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Abstract

In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free
sets associated with these inequalities and structured disjunctive cuts, especially the t-branch split cuts
introduced by Li and Richard (2008). By analyzing n-dimensional lattice-free sets, we prove that every
facet-defining inequality of the convex hull of a mixed-integer polyhedral set with n integer variables
is a t-branch split cut for some positive integer t which is a function of n, and not of the data defining
the polyhedral set. We use this result to give a finitely convergent, pure cutting-plane algorithm to solve
mixed-integer programs. We also show that the minimum value t, for which all facets of n-dimensional
polyhedral mixed-integer sets can be expressed as t-branch split cuts, grows exponentially with n. In
particular, when n = 3, we observe that not all facet-defining inequalities are 6-branch split cuts. We
analyze the cases when n = 2 and n = 3 in detail, and show that an explicit classification of maximal
lattice-free sets is not necessary to express facet-defining inequalities as branching disjunctions with a
small number of atoms.

1 Introduction

There has been much recent work on obtaining valid inequalities for mixed-integer sets from specific fami-
lies of lattice-free sets, and also on explaining such valid inequalities as disjunctive cuts. In this paper, we
study the connection between valid inequalities for mixed-integer sets, lattice-free sets, structured disjunc-
tive cuts, and cutting-plane algorithms based on such cuts.

In the 1960s, Gomory [15] presented a cutting-plane algorithm which solves any pure integer pro-
gram (without continuous variables) by generating a finite sequence of cutting planes, or inequalities sat-
isfied by all integral solutions of the initial linear inequalities defining the integer program. Gomory [16]
later introduced another cutting-plane algorithm based on the Gomory mixed-integer (GMI) cut for solving
mixed-integer programs (MIP). However, this algorithm does not always terminate; Gomory proved finite
termination only when the optimal objective value is known a priori to be integral.

Cook, Kannan and Schrijver [9] introduced split cuts and gave a very simple MIP, involving only three
variables (with two of them being integer variables), which cannot be solved with split cuts alone. Their
result, along with the result of Nemhauser and Wolsey [25] that GMI cuts are equivalent to split cuts (see
also [10]) implies that in fact Gomory’s algorithm will fail to terminate on this three variable MIP. The
question of finite termination has received some attention over the last few years. Andersen, Louveaux,
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Weismantel and Wolsey [2] show how the three variable MIP of Cook, Kannan and Schrijver can be solved
with 2D lattice-free cuts, which generalize split cuts. They also implicitly show how to use 2D lattice-free
cuts to solve two-row continous group relaxations. Another generalization of split cuts is the t-branch split
cuts studied by Li and Richard [23]. They give a family of examples with n integer variables for n ≥ 3
such that each example in their family has a valid inequality with infinite rank with respect to 2-branch split
cuts, and conjecture that (n − 1)-branch split cuts are also not enough to obtain finite rank. Yet another
generalization of the split cut is the crooked cross cut, a type of structured disjunctive cut introduced by
Dash, Dey and Günlük [11], and shown to be equivalent to 2D lattice-free cuts in some cases.

In other work on this topic, Owen and Mehrotra [26] presented an algorithm which only generates
cutting planes based on simple variable disjunctions which converges to the optimal solution of any MIP,
but does not terminate in finite time. When the linear constraints defining an MIP form a polytope, Adams
and Sherali [1] presented a hierarchy of relaxations which yield the convex hull of solutions in finitely
many steps. Under the same assumptions, Markus Jörg presented an algorithm which generates disjunctive
cuts and solves an MIP in finite time in his PhD thesis [18] and in an unpublished manuscript [19]. Chen,
Küçükyavuz, and Sen [8] also gave a disjunctive cutting-plane algorithm to solve such MIPs in finite time.
Recently, Del Pia and Weismantel [13] present a relaxation of mixed-integer programs based on lattice-free
cuts which can be iterated finitely many times to obtain the convex hull of integer solutions, thus yielding a
finite cutting-plane algorithm for general mixed-integer programs.

It is clear from the preceding discussion that there is a connection between lattice-free sets, disjunctive
cuts, and finite cutting-plane algorithms for MIPs, and our goal in this paper is to enhance knowledge of
these relationships. We are primarily interested in studying structured disjunctive cuts. In [11], the authors
show that a cut derived from a maximal lattice-free convex set B in ℝ2 can be expressed as a crooked-cross
cut, and therefore as a 3-branch split cut (both of these are types of disjunctive cuts). They show further
in [12] that that result implies that every facet-defining inequality for a mixed-integer program with two
integer variables is a crooked-cross cut (and is also a 3-branch split cut). In this paper, we are interested in
extending the latter result to higher dimensions, namely we want to express facet-defining inequalities for
MIPs with n integer variables as t-branch split cuts for some t, and thus extend the above results from ℝ2

to ℝn. Our interest in obtaining such an extension is also motivated by the current research on classifying
all maximal lattice-free sets in ℝ3 and in higher dimensions, i.e., enumerating them by number of facets,
and number of integer points in the interior of each facet, up to unimodular transformations. The search for
such a classification result is motivated by the belief that knowing the list of maximal lattice-free sets can
lead to useful families of cutting planes. However, this classification project seems very difficult in ℝ3 and
in higher dimensions; further using the classes of lattice-free sets effectively is not trivial. Even in ℝ2, there
are uncountably many maximal lattice-free quadrilaterals, and it is not clear how to choose from this list in
order to generate cuts. On the other hand, there are only countably many 2-branch split cuts, and they imply
all cuts obtained from maximal lattice-free quadrilaterals. In other words, we are interested in obtaining
classes of cutting planes which are not hard to describe, but yet contain fairly complicated classes such as
all cuts based on lattice-free sets in ℝn, without explicit classification of maximal lattice-free sets.

We show that ideas used in Lenstra’s algorithm [22] on integer programming in fixed dimensions easily
yield a number t which is a function of n alone. Further, we give a strong lower bound on t by presenting a
family of MIPs, one for each n, such that t-branch split cuts yield the integer hull only when t ≥ 3 ⋅ 2n−2

if the MIP has n integer variables. When n = 3, we show that 6-branch split cuts do not suffice to yield
the integer hull, but 21-branch split cuts do. In order to obtain this result, we show that the lattice-width of
lattice-free convex sets in ℝ3 is at most 4.2439. We then observe that our characterization of facets of an
MIP as t-branch split cuts leads to a trivial, pure cutting-plane algorithm for mixed-integer programs which
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terminates in finitely many steps, and is different from the algorithm of Del Pia and Weismantel. We also
study some types of disjunctive cuts different from t-branch split cuts when n = 2. We also show that any
lattice-free set in ℝ2 is contained in a set {x ∈ ℝ2 : b ≤ aTx ≤ b+ 3} for some a ∈ ℤ2 and an integer b.

2 Preliminaries

In this paper we work with polyhedral mixed-integer sets of the form

P = {(x, y) ∈ ℤn × ℝl : Ax+Gy = b, y ≥ 0},

where A,G and b have m rows and rational components. Note that the solution set of any mixed-integer
linear program can be modeled in this way. For example, the constraint xi ≥ 0, where xi is an integer
variable for some i, can be replaced by the constraints xi − s = 0, s ≥ 0. We denote the continuous
relaxation of P by PLP .

2.1 Disjunctive and lattice-free cuts

Disjunctive programming was introduced by Balas [4] and has proved to be a very important tool for gener-
ating valid inequalities for mixed-integer sets. We next review the main ideas that are relevant for this paper.
Let Dk = {(x, y) ∈ ℝn+l : Akx+Gky ≤ bk} be polyhedral sets indexed by k ∈ K and let D = ∪k∈KDk.
We call D a disjunction if it satisfies

ℤn × ℝl ⊆ D

and we call each Dk an atom of the disjunction D. Clearly, if the disjunction D satisfies this condition, it
has the form D = Dx × ℝl where Dx ⊆ ℝn is the projection of D in the space of the integer variables.
Notice that the above condition is same as requiring that ℤn ∖ Dx = ∅, which, in general, is not trivial to
verify. In the next section, we will discuss simple disjunctions for which validity of the disjunction can be
verified trivially or is obvious from the definition.

A linear inequality is called a disjunctive cut for P obtained from the disjunction D if it is valid for
PLP ∩Dk for all k ∈ K. Disjunctive cuts are valid for all points in P and multiple disjunctive cuts can be
derived from the same disjunction. More precisely, given a disjunction D,

P ⊆ PD = conv
(
PLP ∩D

)
= conv

(∪
k∈K

(PLP ∩Dk)

)
,

where PD is called the disjunctive hull of P with respect toD. In other words, PD is the set of points in PLP

satisfying all disjunctive cuts obtained from this disjunction. Also note that, by definition, this set equals the
convex hull of points in PLP not contained in ℝn+l ∖D.

