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C-Codes: Cyclic Lowest-Density MDS Array Codes
Constructed Using Starters for RAID 6

Mingqiang Li and Jiwu Shu

Abstract—The distance-3 cyclic lowest-density MDS array code
(called the C-Code) is a good candidate for RAID 6 because
of its optimal storage efficiency, optimal update complexity,
optimal length, and cyclic symmetry. In this paper, the underlying
connections between C-Codes (or quasi-C-Codes) and starters in
group theory are revealed. It is shown that each C-Code (or
quasi-C-Code) of length 2n can be constructed using an even
starter (or even multi-starter) in (Z2n,+). It is also shown
that each C-Code (or quasi-C-Code) has a twin C-Code (or
quasi-C-Code). Then, four infinite families (three of which are
new) of C-Codes of length p − 1 are constructed, where p is
a prime. Besides the family of length p − 1, C-Codes for some
sporadic even lengths are also presented. Even so, there are still
some even lengths (such as 8) for which C-Codes do not exist. To
cover this limitation, two infinite families (one of which is new)
of quasi-C-Codes of length 2(p − 1) are constructed for these
even lengths.

Index Terms—RAID 6, array codes, starters, perfect
one-factorization.

I. INTRODUCTION

ARRAY CODES [2] are a class of linear codes whose in-
formation and parity bits are placed in a two-dimensional

(or multidimensional) array rather than a one-dimensional
vector. A common property of array codes is that they are
implemented based on only simple eXclusive-OR (XOR)
operations. This is an attractive advantage in contrast to the
family of Reed-Solomon codes [3]–[5] whose encoding and
decoding processes use complex finite-field operations. Thus,
array codes are ubiquitous in data storage applications.

Among all kinds of array codes, cyclic lowest-density
Maximum-Distance Separable (MDS) array codes [6] are
regarded as the optimal ones for data storage applications
because they have all the following properties:

1) they are MDS codes, which attain the Singleton bound
[7] and thus have optimal storage efficiency (i.e. the ratio
of user data to the total of user data plus redundancy
data);
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2) their update complexity (defined as the average number
of parity bits affected by a change of a single informa-
tion bit) achieves the minimum update complexity that
MDS codes can have; and

3) their regularity in the form of cyclic symmetry makes
their implementation simpler and potentially less costly.

Fault tolerance is an important concern in the design of
disk-based storage systems [8]. As today’s storage systems
grow in size and complexity, they are increasingly confronted
with disk failures [9], [10] together with latent sector errors
[11]. Then, RAID 5 [12], which has been widely used in
modern storage systems to recover one disk failure, cannot
provide sufficient reliability guarantee. This results in the
demand of RAID 6 [12], [13], which can tolerate two disk
failures.

TABLE I
COMPARISON AMONG SOME REPRESENTATIVE MDS ARRAY CODES FOR

RAID 6.

Array Code Optimal Update
Complexity

Optimal
Lengtha

Cyclic
Symmetry

EVENODD [15],
RDP [16],

Liberation [17]
No — No

X-Code [18] Yes No No
B-Codeb [14] Yes Yes No

C-Code Yes Yes Yes

aConsidered only for lowest-density MDS codes (see [14]).
bIncluding ZZS Code [19] and P-Code [20].

RAID 6 is designed based on a distance-3 MDS linear code.
In applications with many small writes, such as the On-Line
Transaction Processing (OLTP) application, the distance-3
cyclic lowest-density MDS array code (called the C-Code)
defined in Section II-A can be regarded as a good candidate
for RAID 6 (see Table I). Under this background, we will
make a systematic study on the C-Code in this paper.

Here, the distance-3 cyclic lowest-density MDS array code
is one particular kind of the B-Code described in [14]. Its
additional feature is the regularity in the form of cyclic
symmetry. It is thus called the C-Code in this paper.

Definition 1.1 ( [21]): A one-factorization of a graph is a
partitioning of the set of its edges into subsets such that each
subset is a graph of degree one. Here, each subset is called a
one-factor. A perfect one-factorization (or P1F) is a particular
one-factorization in which the union of any pair of one-factors
is a Hamiltonian cycle.

