be seen. The accuracy of the
approximation has been determined for a wide range of conductor dimensions with zero thickness.

Capacitancein 3 dimensions: the problem

Consider a pair of parallel plate conductors separated by a distance, S, having a length of Wx in
the x direction and width Wy inthey direction asshown in Fig 1. If avoltageis applied between
these two conductors, the electric field, E, will have only az component (no x nor y component)
within an infinitesimally small xy area of length AW, and width AW, at the exact geometric center
lineat whichx =y =0asindicated in Fig. 2. Except for this small region around the center, there
will be x , y and z components of E everywhere else within the space between and around the
conductor plates, with the magnitude of the x and y components increasing as we move away from
the center. For afixed value of x, the E field varies with y and z approximately asindicated in Fig. 2.
Similarly, in the orthogonal direction, for afixed value of y, thefield in the xz plane variesin a
somewhat similar fashion with the exact pattern depending on the width and length of the
conductors.

It isthis spatial variation of E which gives rise to the non-uniform charge density on the conductor
surface and makes the capacitance evaluation difficult for the general case.

For many applications, the length of interconnecting lines, indicated as Wx in Fig. 1 will be, or is
assumed to be very much larger than the width Wy. The fringe field component, EX, in the x
direction can thus be neglected at the ends in the long direction and the 3D problem is reduced to a
2D case such asthat shownin Fig. 2. Thisis equivaent to evaluating the capacitance per unit
length of only ashort length of line, AWy1, and width Wy taken from the mid-section, as indicated
in Fig. 1, and using this same capacitance per unit length for the entire length of line. Thisis
referred to as the 2D approximation and is reasonable for long lines with Wx >> Wy There will be
negligible x components of E field in this short unit length AW, section, and the y and z components
will be similar to that shown very approximately in Fig. 2. However, if asmall section such as that
represented by AWx2 in Fig. 1, istaken nearer the edge of WX, there will be considerable x
components of the E field so the 2D solution is an approximation for any finite length. Depending
on the actual dimension ratios, the capacitance determined by this approximation are sometimes not
adequate because the line are not sufficiently long, or better accuracy is needed for various reasons.

Approximate 3D Calculations (Quasi- 3D Calculations using super position of 2D solutions)

It ispossibleto estimate the capacitance of 3D geometries by the ssmple superposition of exact
2D analytical calculations. The accuracy varies dightly for different dimensions, as would be
anticipated, but the error istypically less than inherent errors in the numerical calculations
themselves, as will be seen. Only the capacitance of very thin parallel plates are included in this
study.

The essential idea and fundamental assumptions are as follows.
Thetotal capacitance of ageneral parallel plate capacitor isthe sum of aparallel plate portion which




arises only from uniform Ez field components, plus aportion arising from only Ey components,
and lastly a portion arising from only Ex components of field distortion. The approximation used
hereisthat the C per unit length due to Ey components of field can be obtained from a 2D
calculation of the Cap per AWx which is equivalent to using the AWx1 center region (x=0) inFig. 1
where there is no Ex field components. This same C per AWXx isthen used for the entire Wx
length, even where there are significant Ex components. The C portion arising from the Ex field
components is done in an analogous manner, by 2D calculation of the C per AWy whichis
equivalent to that at a center region (y=0) wherethereisno Ey field components, then use this same
C per AWy for the entire Wy length, even where there are significant Ey components. The
inherent assumption isthat near the plate corners where both Ex and Ey have significant
amplitudes, they do not interfere. Thisis, infact, an interesting, fundamental question, namely, if
the 2D field pattern of Fig. 2 were to be drawn for an x value near the x end of the plates, how much
would it change. The 3D approximation used here assumes that it does not change at al, and we
will show that thisis a good approximation for all Wx except for cases where Wx/S islessthan
roughly 0.5.