Disjunctive cuts can also be seen as lattice-free cuts. Given a set B ⊆ ℝn, we call B strictly lattice-free
if B ∩ ℤn = ∅, and we say that B is lattice-free if int(B) ∩ ℤn = ∅, where int(B) stands for the points in
the interior of B. Thus a lattice-free set may have integral points on its boundary. If B is strictly lattice-free,
we define P ′(B) as

P ′(B) = conv
(
PLP ∖ (B × ℝl)

)
⇒ P ⊆ P ′(B),

and any inequality valid for P ′(B) is called a lattice-free cut derived from the set B. Note that the definition
of a lattice-free cut above is seemingly different from most recent work starting with [2] where convex sets
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which have strictly lattice-free interior are called lattice-free sets and cuts derived from these sets are called
lattice-free cuts. We will observe shortly that there is no distinction between these definitions.

It is easy to see that a disjunctive cut derived from the disjunction Dx × ℝl is a lattice-free cut derived
from the set ℝn ∖Dx. Consequently, all disjunctive cuts are lattice-free cuts. As we discuss below, it is also
possible to show that valid inequalities obtainable as lattice-free cuts from convex, strictly lattice-free sets
are disjunctive cuts. Therefore all lattice-free cuts are disjunctive cuts. Before establishing the equivalence
between lattice-free and disjunctive cuts we first make an important observation which we use throughout
the paper:

Observation 2.1. Let D = Dx ×ℝl be a disjunction and let B be a strictly lattice-free set. If Dx ∩B = ∅,
then any lattice-free cut derived from B is a disjunctive cut obtained from D, i.e. PD ⊆ P ′(B).

Let cTx+ dT y ≥ f be a given valid inequality for P and let V ⊆ ℝn be the points in PLP that violate
this inequality. In other words,

V = {(x, y) ∈ PLP : cTx+ dT y < f}. (1)

Furthermore, let V x ⊂ ℝn denote the projection of the set V in the space of the integer variables and note
that V x ∩ ℤn = ∅. It is known that V x is defined by a finite collection of strict and non-strict rational
inequalities, see [12]. Jörg [19] observes that the set V x is contained in the interior of a polyhedral lattice-
free set. In other words, there is a rational polyhedral set B = {x ∈ ℝn : �Ti x ≥ i, i ∈ K}, where
�i ∈ ℤn and i ∈ ℤ for all i ∈ K, such that int(B) ∩ ℤn = ∅ and

V x ⊆ int(B) = {x ∈ ℝn : �Ti x > i, i ∈ K}.

Therefore cTx + dT y ≥ f is valid for P ′(int(B)) ⊆ P ′(V x). Based on this observation, Jörg then argues
that

D =
∪
i∈K
{(x, y) ∈ ℝn+l : �Ti x ≤ i} (2)

defines a valid disjunction and the cut cTx + dT y ≥ f is a disjunctive cut derived from the disjunction D.
Therefore, any valid inequality for P , and in particular, any facet-defining inequality for P is a disjunctive
cut for some disjunction D (and therefore a lattice-free cut derived from some convex lattice-free set). We
emphasize that this approach is not prescriptive in the sense that the disjunction D is defined using the valid
inequality cTx+ dT y ≥ f and not the other way around.

2.2 Multi-branch split disjunctions

We next discuss simple disjunctions D for which it is easy to verify that ℤn × ℝl ⊆ D. The building block
of these disjunctions is a split disjunction which is a disjunction with two atoms D1, D2, where

D1 = {(x, y) ∈ ℝn+l : �Tx ≤ } and D2 = {(x, y) ∈ ℝn+l : �Tx ≥  + 1}

for some � ∈ ℤn,  ∈ ℤ. We denote this disjunction as D(�, ), and define the associated split set as

S(�, ) = ℝn ∖D(�, ) = {(x, y) ∈ ℝn+l :  < �Tx <  + 1}.

Clearly if x ∈ ℤn then �Tx ∈ ℤ implying that �Tx either satisfies �Tx ≤  or �Tx ≥  + 1 and therefore
D(�, ) is a valid disjunction. Split disjunctions were introduced by Cook, Kannan, and Schrijver [9]. We
will denote the closure of the set S(�, ) by S̄(�, ).
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Li and Richard [23] defined a generalization of split disjunctions called t-branch split disjunctions. Let
�i ∈ ℤn and i ∈ ℤ for i = 1, . . . , t. Then,

D(�1, . . . , �t, 1, . . . , t) =
∪

S⊆{1,...,t}

{(x, y) ∈ ℝn+l : �Ti x ≤ i if i ∈ S, �Ti x ≥ i + 1 if i ∕∈ S} (3)

is called a t-branch split disjunction. Clearly a split disjunction is simply a 1-branch split disjunction.
Further,

ℝn+l ∖D(�1, . . . , �t, 1, . . . , t) =
∪

i=1,...,t

S(�i, i).

In other words, the complement ofD(�1, . . . , �t, 1, . . . , t) can be expressed as the union of t split sets and
is thus trivially lattice-free, and therefore D(�1, . . . , �t, 1, . . . , t) defines a valid disjunction. On the other
hand, verifying that a disjunction of the type (2) used by Jörg is valid requires solving an integer program.

A t-branch split disjunction has at most 2t atoms. If the vectors �1, . . . , �t defining a t-branch split dis-
junction are linearly independent, then each atom of the disjunction is guaranteed to be full-dimensional.We
refer to disjunctive cuts obtained from t-branch split disjunctions as t-branch split cuts.

2.3 Asymmetric multi-branch split disjunctions

It is possible to generalize multi-branch split disjunctions by using the “cutting-plane tree” approach de-
scribed in Chen, Küçükyavuz, and Sen [8]. This gives a more general family of disjunctions compared with
the asymmetric disjunctions described in [11]. We say that D is an asymmetric multi-branch split disjunc-
tion (or, branching disjunction for short) if there exists an associated rooted binary tree such that (i) the
leaf nodes of the binary tree correspond to the atoms of the disjunction, (ii) the root node corresponds to
the space of integer variables, and, (iii) each set associated with a non-leaf node is subdivided into two
sets using a split disjunction and the new sets are associated with the offsprings of the current node. In
other words, a branching disjunction is a disjunction which can be constructed by recursively applying split
disjunctions. We will briefly consider such disjunctions only in Section 5.

By this definition, a t-branch split disjunction is a special kind of branching disjunction where the same
split disjunction is used to subdivide the sets associated with nodes at the same level of the binary tree.

3 Expessing valid inequalities as t-branch split cuts

In this section we show that any valid inequality for P can be expressed as a t-branch split cut for some t.
Such a result is implied by the work of Chen, Küçükyavuz, and Sen [8] when P is a bounded set; in this
case the vectors �1, . . . , �t defining the disjunction can be assumed to be unit vectors. However t in this
case depends on the data defining P . We will next remove the boundedness condition on P and also remove
the dependence of t on the data defining P .

To show that a given valid inequality is a t-branch split cut for some t, we will consider the strictly
lattice-free set V x defined in (1) on the space of integer variables, and cover it by the union of t split sets.

Given a closed, bounded, convex set (or convex body) B ⊆ ℝn and a vector c ∈ ℤn, let the lattice width
of B along the direction c, denoted by w(B, c), be defined as

w(B, c) = max{cTx : x ∈ B} −min{cTx : x ∈ B}. (4)

5



The lattice width of B, denoted here as w(B), is defined as

w(B) = min
c∈ℤn∖{0}

w(B, c).

If the set is not closed, we define its lattice width to be the lattice width of its closure.
Lenstra [22] gave a polynomial-time algorithm to solve the feasibility version of integer programs in

fixed dimension. Given a polyhedron, Lenstra’s algorithm either finds an integral point contained in the
polyhedron or certifies that no such point exists. A central component of this algorithm is the use of algo-
rithmic versions of Khinchine’s flatness theorem. The flatness theorem shows that there exists a function
f(⋅) : ℤ+ → ℝ+ such that for any strictly lattice-free bounded convex set B ⊆ ℝn,

w(B) ≤ f(n).

Notice that the function f(⋅) only depends on the dimension of B and not on the complexity of the body
B. In [22], Lenstra uses this result to construct a finite enumeration tree to solve the integer feasibility
problem. The number of nodes in the tree is bounded above by a function of n which again is independent
of the complexity of the body B. Modifying Lenstra’s idea slightly, we later show that every lattice-free
convex body in ℝn can be covered by the union of t split sets, where t is essentially the maximum number
of enumeration nodes used in Lenstra’s algorithm.

