
RC25217 (W1110-056) October 11, 2011
Computer Science

IBM Research Report

Path Planning Problems Motivated by a Data Center Robot

Ning Xu
City College of New York

Jonathan Lenchner
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Path Planning Problems Motivated by a Data Center Robot

Ning Xu∗ Jonathan Lenchner†

1 Introduction
A robot is responsible for navigating, creating a map of,
and then monitoring a computer data center for tempera-
ture and other environmental parameters. The floor of a
data center is comprised of industry-standard 2′× 2′ tiles.
Some tiles are occupied by obstacles (e.g. equipment,
walls) such that the robot cannot enter. The other tiles are
empty. Two tiles are connected if they share a common
side – in other words, the robot can only move orthogo-
nally to the tile boundaries. All empty tiles are assumed to
be connected. Figure 1 illustrates the map of a data center.
In one model the robot is equipped with a camera to view

Figure 1: A data center – the black tiles are occupied, the
other tiles are empty.

the tile in the direction it is facing. In another model, the
robot is equipped with three cameras to view the tile in
front of it as well as the tiles on its two sides. By view-
ing a tile, the robot can verify whether the tile is empty or
occupied, and maintain an evolving map of the explored
area of the data center in its memory. The development
of, and experiences with, such robots are described in [3].

In the course of its navigation, the robot can either
move one tile forward, that is, move to the adjacent tile
in its facing direction, if such a tile is empty, or turn by 90
degrees, that is, change its facing direction to one of its
side directions.

Let 1 be the time cost of a move, and τ be the time cost
of a turn. It is an important design principle that the robot
find a closed tour with minimal or near-minimal time cost,
such that the robot visits all empty tiles and returns to its
starting tile. We call this problem the data center navi-

∗City College of New York
†IBM T.J. Watson Research Center

gation problem. We distinguish two variants of the nav-
igation problem. When the map of the data center is un-
known in advance, we call the problem the data center
exploration problem. When the map is known before
exploration, we call the problem the data center moni-
toring problem. In our ensuing analysis we take n to be
the number of visitable tiles in the data center.

2 Complexity
Arkin et al. [1] showed that the data center monitoring
problem is NP-hard, even when τ = 1 (the value of τ
which best models the robot in [3]). The proof proceeded
by first showing that deciding the Hamiltonicity of axis-
parallel unit segment intersection graphs (HUSIG) is NP-
hard and then reducing HUSIG to the data center monitor-
ing problem. Since the data center exploration problem is
clearly as hard as the data center monitoring problem, it
too is NP-hard.

3 The data center exploration problem
There are two intuitive algorithms for the data center ex-
ploration problem: a Greedy algorithm [4], and an algo-
rithm based on Depth First Search (DFS). In either algo-
rithm the robot travels to unvisited, adjacent, empty tiles
with minimum cost and when stuck at a tile v, the robot
tracks back – to the known-to-be-closest unknown tile in
the case of Greedy, or to the unknown tile adjacent to the
most recently visited tile in the case of DFS. The greedy
algorithm is sometimes referred to as the A* algorithm in
artificial intelligence applications.

3.1 Performance of DFS

If the robot is equipped with three cameras, the robot finds
all adjacent tiles to a tile v when the robot arrives at v
the first time (with the exception of the very first tile). A
simple analysis shows that the robot can be required to
turn at most twice at each tile. Thus the time cost for all
turns is at most 2nτ . Therefore, the robot equipped with
three cameras can guarantee a 2+2τ factor approximation
running DFS.

When the robot is equipped with just one forward-
facing camera, the robot can just see the tile it is facing.
This means that the robot requires more turns to find ad-
jacent tiles. In this case the robot can be seen to require
at most four turns in each tile, so the time cost of turns
is at most 4τn. The time cost of moves is still 2n − 2.

Therefore, for the robot with only one camera, the total
time cost is at most 2n− 2+4τn, i.e., the DFS algorithm
can guarantee a 2 + 4τ factor approximation.

3.2 Performance of Greedy

Unlike DFS, the greedy algorithm cannot guarantee a con-
stant factor approximation.

Theorem 1. For any constant δ > 0, there are instances
of the Exploration problem in which Greedy does not com-
plete its exploration with time cost δ×OPT , where OPT
is the optimal time cost.

The recursive construction that provides the proof of
this theorem is quite involved. In practice it is difficult
to even come up with examples where Greedy does any
worse than DFS. Figure 2 gives such an example using

Figure 2: An example where DFS outperforms Greedy.

one of the fundamental constructs in the proof of The-
orem 1. If the robot starts at the bottom-left tile in the
figure it will go all the way to the right-most bottom tile,
then come up to the right-most root tile, traverse around
the associated loop, not stopping at the associated top tile
(since at that point it is cheaper to go forward to find an
unvisited tile then turn and go forward to get to an un-
visited tile). By the time it returns to the vicinity of the
root tile, it will be closer to go to the next closest root tile,
rather than handling the left-over top tile which it has left
“stranded.” The robot proceeds from right to left until just
the top tiles remain, and then must return to visit these.
Had it been using DFS instead of Greedy the robot would
have returned to visit the respective top tiles, before pro-
ceeding back to the prior root tiles. This example shows
that DFS can be just a small constant factor better than
Greedy. A multi-level version of this construction shows
that Greedy can be an arbitrarily bad constant factor ap-
proximation compared to DFS and hence cannot provide
a fixed constant factor approximation to OPT.

4 Approximating the data center monitor-
ing problem

The data center monitoring problem is NP-hard, as de-
scribed in the Section 2. One can apply a minor variation

of either DFS or Greedy as discussed in the previous sec-
tion to this problem as well. In the case of the monitoring
problem there is no advantage to having three cameras
and it is easy to see that DFS for one or more cameras
achieves a 2 + 2τ approximation ratio using O(n) time
and O(n) space.

The asymptotically worst run-time can be reduced by
adapting the Christofides approximation to TSP [2]. One
first uses Christofides to get an approximately optimal
tour on the all-pairs shortest path graph without turn costs,
and then looks back to make some simple observations
about the maximum number of turns incurred when tak-
ing such a tour compared with OPT.

Theorem 2. The adapted Christofides algorithm can
monitor the data center with run-time cost which is at
most 1.5 + 2τ times the optimal solution, using O(n3)
time and O(n2 log n) space.

5 A practical refinement
In real data center layouts we have found that Greedy
almost always does better than DFS or the adapted
Christofides algorithm in the data center monitoring task.
There is a refinement to Greedy that warrants mention-
ing. Rather than going to the closest unvisited tile, instead
compute the shortest travel times to all unvisited tiles and
divide each such number by the number of unvisited tiles
encountered along the way to obtain an amortized cost
and minimize over all such amortized costs. This not-
quite-so-greedy algorithm again runs in time O(n), but
requires O(n log n) space.

References
[1] Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete,

S.P., Mitchell, J.S.B., Sethia, S., 2001, Optimal cov-
ering tours with turn costs, Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algo-
rithms, 138-147.

[2] N. Christofides, 1976, Worst-case analysis of a new
heuristic for the travelling salesman problem, Report
388, Graduate School of Industrial Administration,
CMU.

[3] Lenchner, J., Isci, C., Kephart, J.O., Mansley, C.,
Connell, J., McIntosh S., 2011, Towards Data Cen-
ter Self-Diagnosis Using a Mobile Robot, Proceed-
ings of IEEE International Conference of Autonomic
Computing, Karlsruhe, Germany.

[4] Panaite, P. and Pelc, A., 1999, Exploring Unknown
Undirected Graphs, Journal of Algorithms, 33, 281-
295.