Another, perhaps more direct way to see thisis to consider the charge density on the plates. For a
true, parallel plate approximation with no fringe fields, i.e. no x nor y components of E, the charge
density would appear only on the inner surfaces of the top and bottom plates, and would be
constant (uniform charge) for al x andy. In an actual 3D geometry, the charge density distribution
on the inner surface of the plateswill be similar to that shown in Fig. 3(a), where darker shading
indicates higher density. The charge density will increase as we progress from the plate center
toward the edges asindicated. For a 2D approximation such asin Fig. 2, only Ey fringe fields are
calculated, Ex implicitly assumed everywhere to be zero. For such a case, the charge density along
the y axis will increase from the center toward the plate edge but will be a constant as a function of
X, asshown in Fig. 3(b). Likewise, for a2D approximation in the orthogonal direction, charge
density along the x axis will increase from the center toward the plate edge but will be a constant as
afunction of y, as shown in Fig. 3(c). The 3D approximation used here assumes that the sum of
chargesin 2D cases of (b) plus (c) essentially equals that for the actual 3D case of (a). This cannot
be an exact representation since the 2D approximation neglects some small fields at the exact
corners. For instance, the E field configuration at the edges will be something like that shown in Fig.
4 -- thefields at the corners, shown in heavy, red lines, curvesout around the sharp edges.
However, our approximation does not have any way to include these. The magnitude of these
neglected fields (and resulting charges) will typically be small, resulting in small errorsin
capacitance. The exact, numerical 3D calculations include these fields and will provide justification
for this approximation.

Thus the essential ideaisto approximate the total 3D capacitance of two parallel plates of any
width, length, and separation as the summation of three components:

1. Capacitance Cy, of parallel plates assuming no fringe fields so there exists only a uniform Ez
field everywherei.e. total Cp, =& Wy *W,/S

2 Fringe Capacitance per unit length, Cr, /AWX, dueonly to fringefield iny direction caused by
finite Wy, asin Fig. 2, assuming no Ex fringe fields, i.e. as though Wy was actually infinite; Ciy is



assumed to be exclusive of the parallel plate component, Cpp, and thus only due to the non-uniform
E field caused by Ey components

3. Fringe Capacitance per unit length, Cix /AWY due only to fringefield in x direction caused by
finite. Wy, assuming no Ey fringe fields, i.e. asthough W, was actualy infinite; Ci isassumed to
be exclusive of the parallel plate component, Cpp, and thus only due to the non-uniform E field
caused by Ex components

To get a 3D approximation, we need all three components above. The first component is obtained
directly from the well known parallel plate equation as given in (1) above. The remaining
components require determination of the exact 2D capacitance for the two cases of 2 and 3 above,
namely Ci/AWx and Ci, /AWYy . These are easily calculated separately by use of elliptical
integrals. Note that such calculations, shown below, givethetotal 2D capacitance which includes
the parallel plate component, Cpp, in addition to the pure fringe component. In other words, for the
y-fringe field, and x-fringe field evaluation, the 2D analytical expression gives atotal capacitance,
Cty, and Ctx, respectively, of

Cty = Cfy + Cpp Ctx = Cfy + Cpp (D)

where subscript t refersto “total” and f to "fringe only”.

Since we only want one value of C,, inthefinal total, not two, we must subtract one Cpp from the

sumof Cy /AWxX and Ci /AWY . Thefinal 3D approximation is obtained as follows. Since the 2D

calculations are all per unit length, we must be careful to enter correct total length for each 2D value.
Hence

TOtal C3Dapprox = [Cty /AWX ]* WX + [Ctx /AWy ]* Wy = SWX*Wy/S (2)

Cpp = 8.85* Wx (Wy/S)*10° fF for W and S in microns (3)

Ci /AWXx fF per unit lengh is obtained from 2D exact analytical calculation of C per unit
length asin Fig 2 with plate width of Wx

Cw /AWy  fF per unit length is obtained from 2D exact analytical calculation analogous to that
above but with plate width of Wx .
Both of these components can be obtained from one, universal curve which is derived and shown
below.

Exact, 2D Analytical Calculations using Elliptic Integrals.

The exact 2D capacitance per unit length of aparallel plate configuration such as that shown in
Fig 2, can bedetermined by using Swartz Christoffel transformation as described by Palmer[1].
Thisrequires the evaluation of elliptic integrals. Since these functions are transcendental, the
capacitance cannot be directly expressed in terms of W/S. Rather, we must assume some value for
m, the modulus (argument) of the elliptic integrals. This modulesis used to first calculate another
argument, ¢, for the elliptic integrals. Then W/S and the corresponding total capacitance are
obtained usingmand ¢ in appropriate elliptical integral expressions as given in detail below.