Lenstra showed that f(n) ≤ 2n
2
, which was later improved to f(n) ≤ c0(n + 1)n/2 by Kannan and

Lovász [20] for some constant c0. This bound was subsequently improved by Banaszczyk, Litvak, Pajor,
and Szarek to O(n3/2) and by Rudelson [27] to O(n4/3 logc n) for some constant c. The constant c0 used
by Kannan and Lovász [20] is c0 = max{1, 4/c1} where c1 is another constant defined by Bourgain and
Milman [7]. Independent of the value of c1, the constant c0 ≥ 1 and therefore the upper bound defined by
Kannan and Lovász on the lattice width is at least 3 for ℝ2 and at least 6 for ℝ3. For ℝ2, Hurkens [17]
proved that f(2) ≤ 1 + 2/

√
3 ≈ 2.1547, and showed that this bound is tight. More precisely he showed the

following result.

Theorem 3.1. [17] If B ∈ ℝ2 is lattice-free, then w(B) ≤ 1 + 2√
3
. Furthermore there exists B for which

the bound is tight. In addition, if w(B) = 1 + 2√
3

then B is a triangle with vertices q1, q2, q3 such that (let
q4 := q1)

1√
3
qi + (1− 1√

3
) qi+1 = bi, for i = 1, 2, 3.

where bi ∈ ℤ2 for i = 1, 2, 3.

By taking b1 = (0, 0)T , b2 = (0, 1)T , and b3 = (1, 0)T in the above description, one obtains a triangle
T ∈ ℝ2 with w(T ) = 1 + 2√

3
. It is easy to check that the three vertices q1, q2, q3 of this triangle are given

by the columns of the following matrix:

1

3

(
2 −1−

√
3 2 +

√
3

−1−
√

3 2 +
√

3 2

)
.

Furthermore, T is a so-called type 3 maximal lattice-free triangle that contains the lattice points b1, b2 and
b3 in the relative interior of its sides. As shown in Figure 1, T does not contain any other lattice points.

Recently, Averkov, Wagner and Weismantel [3] enumerated all maximal lattice-free bodies in ℝ3 with
integer vertices up to unimodular transformations. From their catalogue, one can easily see that the lattice
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x1

x2

q1

q2

q3

Figure 1: The lattice-free triangle T

width of such bodies does not exceed three in ℝ3. However, in ℝ3, it is not hard to construct lattice-free
bodies with lattice width slightly greater than 3. Recall the vectors q1, . . . , q3 ∈ ℝ2 which define the vertices
of the triangle T . Consider the tetrahedron H with vertices s1, . . . , s4, where s4 = (0, 0, 2 + 2/

√
3), and

s1, s2, s3 are points on the plane {x : x3 = 0} such that the points (1, qi) ∈ ℝ3 lie on the line segment from
si to s4. See Figure 2. By definition, H ∩ {x : x3 = 1} is congruent to T . It is easy to verify that H has
lattice width 2 + 2/

√
3 ≈ 3.1547. We do not know of any result analogous to Hurkens’ result which gives

the best possible value of the lattice width in ℝ3.

s4

s1

s2

s3

q1

q2

q3

Figure 2: A lattice-free tetrahedron in R3 with lattice width 2 + 2/
√

3

Using the best known value for c1, and refining the result of Kannan and Lovász slightly, we next give
an upper bound in ℝ3 on the lattice width of strictly lattice-free convex bodies. We need a few definitions to
give the result and its proof. In [7], Bourgain and Milman show that if K ∈ ℝn is a convex body symmetric
about the origin and K∗ is its polar body, i.e., K∗ = {y ∈ ℝn : yTx ≤ 1 ∀x ∈ K}, then

vol(K)vol(K∗) ≥
(c1

n

)n
(5)

where vol(K) stands for the volume of K and c1 > 0 is a universal constant that does not depend on n.
If S and T are subsets of ℝn, and � is a real number, then let S + T = {s + t : s ∈ S, t ∈ T}, and let
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�S = {�s : s ∈ S}. S − T is similarly defined. For a convex body B in ℝn, let �j(B) be defined as

�j(B) = inf{t ∈ ℝ : tB + ℤn intersects every (n− j)-dimensional affine subspace of ℝn},

where inf is short for infimum. Therefore, �n(B) is the essentially the smallest t such that tB + ℤn = ℝn,
and is called the covering radius of B. Clearly �n(B) ≥ 1 if B is lattice-free and convex and �n(B) > 1 if
B is a strictly lattice-free convex body. Let

�1(B) = inf{t ∈ ℝ : t(B −B) contains a nonzero integer vector}.

Theorem 3.2. If B ∈ ℝ3 is lattice-free, then w(B) ≤ 1 + 2/
√

3 + (90/�2)
1
3 ≈ 4.2439.

Proof. We first define functions �0, �1 : ℤ+ → ℝ+ that we will use instead of the universal constants c0

and c1. Let Bn stand for the unit ball in ℝn and define

�1(n) = n
(2n(n!)2

(2n)!
vol(Bn)2

) 1
n

and let �0(n) = 4/�1(n). Subsequently, we will refer to c0 as the least upper bound on �0(n) for all n, and
c1 as the largest lower bound on �1(n) for all n.

In [21], Kuperberg gave the best-known value for c1 and showed that if K is a convex body symmetric
about the origin, then

vol(K)vol(K∗) ≥ 2n(n!)2

(2n)!
vol(Bn)2.

Using our notation, this can be rewritten as

vol(K)vol(K∗) ≥
(
�1(n)

n

)n

(6)

which is identical to (5) except the universal constant c1 is now replaced with the function �1(n).
In [20], Kannan and Lovász show that �1(B)w(B) ≤ 4/(vol(B −B)vol((B −B)∗)1/n which implies

that

w(B) ≤ 4n

�1(B)�1(n)
=
n�0(n)

�1(B)

by (6). In addition (in Lemma 2.3) they also show that �1(B) = 1/w(B) and therefore, substituting out
w(B) from the inequality above, we obtain �1(B) ≤ n�0(n)�1(B).

Now combining �n(B) ≤ �n−1(B) + �1(B) [20, Lemma 2.5] with the fact that �2(B) ≤ (1 +
2/
√

3)�1(B) (see [20, p 587]) we obtain

�3(B) ≤ �2(B) + �1(B) ≤ (1 + 2/
√

3)�1(B) + �1(B) ≤ (1 + 2/
√

3 + 3�0(3))�1(B).

As 1 ≤ �3(B) for a lattice-free body in ℝ3, we have

1

�1(B)
= w(B) ≤ 1 + 2/

√
3 + 3�0(3)

Substituting �0(3) = (10/3�2)
1
3 ≈ 0.6964 we obtain the desired value.
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We can similarly refine the lattice-width bound in [20] in higher dimensions. Lemma 2.6 in [20] asserts
that �j+1(B) ≤ �j(B) + (j + 1)c0�1(B) for j = 1, . . . , n − 1. In [20, Theorem 2.7], the authors use the
previous inequality to show that if B ⊆ ℝn, then

�n(B) ≤ (1 + c0

n∑
i=2

i)�1(B)⇒ �n(B) ≤ c0n(n+ 1)/(2w(B)) as �1(B) = 1/w(B), if c0 ≥ 1.

Looking at the proofs of Lemma 2.6 and Lemma 2.5, and the fact that �1(B) ≤ �0(n)n�1, one can replace
Lemma 2.6 by

�j+1(B) ≤ �j(B) + (j + 1)�0(j + 1)�1(B) for j = 1, . . . , n− 1⇒

�n(B) ≤ (1 + 2/
√

3 +
n∑

i=3

i�0(i))/w(B),

and therefore w(B) ≤ 1 + 2/
√

3 +
∑n

i=3 i�0(i) for lattice-free bodies in ℝn. As �0(4) ≈ 0.6510, we can
conclude that if B ⊆ ℝ4 and B is convex and lattice-free, then w(B) ≤ 6.8481.

In the remainder of the section, we do not use any specfic bound on the lattice width, but just use f(n)
to stand for a function which gives an upper bound on the lattice width of strictly lattice-free bodies in ℝn.
We use the precise values for ℝ2 and ℝ3 in Section 5.

Lemma 3.3. Let B be a bounded, strictly lattice-free convex set in ℝn. Then B is contained in the union of
at most Πn

k=1(2 + ⌈f(k)⌉) split sets.

Proof. Let g(n) stand for the minimum number of split sets required to cover any bounded, strictly lattice-
free convex set in ℝn. It is easy to see that g(n) is an non-decreasing function of n and g(1) = f(1) = 1.
Thus the result is trivially true when n = 1. Assume it is true for all dimensions up to n− 1 and consider a
bounded, strictly lattice-free convex set B ⊆ ℝn. By Khinchine’s flatness result, there is an integer vector
a ∈ ℤn such that f(n) ≥ u − l where u = max{aTx : x ∈ B} and l = min{aTx : x ∈ B}. Clearly,
B ⊆ {x ∈ ℝn : l ≤ aTx ≤ u} ⊆ {x ∈ ℝn : ⌊l⌋ ≤ aTx ≤ ⌈u⌉}.

Let U be the collection of the split sets S(a, b) for b ∈ V = {⌊l⌋, . . . , ⌈u⌉ − 1} and notice that

B ∖
∪
b∈V

S(a, b) =
∪
b∈V̄

{x ∈ B : aTx = b}

where V̄ = {⌈l⌉, . . . , ⌊u⌋}. Each one of the ∣V̄ ∣ sets in the right hand side of this expression is strictly
lattice-free, has dimension at most n − 1 and, by induction, can be covered by a collection of at most
g(n− 1) split sets in ℝn−1. Each of these lower dimensional split sets can trivially be extended to a split set
in ℝn and added to U . Therefore the resulting collection U has size at most ∣V ∣+ ∣V̄ ∣g(n− 1). Notice that

u− l ≤ f(n) =⇒ ⌈u⌉ − ⌈l⌉ ≤ ⌈f(n)⌉,

and ∣V ∣, ∣V̄ ∣ ≤ ⌈u⌉ − ⌈l⌉+ 1. Consequently, ∣V ∣, ∣V̄ ∣ ≤ ⌈f(n)⌉+ 1 and the set U (and therefore g(n)) has
size at most (⌈f(n)⌉+ 1)(1 + g(n− 1)). Let f̄n stand for 1 + ⌈f(n)⌉. Expressing g(i) in terms of f(i) for
i = n− 1, . . . , 1, and using the fact that g(1) = f(1) = 1, we obtain

g(n) ≤ f̄n + f̄nf̄n−1 + f̄nf̄n−1f̄n−2 + . . .+ Πn
i=1f̄i ≤ Πn

i=1(1 + f̄i),

and the desired bound follows.
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The previous result obviously also holds for the interior of any bounded (maximal) lattice-free convex
in ℝn. If the strictly lattice-free convex set is unbounded, additional conditions are needed for Lemma 3.3
to hold; the conditions we choose may not be the least restrictive but suffice for our purpose. Lovász [24]
showed that any maximal lattice-free convex set is a polyhedron. Furthermore, if such a set is unbounded,
then it is either an irrational hyperplane or it is full-dimensional and it can be expressed as Q+ L where Q
is a polytope and L a rational linear space. In the latter case, Q + L is called a cylinder over the polytope
Q. Also see Basu et. al. [6] for a more recent and complete proof of Lovász’s result.

Lemma 3.4. Let B be a strictly lattice-free, convex, unbounded set in ℝn which is contained in the interior
of a maximal lattice-free convex set. Then B can be covered by Πn

k=1(2 + ⌈f(k)⌉) split sets.

Proof. Let B′ be a maximal lattice-free convex set containing B in its interior; then B′ is full-dimensional.
By Lovász’s result, B′ = Q + L, where L is rational, dim(L) = r > 0, and Q is a lattice-free polytope
contained in the orthogonal complement of L and has dimension n − r. Furthermore, B is contained in
int(Q) + L. As L is rational, we can define a n × n unimodular matrix such that every point in the set
UQ = {Ux : x ∈ Q} has its last r components zero. Further UQ is lattice-free, and the previous theorem
gives t = Πn−r

k=1(2 + ⌈f(k)⌉) split sets in ℝn−r whose union covers the projection of int(UQ) on the first
n − r components. Let S(�i, i) be the ith split set in the above union. Let S(�′i, i) be the corresponding
split set in ℝn which is defined as follows: �′i is obtained by appending r zeros to �i and then multiplying
by U−1. It is easy to see that int(Q) + L and therefore B is covered by ∪ti=1S(�′i, i).

Using the bound of Rudelson cited above, we get an exponential upper bound on the number of split
sets needed to cover a strictly lattice-free convex set (which is at least O(n!4/3)). We will give a (smaller)
exponential lower bound in the next section.

Now let cTx + dT y ≥ f be a non-trivial valid inequality for conv (P ), i.e., cTx + dT y ≥ f is not
valid for PLP , but is valid for conv (P ). Let V ⊆ ℝn+l be defined as in (1), and let V x be defined as
the projection of V on the space of the integer variables. V x is strictly lattice-free, and is non-empty as
cTx + dT y ≥ f is not valid for PLP . As we discussed earlier, Jörg [19] showed that V x is contained in
the interior of a lattice-free rational polyhedron B ⊆ ℝn, and thus in the interior of a maximal lattice-free
convex set. Depending on whether V x is bounded or unbounded, we can use either of the previous two
lemmas to obtain the following result.

Theorem 3.5. Every facet-defining inequality for P is a t-branch split cut for t = Πn
k=1(2 + ⌈f(k)⌉).

We observed earlier that Jörg’s results already express every facet-defining inequality as a disjunctive
cut. The previous theorem gives an alternative expression of every facet-defining inequality as a disjunctive
cut. A nice aspect of this alternative expression is that the validity of the disjunction is obvious and need not
be verified.

We note that one can easily obtain finite disjunctive cutting-plane algorithms for arbitrary MIPs based
on Theorem 3.5. We will describe such an algorithm based on Theorem 3.5, which is however of purely
theoretical interest, and is not likely to be practical.

Theorem 3.6. The mixed-integer program

min{cTx+ dT y : (x, y) ∈ P}, where P = {(x, y) ∈ ℤn × ℝl : Ax+Gy = b, y ≥ 0},

and A,G and b, c, and d have rational components, can be solved in finite time via a pure cutting-plane
algorithm which generates only t-branch split cuts.
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Proof. Let t = Πn
i=1(2+⌈f(i)⌉). We will represent any t-branch split disjunctionD(�1, . . . , �t, 1, . . . , t)

by a vector v in ℤ(n+1)t; the components of �1, . . . , �t are arranged as the first nt components of v, and
1, . . . , t form the last n components. Let Ω = ℤ(n+1)t. As Ω is a countable set, by definition the vectors
in Ω can be arranged in a sequence {Ωi}, say by increasing norm. Further let Di be the t-branch split
disjunction defined by Ωi. For any facet-defining inequality of conv (P ), there exists a (finite) integer k
such that the inequality is a t-branch split cut defined by the disjunction Dk. Let k∗ be the largest index of
a disjunction associated with facet-defining inequalities. Now consider the following algorithm which does
not compute or use the value of k∗. Let P0 denote the continuous relaxation of P .

Repeat the following two steps for i = 1, 2, . . .

1. Compute Pi = Pi−1 ∩ conv (P0 ∩Di) .

2. If the basic optimal solution of min{cTx+ dT y : (x, y) ∈ Pi} is integral, terminate.

As Pi is a relaxation of P , an integral optimal solution over Pi is also an optimal solution over P . Further,
as Pk∗ = conv (P ), the algorithm must terminate for some i ≤ k∗.

If one wants to check validity of a given inequality, the termination criterion in the above algorithm can
be modified to check it. Finally, if one wants to compute conv (P ), then the termination criterion can be
changed to verifying that all vertices of Pi are integral.

We also note that it is possible to produce a similar algorithm using Jörg’s characterization, except one
needs an additional step to verify the validity of each potential disjunction.

4 Results on covering lattice-free sets with split sets

In this section, we construct a lattice-free set in ℝn that cannot be covered by fewer than Ω(2n) split sets.
Clearly our lower bound is significantly smaller than the upper bound presented in the previous section and
we believe that the best upper bound is likely to be considerably closer to our lower bound.

Recall that S(a, b) = {x ∈ ℝn : b < aTx < b + 1} is an open set. Given an integer vector a ∈ ℤn,
we will refer to the collection of split sets {S(a, b) : b ∈ ℤ} as the family of split sets defined by a. We
also refer to a as the defining vector of these split sets, and denote this fact using a function d.v.(⋅) where
d.v.(S(a, b)) = a. We denote the Euclidean norm of a by ∣∣a∣∣, and the set of all split sets in ℝn by Sn.

Definition 4.1. Let K be a compact set in ℝn and let " > 0 be given. We define ℒ(K, ") as the collection of
vectors a ∈ ℤn such that, for some b ∈ ℤ, the volume of K ∩ S(a, b) is at least ".

Note that ℒ(K, ") can be empty, for example if " is greater than the volume of K.

Lemma 4.2. For any compact set K ⊂ ℝn and any number " > 0, the list ℒ(K, ") is finite.