Assuming some value of m, the argument ¢ is obtained from




sin? ¢ =

K'(mg—E'(m) y =arcsin{K(1_ m) - E(L—- m)}l,2 @
(1-m?)* K'(m) [A-m)* K@-m)]

With this assumed value of m and the calculated value of ¢ , W/Sis obtained from

W KA-m*E[¢,1-m)]-E[1-m[* F[4,A-m)] )
S (E[1— m] - K[1— m])* K[m]) + K[1— m]* E[m]

and total capacitance per unit length from

CiL = (ed/dn) K'/K in statfarads/cm {Palmer} (6)

By use of the conversion factor
1 Farad = 9* 10" statfarads or 1.111* 10" Farads= 1 statfarad

the RMKS equivalent formulais
C/lL = & K/K =885*10% ¢ K/K farads/meter { RMKS} (7)

This 2D capacitance can be made universal, independent of dimensions by dividing by the total
parallel plate capacitance per unit length, Cpp/L = & W/S toyield

Ci/Cpp = {K'/K} (WIS dimensionless (8
Thisratio will always be greater than 1, approaching 1 asWYy/S in Fig 2 gets very large, with Wx
equal infinity. A value of 1 for thisratio ssimply indicates the total capacitanceisthat of parallel
plates, i.e. no fringe fields.

Equations (4), (5), (7) and (8) are the expression and units used in this paper where
¢ = 8.85* 10™? ¢, farads per meter
& = relative dielectric constant = 1 for free space
K[m], K[1-m] = complete eliptic integral of 1% kind with modulus m, (1-m) respectively
K' = complementary elliptic integral of 1* kind= K[m'] = K[1-m]
E = complementary elliptic integral of 2" kind = E[m’'] = E[1-m]
E[m], E[1-m] = complete dliptic integral of 2nd kind with modulus m, (1-m) respectively
E[¢, (1-m)] = incomplete integral of 2nd kind
Fl¢, (1-m)] =incompleteintegral of 1% kind

L = unit length in meter



m =1-m

Typical values for W/S of, say 1 to 11 requiremto range from approximately 0.01 to 10°*°. Sincem
isthe modulus in the éliptic integrals and becomes extremely small as W/S increases further, it is
difficult to get 2D capacitance for very large W/S.

A universal curve for this 2D capacitance has been determined by running Mathematica elliptical
integral evaluation on alarge AIX 64 bit work station with large memory (up to 100 Gigabytes).
This curve, shownin Fig. 5, can and has been used in conjunction with Equation (2) to obtain all
Quasi 3D calculation in this paper.

There are some inconsistencies and differencesin the literature on definition of modulus
(arguments) used for elliptic integral evaluation --- see Appendix A for important details aswell as
expressions in Mathematica which were used in this paper.

Numerical (Exact) 3D Calculations

There are no known exact analytical solutions applicableto 3D configuration, hence any “exact” 3D
capacitance must be obtained by large numerical calculations or approximations. In this paper, all
3D capacitance calculations were obtained using a Partial Element Equivalent Circuit (PEEC)
model [3], [4]. A graphical editor was available for entering the geometries.

All models were processed on the same high performance Al X workstation as above, with very
large memory (up to 100 GBy). The solution for each specific geometry dimensions was typically
completed for the smallest cell (body) size possible to insure maximum accuracy. Thislimit is set by
the memory size available to accommodate the chosen number of cells, typically 50 GBytes. To
achieve this and simultaneously limit simulation run times to several hours, it was necessary to pick
cell size such that the number of capacitance bodieswas approximately 5to 7K. Any significantly
larger number of cells could result in run times of afew days and unexpected program crashes (e.g. —
“out of memory”).

Needless to say, any numerical calculation will unavoidably have some small errors, thus * exact”
implies correctness to only within these limitations. Such limits are difficult to specify precisely for
each case, but are estimated to be less than 5% error, in many cases even smaller.

RESUL TS and Comparisons

Quasi-3D estimates of total capacitance of 3D structures were determined using the described 2D
elliptical integral superposition approximation, for afamily of curvesin which the plate length, Wx,
and separation, S, were held fixed and the plate width, Wy, was varied. The exact 3D capacitance
was then determined numerically for the same cases. The value of Swas held at 200 microns for all
cases, and Wy was varied from 100 to 1500 microns. A family of curves was obtained for cases of
Wx equal 2000, 1500, 1000, 500, and 200 microns. Thetotal capacitance for these 3D estimates
from 2D super-positions, (Q3D), and “exact” 3D numerical calculation are shown in Fig. 6(a). The
guasi-3D estimates are all shown in solid lines, while the exact 3D values are shown adjacent to
each, in dashed lines. It can be seen that for all cases considered, the quasi 3D estimates are very
close to the actual results.