Proof. Let l ∈ ℝ be an upper bound on the (n− 1)-dimensional volume of the intersection of a hyperplane
of dimension n − 1 with B. Clearly, for any vector a ∈ ℤn, the distance between two parallel hyperplanes
of the form {x : aTx = b} and {x : aTx = b + 1} is 1/∣∣a∣∣. Therefore, if l/" < ∣∣a∣∣, the volume of the
intersection of a split set S(a, b) (for some b ∈ ℤ) with K is at most l/∣∣a∣∣ < ". Therefore ℒ(K, ") is a
subset of {a ∈ Zn : ∣∣a∣∣ ≤ l/"} and is a finite set.

For a triangle in ℝ2, we can assume the number l in the proof of the previous lemma equals the length
of the longest side.
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Lemma 4.3. Let T be the triangle defined in the previous section with lattice width 1 + 2/
√

3. Then there
exists an " > 0 such that T ∖ (S(a1, b1) ∪ S(a2, b2)) has area at least " for every a1, a2 ∈ ℤ2 and every
b1, b2 ∈ ℤ.

Proof. As discussed in the previous section, T is a maximal lattice-free triangle of type 3. It is known
from results in [11] that the interior of T is not contained in the union of two split sets defined by linearly
independent vectors. On the other hand, as w(T ) > 2, the interior of T is not contained in the union of two
split sets defined by linearly dependent vectors.

Consider the list ℒ(T, 1/2) and note that the list is not empty as the intersection of the split set {x ∈
ℝn : 0 < x1 < 1} with T has area at least 1/2, and thus its defining vector belongs to ℒ(T, 1/2). As this
list is finite, one can find a split set that has the largest intersection (in terms of area) with T . Let "1 > 0 be
the area left uncovered by this split set. Remember that the split sets not contained in the list ℒ(T, 1/2) can
cover an area of T less than the ones contained in the list and consequently, the minimum area of T that is
left uncovered by any split set (including the ones not contained in the list) is "1.

Now consider the list of split sets ℒ(T, "1/2). Let "2 be the area of T left uncovered by any two split
sets from this list. As the list is finite, "2 can be computed and as T cannot be covered by the union of two
split sets, "2 > 0. Now consider any two split sets, not necessarily from the list ℒ(T, "1/2). If they both
belong to the list, then they leave at least "2 > 0 of the area of T uncovered. If, on the other hand, at least
one of them, say the second one, does not belong to the list, notice that the first split set cannot cover at least
"1 of the area, and the second split set can cover at most "1/2 of the area. Consequently, any two split sets
have to leave "3 = min{"1/2, "2} > 0 of the area of T uncovered.

Lemma 4.4. There exists a rational, strictly lattice-free triangle in ℝ2 such that for some " > 0, the area
left uncovered by any two split sets is at least ".

Proof. Note that that T contains lattice points on its boundary but shrinking it slightly, and tilting the sides
by a small amount, one can obtain a strictly lattice-free triangle T ′ whose sides are defined by rational
equations, and the area(T ′ ∩ T ) is at least (1 − "3/2)area(T ). The proof can be completed by setting
" = "3/2.

Definition 4.5. We say that a set A ⊂ ℝn can be weakly covered by j split sets if there exist split sets
S1, . . . , Sj ∈ Sn such that the volume of A ∖ (S1 ∪ . . . ∪ Sj) is zero.

Recall that any lattice-free set in ℝ2 can be weakly covered by three split sets, but the triangle in the
previous lemma cannot be weakly covered by two split sets.

Lemma 4.6. Let K be a compact set in ℝn that cannot be weakly covered by any collection of m− 1 split
sets in Sn and let l be some fixed constant. Then there exists a finite set such that for any l split sets which
cover K, the defining vectors of at least m of them are contained in this set.

Proof. We use induction with respect to m and construct a family of sets Σ(K, l,m) satisfying the desired
property.

(i) If m = 1 then at least one split set in a weak covering of K by l split sets must cover a volume of
volK
l of K and therefore we choose

Σ(K, l, 1) = ℒ(K,
volK

l
),

which is finite by Lemma 4.2.
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(ii) m⇒ m+ 1.
For some m ≥ 1, assume the result has been proved for all compact sets that cannot be weakly
covered by m − 1 split sets. Let K be a compact set that cannot be weakly covered by m split sets.
Let � be a collection of l split sets weakly covering K. Let S0 ∈ � be a split set whose intersection
with K has the greatest volume of all split sets in �. Then vol(K ∩ S0) ≥ volK

l and therefore
d.v.(S0) ∈ ℒ(K, volK/l). The set K ∖ S0 is a compact set which is weakly covered by � ∖ {S0}.
Further, K ∖ S0 cannot be weakly covered by m − 1 split sets, otherwise K can be weakly covered
by m split sets. By induction, there exists a finite set Σ(K ∖ S0, l − 1,m) such that at least m of the
split sets in � ∖ {S0} have their defining vectors in Σ(K ∖ S0, l − 1,m). We take

Σ(K, l,m+ 1) = ℒ(K,
volK

l
)

∪
S∈Sn:vol(K∩S)≥ volK

l

Σ(K ∖ S, l − 1,m)

which is a finite union of finite families of sets.

Given an n× n matrix M and a set S ⊆ ℝn, we define MS = {Ms : s ∈ S}.

Lemma 4.7. Given any two finite sets of vectors V = {v1, . . . , vk} ⊆ ℤ2 ∖ {0}, W = {w1, . . . , wm} ⊆
ℤ2 ∖ {0}, there exists an unimodular matrix M such that MV ⊆ ℤ2 ∖ {0} and MV ∩W = ∅.

Proof. Let q be the largest absolute value of the coefficients of the vectors v1, . . . , vk, w1, . . . , wm. Then let

M =

(
1 �
� �2 + 1

)
where � = 3q.

Clearly M is an unimodular matrix. To see that Mv ∕∈W for v ∈ V let v = (v1, v2)T ∈ V . Denote the first
row of Mv by � which equals v1 +�v2. If ∣v2∣ ≥ 1, then � is a nonzero integer as ∣v1∣ < �. If v2 = 0, then
� equals v1 which is nonzero as every vector in S is nonzero.

The second row of Mv equals �(v1 + �v2) + v2 = ��+ v2. As ∣�∣ ≥ 1, ∣v2∣ ≤ q and � = 3q, we have
∣��+ v2∣ ≥ 3q − q > q. Thus ∣∣Mv∣∣∞ > q and therefore Mv can not belong to W .

In the next Lemma we use some elementary properties of unimodular transformations. First note that
any split set remains a split set under a unimodular transformation. Also, remember that the volume of a
bounded set stays the same after a unimodular transformation. In particular, given a bounded set A and a
split set S ∈ Sn, the volume of A ∩ S is the same as that of MA ∩MS provided that M is a unimodular
matrix of appropriate dimension.

Lemma 4.8. Given any integers l, k > 0, there exist rational, strictly lattice-free triangles T1, . . . , Tk ⊆ ℝ2

which cannot be weakly covered by two split sets with the property that the sets Σ(T1, l, 3), . . . ,Σ(Tk, l, 3)
are pairwise-disjoint.

Proof. Let T1 be the strictly lattice-free triangle constructed in Lemma 4.4. Given any " > 0 and any 2× 2
unimodular matrix N , clearly NT1 is strictly lattice-free. Further, one can easily verify that ℒ(NT1, ") =
Nℒ(T1, "). From the proof of Lemma 4.6, and by induction, it follows that Σ(T1, l, 3) can be expressed
as the union of finitely many lists of the form ℒ(K ′, "′), where K ′ is obtained from T1 by subtracting up
to two split sets in S3 from T1, and "′ is some number. Therefore, we can conclude that Σ(NT1, l, 3) =
NΣ(T1, l, 3) for any integer l > 0.
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We will now construct unimodular matrices N1, . . . , Nk, where N1 is the identity matrix, such that the
triangles Ti = NiT1 for i = 1, . . . , k, have the desired property. Consider any k > 1, and assume we have
constructed N1, . . . , Nk−1. Let V = Σ(T1, l, 3), and let W = ∪k−1

i=1 Σ(NiT1, l, 3). By Lemma 4.7, we can
construct a unimodular matrix Nk such that NkV = Σ(NkT1, l, 3) has no elements in common with W .
The result follows by induction with respect to k.

For any n ≥ 2, setting l = 3×2n−2−1 and k = 2n−2 in Lemma 4.8, we get triangles T1, T2, . . . , T2n−2

such that no triangle Ti can be weakly covered by two split sets and such that for i ∕= j the intersection
Σ(Ti, 3× 2n−2− 1, 3)∩Σ(Tj , 3× 2n−2− 1, 3) = ∅. For an integer Δ ∈ {0, . . . , 2n−2− 1}, let �l stand for
the lth bit in the binary expansion of Δ in n− 2 bits. In other words, Δ =

∑n−3
l=0 �l2

l with each �l ∈ {0, 1}.
For each Δ ∈ {0, . . . , 2n−2 − 1}, we define corresponding (2-dimensional) planes

VΔ := {(�0, . . . , �n−3, x, y)∣x, y ∈ ℝ}

and a triangle in each plane

TΔ = {(�0, . . . , �n−3, x, y)∣(x, y) ∈ T1+Δ}.

Let T = conv

(
2n−2−1∪

Δ=0

TΔ

)
.

Lemma 4.9. T is a strictly lattice-free rational polytope.

Proof. By construction, T is a rational polytope as it is the convex hull of finitely many rational polytopes.
If v ∈ ℤn is an integer point in T, the first n − 2 components of v must be 0-1, and thus v ∈ VΔ for some
0 ≤ Δ < 2n−2. But, by construction, T ∩ VΔ = TΔ, which is strictly lattice-free.

Let Π : ℝn → ℝ2 denote projection to the first two coordinates.

Lemma 4.10. Let S = S(a, b) be a split set in ℝn where a = (�1, . . . �n) ∈ ℤn and b ∈ ℤ. Let Δ ∈
{0, . . . , 2n−2 − 1}. If �n−1 = �n = 0 then S ∩ VΔ = ∅. Otherwise Π(S ∩ VΔ) is a split set in ℝ2 with
defining vector (�n−1, �n)T .

Proof.

S ∩ VΔ = {(�0, . . . , �n−3, x, y) : b−
n−3∑
l=0

�l�l < �n−1x+ �ny < b+ 1−
n−3∑
l=0

�l�l}.

If �n−1 = �n = 0, then �n−1x+�ny = 0, but 0 is not strictly contained between two consecutive integers,
and thus S ∩ VΔ = ∅. If (�n−1, �n) ∕= (0, 0), then S ∩ VΔ is a nonempty split set and its defining vector is
(�n−1, �n)T .

For a split set S in ℝn, we define Π̂(S ∩ VΔ) to be d.v.(Π(S ∩ VΔ)); if S ∩ VΔ = ∅, then we set
Π̂(S ∩ VΔ) = (0, 0)T .

Theorem 4.11 (Lower bound result). T is a strictly lattice-free rational polytope in ℝn which cannot be
covered by fewer than 3× 2n−2 split sets.
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Proof. By contradiction. Let us suppose that T is covered by a collection � of fewer than 3 × 2n−2 split
sets. Let Δ ∈ {0, . . . , 2n−2 − 1}. Then T ∩ VΔ = TΔ. Since TΔ is covered, by construction at least three
split sets S1, S2, S3 ∈ � satisfy Π̂(Si ∩ VΔ) ∈ Σ(T1+Δ, 3× 2n−2 − 1, 3) for i = 1, 2, 3.

By Lemma 4.10, the collection of vectors {Π̂(S ∩ VΔ) : S ∈ �} does not depend on Δ. The sets
Σ(T1+Δ, 3 × 2n−2 − 1, 3), for Δ = 0, . . . , 2n−2 − 1, are pairwise disjoint. Therefore, there are at least
3× 2n−2 sets in �, a contradiction.

For a convex body A and a point x, let dist∞(x,A) stand for the l∞ distance of the point x from A.

Definition 4.12. Let A ∈ ℝn be a convex set. Then the l∞ "-neighborhood of A is the set D"(A) = {x :
dist∞(x,A) ≤ "}.

The l∞ "-neighborhood of a convex set is always convex, and the if " is a rational number then the
"-neighborhood of a rational polytope is again a rational polytope. In the latter case, the l∞ "-neighborhood
is the convex hull of the l∞ "-neighborhoods of the vertices of the polytope.

Remark 4.13. As the polytope T is at a positive distance, say "′ from every lattice point, for any rational
" < "′, the l∞ "-neighborhood of T is a rational polytope which is strictly lattice-free. Therefore, the
interior of a maximal lattice-free set containing D"(T) cannot be covered by fewer than 3× 2n−2 split sets.

In ℝ3, Theorem 4.11 yields a strictly lattice-free rational polytope which needs 6 split sets to cover it.
We can improve this number by one (in general, we can improve the bound in Theorem 4.11 by one too).

Theorem 4.14. In ℝ3, there is a strictly lattice-free rational polytope which cannot be covered by fewer
than 7 split sets.

Proof. Let T0 and T1 be triangles in ℝ2, constructed using Lemma 4.8, such that each triangle cannot be
weakly covered by two split sets and Σ(T0, 6, 3) ∩ Σ(T1, 6, 3) = ∅. Let

Vi = {(x, y, i)∣x, y ∈ ℝ} and Ti = {(x, y, i)∣(x, y) ∈ Ti} for i = 0, 1.

In addition let Q = {(x, y) : 0 ≤ x, y ≤ 7}. Q has an area of 49, but the area of Q covered by any
(translated) split set in ℝ2 is at most 7, and hence at least 7 such (translated) split sets are needed to cover
Q. Finally, let T′ = conv

(
T0,T1, Q

1/2
)
, where Q1/2 = {(x, y, z) : 0 ≤ x, y ≤ 7, z = 1/2}. We will

show that T′ has the desired property.
Assume that � is a collection of six split sets in ℝ3 which covers T′. It is clear from the proof of

Theorem 4.11, that there must be three distinct split sets S1, S2, S3 in � such that Π̂(Si ∩ V0) ∈ Σ(T0, 6, 3)
for i = 1, 2, 3. Similarly, there must be three distinct split sets S′1, S

′
2, S
′
3 such that Π̂(S′i∩V1) ∈ Σ(T1, 6, 3)

for i = 1, 2, 3. As Σ(T0, 6, 3)∩Σ(T1, 6, 3) = ∅, the above six split sets comprise all of �. Therefore all split
sets in � have the property that their defining vectors (�1, �2, �3) satisfy (�1, �2) ∕= (0, 0), and therefore
the intersection of these split sets with {(x, y, z) : z = 1/2} are nonempty, two-dimensional translated split
sets which cover Q. But Q cannot be covered by any six translated split sets in ℝ2, a contradiction.

The next theorem connects the previous results with the inexpressibility of facet-defining inequalities of
polyhedral sets as t-branch split cuts.

Theorem 4.15. Let B ∈ ℝn be a strictly lattice-free rational polytope that cannot be covered by t split
sets for some positive integer t. Then there is a rational mixed-integer polyhedral set in ℤn × ℝ with a
facet-defining inequality that cannot be expressed as a t-branch split cut.
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Proof. Let B and t satisfy the conditions of the theorem. By Remark 4.13, there exists a rational " > 0
such that D"(B) is strictly lattice-free. Let B̄ = D"(B). Then B̄ is full-dimensional as it contains B in
its interior, and the interior of B̄ cannot be covered by t split sets. Let x̄ be a point in the interior of B̄.
Let B′ be the polyhedron in ℝn+1 defined as conv

(
(B̄ × 0) ∪ (x̄× {1/2})

)
. We define a mixed-integer

polyhedral set PB as follows:

PB = {(x, y) ∈ ℤn × ℝ : (x, y) ∈ B′}.

All mixed-integer solutions of PB satisfy y ≤ 0 (in fact, the convex hull of solutions equals PB ∩ {y = 0}).
Let S1, . . . , St be t arbitrary split sets in ℝn+1 defined on the x variables, i.e., they are of the form

{(x, y) ∈ ℝn+1 : bi < aTi x < bi+1} where b1, . . . , bt are integers and a1, . . . at ∈ ℤn. Recall that y ≤ 0 is
a t-branch split cut for PB derived from the disjunction associated with the split sets S1, . . . , St if and only
it is valid for B′ ∖ ∪ti=1Si. The sets S̄i = Si ∩ {(x, y) ∈ ℝn+1 : y = 0} are split sets in ℝn and do not cover
the interior of B̄. Let x̂ ∈ int(B̄) ∖ ∪ti=1S̄i. Then B′ ∖ ∪ti=1Si contains a point of the form (x̂, "′) for some
"′ > 0. This point violates the inequality y ≤ 0, and thus y ≤ 0 cannot be expressed as a t-branch split cut.

5 Two and three dimensions

In this section, one of our goals is to express lattice-free cuts as t-branch split cuts, in dimensions two and
three. As mentioned earlier, it is shown in [11] that every cut based on a maximal lattice-free set in ℝ2 is
implied by a crooked cross cut and by a 3-branch split cut. Such results are not well-studied in ℝ3. This is
partially because the result in [11] is derived by using the classification of maximal lattice-free sets in ℝ2 of
Dey and Wolsey [14]. An analogous classification result is not yet known in ℝ3, and seems unattainable in
ℝn with current tools.