Fig 6(b) shows the curves of Fig 6(a) normalized to be universally useful. Total C is plotted vs Wy/S
for various values of Wx/S comparing the exact 3D with the approximate Quasi- 3D evaluation. A
magnified view of the lower part of Fig. 6(a) isshown in Fig.6(c).

Fig 7 shows the percent ERROR between the capacitance calculations using the Quas 3D and the
exact 3D value, versus W/S. Each of these curves represents the % difference between the
corresponding pair of curvesin Fig. 6 with % error taken as (Q3D — Exact)/ Q3D. Positive values
of % error means capacitance for the Q3D approximation islarger than the 3D calculated value
while negative % indicated Q3D issmaller. -- from simple arguments, it would seem that the
neglect of the corner fringe fields as per Fig 4 would cause the Q3D estimates to be smaller than the
exact C for small values of Wy and Wx. because the neglected part is a significant portion of the
total 3D capacitance.. Thisisindeed the case as can be seenin Fig. 7 at small values of Wy. As Wy,
and/or Wx increases, the neglected corner fringe field contribution becomes a negligible fraction of
the total C and the Q3D estimates then appear to become larger than the exact C as suggested by the
positive value of % Error. Furthermore, the error becomes nearly constant and is less than 3% for all
cases shown. However, it becomes difficult to attach a specific rationale for both the polarity and
magnitude since the % error isacombination of the errorsin the 2D approximation of the 3D case,
aswell as numerical accuracy errors in both the evaluation of the elliptical integrals, aswell asthe
supposedly exact 3D calculations. Asaresult, the main conclusion is that the Q3D approximation is
quite accurate for nearly all the cases considered. A further, fundamental consequenceis that the
comparisons are clouded by atype of Heisenberg computational uncertainty in that both the exact
analytical 2D solutions and 3D numerical solutions require numerical approximations whose
accuracy cannot be tested against some absolute standard. We can keep improving the results with
larger computational power and better models, but the basic problem is never eliminated.

Determination of Error in using a 2D Capacitance rather than Q3D or Exact

For integrated circuit interconnection lines that are thin, such asthat shown in Fig.1, it iscommon to
use the 2D capacitance per unit length, evaluated as though Wx were infinite, and multiply this value
by the actual length, WX, to obtain the total capacitance. This calculation includes only charges on
the plates as depicted in Fig. 3(b), i.e. neglects the small capacitance due to charges on the ends of
the line as depicted in Fig. 3(c). The error in doing this can easily be obtained by the use of Eq. (2)
in combination with the universal curve of Fig. 5, which is Eq. (8). The neglected component of
capacitanceis Cix which can be determined as follows. We will use a specific case for clarity.
Assume our plates have Wy = 200 um, S= 200 um, Wx = 1000 um giving Wy/S=1and Wx/S =
5. Fig 5 givestotal Ct/Cpp which includes the Cpp and 2D fringe component for any given W/S.
For Wy/S =1, Fig. 5 givesa Ct/Cpp of 2.1 where Ct is Cty since Wy was used for the x-axis. Thus,
Cty = 2.1 Cpp which represents the total capacitance of the charge configuration of Fig. 3(b) and is
thesumof Cpp+ Cyf so 2.1 Cpp = Cpp + Cyf
The capacitance due to finite value of Wx is obtained from Fig. 5 at Wx/S =5 whichis Ct/Cpp = 1.3
where Ct is Ctx since Wx was used for the x axis. Thus, Ctx = 1.3 Cpp = Cpp + Cfx. We only want
the neglected part, namely the Cfx component (don’t include Cpp twice) which is Cfx = 0.3 Cpp.
The ratio of the neglected capacitance to the capacitance used for thelineis 0.3 Cpp/ 2.1 Cpp =
0.143 or over 14%

We can generalize this error in neglected end capacitance as



Neglected End C error = { Ct/Cpp [@ Wx/S] -1} / { Ct/Cpp [@WY/S]}

in fractional percent where Ct/Cpp are taken from Fig. 5 at the specified value of W/S. If we
changed only Wx in the above example from 1000 to 400 um, Wx/Sisnow 2 and Fig. 5 gives
Ctx/Cpp [@Wx/S] = 1.63 while Cty/Cpp remainsat 2.1. The error in neglecting this end component
isthus (1.6 —1)/2.1 or nearly 30%.