A second goal in this section is to express lattice-free cuts as cuts based on branching disjunctions with
few atoms. As an example, consider the fact that a cut based on a maximal lattice-free triangle of type 3
(triangle cuts of type 3) is also a 3-branch split cut. Based on this result, one can separate over a family of
cuts containing all triangle cuts of type 3, by separating over 3-branch split cuts with 6 atoms. On the other
hand, the result in [11] showing that a triangle cut of type 3 is a crooked cross cut implies that such a cut
can be obtained from a disjunction with only 4 atoms instead of 6. For a fixed disjunction, the complexity
of optimizing over the set of all disjunctive cuts obtainable from the disjunction is directly related to the
number of atoms in the disjunction.

Therefore, the number of parameters required to specify a disjunctive cut (e.g., the t vectors in a t-branch
split cut), and the number of atoms in the disjunction are both interesting quantities. We are interested in ob-
taining the best-possible bounds on these quantities in ℝ2 and ℝ3 without any knowledge of the classification
of maximal lattice-free sets in these dimensions.

In ℝ2 the lattice width of any lattice-free convex body is strictly less than 3; this is implied both by the
result of Hurkens (Theorem 3.1) and by the result of Kannan and Lovász. If a stands for the direction of
minimum lattice width, B may intersect up to 4 parallel split sets of the form {x ∈ ℝ3 : b < aTx < b+ 1}.
Then B minus the union of these sets consists of one-dimensional sets of the form {x ∈ B : aTx = b}
for at most 3 consecutive values of b; each such set needs at most one split set to cover it. We thus get the
following result.

Lemma 5.1. Any strictly lattice-free convex set B in ℝ2 is contained in the union of 7 split sets. Further,
these split sets yield a branching disjunction with 8 atoms.
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Note that the number of atoms is only two more than the number of atoms in a 3-branch split disjunction
which implies a triangle cut of type 3. To improve Lemma 5.1, we will next show that in fact any strictly
lattice-free convex set in ℝ2 intersects at most three parallel split sets. We start by making the following
basic observations

Lemma 5.2. Two intersecting lines divide the plane into four open sectors. If a convex body B intersects a
sector and B minus the closure of this sector intersects the closure of each of the other sectors, then q is in
the interior of B.

Note that the above lemma only requires three points. For example, if P contains (−1, 0), (1,−1) and
any point in the interior of the first quadrant {x ∈ ℝ2 : x1, x2 ≥ 0} then it contains the intersection of the
axes, the point (0, 0).

We are now ready to show that any strictly lattice-free convex set in ℝ2 intersects at most three parallel
split sets. In the proof, we use that any maximal lattice-free set contains at least 2 integer points on its
boundary. Note that this fact does not require the classification of maximal lattice-free sets.

Theorem 5.3. Let B be a maximal lattice-free set in ℝ2. Then there is a vector a ∈ ℤ2 and an integer b
such that B is contained in {x ∈ ℝ2 : b ≤ aTx ≤ b+ 3}.

Proof. B contains two lattice points in its boundary and after a unimodular transformation, we can assume
these points are (0, 0) and (0, 1). Assuming B is not contained in three vertical strips, it has (without loss of
generality) a point x = (x1, x2) with 1 < x1 < 2, and by convexity a point y = (1, y2) with k < y2 < k+1,
for some k ∈ ℤ. Left-multiplying B by the unimodular matrix

M =

(
1 0
−k 1

)
which leaves points (0, 0), (0, 1) unchanged, we can assume 0 < y2 < 1.

S4

S2

S1

S3

S5

S6

(0, 0) (1, 0)(−1, 0)

(−1, 1) (0, 1) (1, 1)

S1 := {x ∈ ℝ2 : x1 > 1, x2 > 1}

S2 := {x ∈ ℝ2 : x1 > 1, x2 < 0}

S3 := {x ∈ ℝ2 : x1 < 0, x2 + x1 > 1}

S4 := {x ∈ ℝ2 : x1 < 0, x2 − x1 < 0}

S5 := {x ∈ ℝ2 : x2 > 1, x2 + x1 < 0}

S6 := {x ∈ ℝ2 : x2 < 0, x2 − x1 > 1}

Figure 3: Regions that have empty intersection with B

Consider the 6 sets S1, S2, . . . , S6 ∈ ℝ2 shown in Figure 3. Applying Lemma 5.2 with the two bounding
lines of the set and two of the points (0, 0), (0, 1), y, it is easy to argue that none of these sets can intersect
B. Therefore B ⊂

∪6
i=1Ri, see Figure 4 for the sets R1, R2, . . . , R6 ∈ ℝ2.
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(0, 0)

R1 := {x ∈ R2 : x1 ≥ 1, 0 ≤ x2 ≤ 1}

R2 := {x ∈ R2 : x1 ≤ 1, 0 ≤ x2 ≤ 1}

R3 := {x ∈ R2 : x2 ≥ 1, 0 ≤ x1 ≤ 1}

R4 := {x ∈ R2 : x2 ≤ 0, 0 ≤ x1 ≤ 1}

R5 := {x ∈ R2 : x2 ≥ 1, 0 ≤ x2 + x1 ≤ 1}

R6 := {x ∈ R2 : x2 ≤ 0, 0 ≤ x2 − x1 ≤ 1}

S1

S2

S3

S5

S6

S4

R1R2

R3

R4

R5

R6

Figure 4: Regions that can have non-empty intersection with B

Suppose there exists z ∈ B ∩R1 satisfying z1 ≥ 2. Then we claim that B lies in {x ∈ R2 : −1 ≤ x2 ≤
2}. Indeed, if u ∈ B with u2 > 2 then the line from u to z crosses either S1 or S3, depending on whether u
is in R3 or R5, contradiction. We can similarly rule out points u ∈ B with u2 < −1, showing the claim. If
there is z ∈ B ∩R2 with z1 ≤ −1 we can also show that B lies in {x ∈ ℝ2 : −1 ≤ x2 ≤ 2}.

These cases being treated, we can henceforth assume that if u ∈ B satisfies 0 ≤ u2 ≤ 1 (so u ∈ R1∪R2),
then −1 < u1 < 2.

If B ∕⊂ {x ∈ ℝ2 : −1 ≤ x1 ≤ 2} (three vertical strips), then the set P := B ∩ {x ∈ ℝ2 : x1 < −1}
is non-empty and is contained in either R5 or R6, but not both. The picture is still symmetric (in the line
x2 = 1/2), so it suffices to treat the case P ⊂ R5.

Note that in this case, B ∩R3 = ∅, for otherwise B would contain a point in S3. Also, B ∩R4 ⊂ {x ∈
ℝ2 : x2 + 2x1 > 0}, otherwise B would contain a point in S4.

Suppose B ∩ {x ∈ R2 : x2 > 2} ∕= ∅, then B and in particular B ∩R1 lie in {x ∈ ℝ2 : x2 + x1 < 2},
since B ∩ S3 = ∅. Then B contains a point in {x ∈ ℝ2 : x2 + x1 < −1}, necessarily in R6, otherwise B
is contained in three diagonal strips. Since B ∩ S4 = ∅, we deduce that B ∩ R4 = ∅. To finish this case,
we need a slightly more complicated forcing argument with three points, where the first point restricts the
location of the second, the second restricts the third and the third restricts the first, arising in a contradiction.
Let y = (1, y2) ∈ B be as before, with 0 < y2 < 1. Let u ∈ B satisfy u2 = 2. Since B ∩ S3 = ∅ (so the
line joining u and y does not intersect S3) we have u1 < −1− y2. Let z ∈ B satisfy z2 + z1 = −1. Since
the line joining u and z does not cross S5, we deduce (that z1 + 1 ≥ −1 − u1 > y2 and thus) z2 < −y2.
But then the line joining z and y crosses S4, contradiction, see Figure 5.

Next, suppose B ∩ {x ∈ ℝ2 : x2 > 2} = ∅. We can also suppose B contains a point u ∈ R4 with
u2 = −1 and 0 < u1 < 1, otherwise B is contained in three horizontal strips. Then B ∩ R6 = ∅. Assume
B is not contained in the three diagonal strips {x ∈ ℝ2 : −1 ≤ x2 + x1 ≤ 2}. Then there is a point z ∈ B,
necessarily in R1, with z2 + z1 = 2 and 0 < z2 < 1. We do the three-point forcing argument again. Let
v ∈ B satisfy v1 = −1, 1 < v2 < 2, which exists since P is non-empty. The line joining u to v does not
intersect S4, so v2− 1 > 1−u1. Joining v to z, we do not cross S3, so v2− 1 < 1− z2, so 1− z2 > 1−u1.
Then the line joining u to z crosses S2, contradiction.
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(0, 0) y = (1, y2)

(z1, z2)

u = (u1, 2)

Figure 5: When B intersects with {x ∈ ℝ2 : x2 > 2}

Using Theorem 5.3, it is possible to improve Lemma 5.1 by reducing the number of atoms to 6, and the
number of split sets to 6. We will next show that if we use branching disjunctions, we can reduce the number
of atoms to 4 without explicitly using the classification of maximal lattice-free sets in ℝ2, as used in [11].