Finitethickness plates

The evaluation of C for typical integrated circuit interconnecting lines has increasingly required the
sidewall C of finite thickness conductors. Such calculations are not possible analytically and have
given rise to many methods for approximation. [5] -- [9] There may well be some quasi 3D
superposition methods similar to that use here, to give good estimates for such cases and are
subjects for future investigations.

Conclusion

It has been shown that the 3-dimensional capacitance of thin parallel plates over awide range of
parameters can be determined quite accurately from the superposition of the two, 2-dimensional
analytical components in the orthogonal directions. These 2D components are obtained from elliptic
integrals and can be expressed in a universal curve. The 3D capacitance obtained by such methods
have been compared with accurate val ues obtained using advanced numerical calculations on alarge
AIX workstations with 100 GBytes of main memory. The error between the 2-D superposition
estimates and the more exact 3D numerical calculations typically show an error of less than 3% over
an unexpectedly wide range of plate length, width, and separation. This error is approximately
within the range of numerical accuracy of the calculations, thus providing convincing support for
the validity of this estimation method.

Appendix: Definition of dliptic functionsin calculation of 2D capacitance
MATHEMATICA was used for evaluating elliptic integrals using the following program:

In[11]:=
m={ .1, .12, .14, .16,.18, .2, ------ etc, user entered, as desired}

phi= ArcSin[((EllipticK 1-m-EllipticE 1-n)/((1-m*EllipticK 1-nj))~. 5]

Wover S=(El i pticK[ 1-nj *El lipticE[phi, (1-m] - ElipticE[1-nj*
EllipticF[phi, (1-m])/(((EllipticE 1-n -EllipticK 1-nj)*
EllipticK[m) +ElipticK[ 1-m *EllipticE[n)

Cotal =El lipticK[1-m/E lipticK[m

Cover Cpp=Ct ot al / Wver S

Qut[11] =

Where m are numbers supplied by user (typed-in)

WoverS = W/S calculated value corresponding to the given m value

Ctotal = total 2D capacitance per unit length

CoverCpp = Ct/Cpp =ratio of total capacitance to the parallel plate capacitance (with no fringe
fields)



The arguments (modulus) of the elliptic integrals used in some common tables[10], [11] are often
k and k' rather than m and m’ The use of k or mis purely arbitrary and the relationship between
these arguments is relatively simple, but important, namely

m=k* and m=1m=k? =1-k%.
Thus we have

K == EllipticK[k?] == EllipticK[m]
K'=K[k'? = EllipticK[m]
Similar substitutions can be made for the remaining integrals.
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Fig. 1 Parallel plate capacitor with Wx > Wy



Fig. 2 Approximate 2D fringe field in yz direction of the small W, , section from center portion of Fig. 1
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Fig. 3 Capacitor plate charge density distribution for (a) total exact 3D distribution on all 4 edges, and the
assumed 2D charge density approximations on Wx edgesin (b) and Wy edgesin (¢). Darker shading
indicates larger charge density.
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(a) 3D charge density
distribution on plate with
both Ex and Ey fringe fields
present, asin actual case

(b) 2D charge distribution
on Wx edges assuming only
Ey fringe component, Ex =0
everywhere

(c) 2D charge density
distribution on Wy edges
sassuming only Ex fringe
component, Ey=0
everywhere



Fig 4 Corner fringe fields not included in 3D fringe field, approximation

Corner fringe fields néglected in 3D approximation



Fig. 5.

Universal curve for estimating fringe capacitance for 3D plates using 2D approximation

as described in this paper.
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Fig. 6(a)
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Fig. 6(b) Normalized version of Fig 5(a) showing total C vs WYy/S for various values of Wx/S comparing exact 3D with

the Quasi-3D (i.e. 2D superposition for each Wx/S
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Fig. 6(c) Magnified portion of Fig 6(a) for small Wx values
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Fig. 7 Percent error between the exact 3D vs the Quasi-3D calculations of C for family of curves of Fig 5(a)
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