We will say that a disjunction D in ℝ2 excludes a lattice-free convex set B if D does not interset the
interior of B.

Theorem 5.4. Let B be a maximal lattice-free set in ℝ2. Then there is a branching disjunction D with 4
atoms which excludes B.

Proof. By Theorem 5.3, B ⊆ {x ∈ ℝ2 : b ≤ aTx ≤ b + 3} for some a ∈ ℤ2 and b ∈ Z. Without loss of
generality (and after a unimodular transformation and shifting, if necessary) we can assume that a = [1, 0]T

and b = 0. Clearly,

B ∩ {x ∈ ℝ2 : aTx = b+ 1} = B ∩ {x ∈ ℝ2 : x1 = 1} ⊆ {x ∈ ℝ2 : c ≤ x2 ≤ c+ 1}

for some c ∈ Z and similarly,B∩{x ∈ ℝ2 : x1 = 2} ⊆ {x ∈ ℝ2 : d ≤ x2 ≤ d+1} for some d ∈ Z. Again
without loss of generality we can assume that c = d = 0. Therefore, after some shifting and unimodular
transformations, the interior of B is contained in ℝ2 ∖ D′ for the branching disjunction D′ = ∪i=1,...,6Di

with 6 atoms as shown in Figure 6. In the rest of the proof we will consider different cases to reduce the
number of atoms.

Let S1 = {x ∈ ℝ2 : 0 ≤ x1 < 1} and S3 = {x ∈ ℝ2 : 2 < x1 ≤ 3}. First assume that B ∩ S3 = ∅.
In this case the 4 atom disjunction consisting of D1, D2, D3 of Figure 6 and {x ∈ ℝ2 : x1 ≥ 2} proves the
claim. Similarly B ∩ S1 = ∅ is easily handled and therefore in the rest of the proof we will assume that
B ∩ Si ∕= ∅ for i = 1, 3.

Now assume that B has exactly one vertex v1 in S1. In this case, let q be the x2 coordinate of the point
that lies on the intersection of the boundary of D1 and the line that passes through the points (1, 1) and
v1. In other words, the following three points (0, q), v1 and (1, 1) lie on the same line. In this case, the
disjunction defined by the atoms D4, D5, D6 together with D′2 = {x ∈ ℝ2 : x1 ≤ 1, ⌊q⌋x1 +x2 ≥ ⌊q⌋+1}
and D′3 = {x ∈ ℝ2 : x1 ≤ 1, ⌊q⌋x1 + x2 ≤ ⌊q⌋} excludes B, see Figure 7. If in addition to having exactly
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x1 ≥ 3x1 ≤ 0

(1, 0) (2, 0)

(1, 1) (2, 1)

D1 = {x ∈ ℝ2 : x1 ≤ 0}

D2 = {x ∈ ℝ2 : x1 = 1, x2 ≥ 1}

D3 = {x ∈ ℝ2 : x1 = 1, x2 ≤ 0}

D4 = {x ∈ ℝ2 : x1 = 2, x2 ≥ 1}

D5 = {x ∈ ℝ2 : x1 = 2, x2 ≤ 0}

D6 = {x ∈ ℝ2 : x1 ≥ 3}

Figure 6: A branching disjunction with 6 atoms

one vertex in S1, the set B also has exactly one vertex v3 in S3, then using a symmetric argument, it is easy
to replace D4, D5, D6 with two new atoms D′4 and D′5 to show that B is in fact excluded by a branching 4
atom disjunction. We therefore conclude that one of S1 or S3 must contain at least 2 vertices of B and in
the rest of the proof, without loss of generality, we assume that S3 contains at least 2 vertices.

x1 ≥ 3x1 ≤ 0

(0, q)

v1 (1, 0) (2, 0)

(1, 1) (2, 1)

D′
2 = {x ∈ ℝ2 : x1 ≤ 1, ⌊q⌋x1 + x2 ≥ ⌊q⌋+ 1}

D′
3 = {x ∈ ℝ2 : x1 ≤ 1, ⌊q⌋x1 + x2 ≤ ⌊q⌋}

D4 = {x ∈ ℝ2 : x1 = 2, x2 ≥ 1}

D5 = {x ∈ ℝ2 : x1 = 2, x2 ≤ 0}

D6 = {x ∈ ℝ2 : x1 ≥ 3}

Figure 7: A branching disjunction with 5 atoms when B has exactly one vertex in S1

Furthermore, if neither one of the sets D2,4 = conv(D2, D4) and D3,5 = conv(D3, D5) contain a
vertex of B in their interior, then the disjunction obtained by D1, D2,4, D3,5 and D6 proves the claim, see
Figure 8. Consequently, B must have at least one vertex in one of D2,4 or D3,5. Without loss of generality,
assume that D2,4 contains a vertex in its interior. Now remember that B is a maximal lattice-free set and as
such has at most 4 vertices. Therefore, B must have exactly one vertex in S1, one vertex in the interior of
D2,4 and two vertices in S3.

As B has a vertex in the interior of D2,4 (and therefore with an x2 coordinate greater than 1), the vertex
in S1 must have its x2 coordinate less than 1, otherwise B would contain the point (1, 1) in its interior.
Similarly the two vertices in S3 have their x2 coordinate less than 1. Further, the line segment joining
these two vertices contains an integer point in its relative interior as B is a maximal lattice-free set. As
B ⊆ {x : x1 ≤ 3}, this integer point must lie on the line x1 = 3 and therfore the two vertices in S3 also lie
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x1 ≥ 3x1 ≤ 0

(1, 0) (2, 0)

(1, 1) (2, 1)
D1 = {x ∈ ℝ2 : x1 ≤ 0}

D2,4 = {x ∈ ℝ2 : 2 ≥ x1 ≥ 1, x2 ≥ 1}

D3,5 = {x ∈ ℝ2 : 2 ≥ x1 ≥ 1, x2 ≤ 0}

D6 = {x ∈ ℝ2 : x1 ≥ 3}

Figure 8: A branching disjunction with 4 atoms

on the line x1 = 3. Further, given the position of the other two vertices, the integer point must be (3, 0), and
the vertices in S3 must have their x2 coordinates in the intervals (0, 1) and (−1, 0), respectively. Therefore
the vertex in S1 has its x2 coordinate greater than 0, and thus the disjunction defined by D4 and D6 together
with D′35 = {x ∈ ℝ2 : x1 ≤ 2, x2 ≤ 0} and D′2 = {x ∈ ℝ2 : x1 ≤ 0, x2 ≥ 1} excludes B.

x1 ≥ 3

(1, 0) (2, 0)

(1, 1) (2, 1)

D′
2 = {x ∈ ℝ2 : x1 ≤ 0, x2 ≥ 1}

D′
35 = {x ∈ ℝ2 : x1 ≤ 2, x2 ≤ 0}

D4 = {x ∈ ℝ2 : x1 = 2, x2 ≥ 1}

D6 = {x ∈ ℝ2 : x1 ≥ 3}

Figure 9: Another branching disjunction with 4 atoms

The previous result and Theorem 3.2 imply the following result.

Theorem 5.5. Any strictly lattice-free convex set B in ℝ3 is contained in the union of 21 split sets. Further,
there is a branching disjunction with 22 atoms which exculdes B.

Proof. If a stands for the direction of minimum lattice width, we need split sets of the form {x ∈ ℝ3 :
b < aTx < b + 1} for up to 6 consecutive values of b. Then B minus the union of these sets consists
of two-dimensional lattice-free sets of the form {x ∈ B : aTx = b} for at most 5 consecutive values of
b. Each such lattice-free set needs 3 split sets for a total of 21 split sets. If l = min{aTx : x ∈ B} and
u = max{aTx : x ∈ B}, then there is a branching disjunction with 22 atoms excluding B; it consists of
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the atoms {x ∈ ℝ3 : aTx ≤ ⌊l⌋}, {x ∈ ℝ3 : aTx ≥ ⌈u⌉} and 4 atoms for each nonempty set of the form
{x ∈ B : aTx = b}.

The above upper bound of 21 split sets is quite a bit higher than the lower bound of 7 split sets we
obtained earlier. We believe the best possible value is close to 7.
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