(Remark: A Hamiltonian cycle is a cycle in an undirected
graph, which visits each vertex exactly once and also returns
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to the starting vertex.)
The C-Code can be described using a graph approach

proposed in [14] (see Section II-B). It will be shown in
Section II-C that the constructions of the C-Code of length
2n (denoted by C2n) are equivalent to bipyramidal P1Fs of a
2n-regular graph on 2n+ 2 vertices. In the literature of graph
theory, we noticed that several known P1Fs [22]–[28] were
constructed using starters [29] in group theory. Inspired by
this, we immediately raise a question: Which kind of starter
can be used to construct the C-Code? In Section III, we will
show that each C2n instance can be constructed using an
even starter [30] in (Z2n,+). The necessary and sufficient
condition is that the even starter can induce a bipyramidal
P1F of a 2n-regular graph on 2n+ 2 vertices. Then, we will
obtained C-Codes for some sporadic even lengths listed as
follows:

4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 50.

Among them, 14, 20, 24, 26, 32, 34, 38, and 50 are not
covered by the family of length p− 1 presented in [6] (where
p is a prime). We will also show that a C-Code exists for
most but not all of even lengths (one exception we found is
8) and that there are often more than one C-Code instances
for a given even length (each C-Code instance always has a
twin C-Code instance). Then, someone may wonder if there
exists an infinite family of C-Codes. In Section IV, we will
construct four infinite families of Cp−1 instances (which cover
the family of Cp−1 instances constructed in [6]) from two
infinite families of even starters in

(
Z∗p ,×

)
. We will also

conclude that non-cyclic B-Codes of length p− 1 constructed
in [20], [14], and [19] can always be transformed to Cp−1
instances.

Besides, we noticed that there is no C-Code for some even
lengths, such as 8. Then, someone may ask: Can we construct
quasi-C-Codes (which partially hold cyclic symmetry [6]) for
these even lengths? In Section V, we will introduce a concept
of even multi-starters and then discuss how to construct
quasi-C-Codes using even multi-starters (with an example of
length 8). We will also show that each quasi-C-Code instance
has a twin quasi-C-Code instance. Similarly, in Section VI, we
will present an infinite family of even 2-starter in

(
Z2(p−1),+

)
and then construct two infinite families of quasi-C-Code
instances of length 2(p − 1) (which cover the family of
quasi-C-Code instances of length 2(p− 1) constructed in [6])
using this family of even 2-starter. We will also conclude that
non-cyclic B-Codes of length 2(p−1) constructed in [14] can
always be transformed to quasi-C-Code instances of length
2(p− 1).

Two work very related to this paper are [14] and [6]. Unlike
the work in [14], which studied the constructions of B-Codes,
the work in this paper focuses on the constructions of C-Codes
(or quasi-C-Codes), which cannot be obtained directly from
the constructions of B-Codes. Besides, in [6], although Cassuto
and Bruck constructed one infinite family of Cp−1 instances
and one infinite family of quasi-C-Code instances of length
2(p − 1), they did not study the general constructions of
C-Codes (or quasi-C-Codes). In contrast, this paper carries
out a systematic study on the constructions of C-Codes by

revealing the underlying connections between C-Codes (or
quasi-C-Codes) and starters in group theory.

We begin this paper with an introduction of the C-Code in
the next section.

II. AN INTRODUCTION OF THE C-CODE

A. Definition and Structure

The C-Code is one particular kind of the B-Code described
in [14]. Its additional feature is the regularity in the form
of cyclic symmetry, and its algebraic definition is given as
follows:

Definition 2.1: Let

H2n = (H0 H1 · · · H2n−1)

be a binary matrix, where

Hk = (hi,j)2n×n

is a binary submatrix of size 2n × n, for 0 ≤ i ≤ 2n − 1,
0 ≤ j ≤ n− 1, and 0 ≤ k ≤ 2n− 1. Suppose H2n meets the
following four conditions:

1) for k = 0, 1, · · · , 2n − 1, the last column of Hk is the
same as the k-th column of a binary 2n × 2n identity
matrix;

2) for k = 0, 1, · · · , 2n− 1,

Hk = Ek2n ×H0, (1)

where E2n is a binary elemental cyclic matrix defined
as

E2n =

 −→
0 1

I2n−1
−→
0
T

 ,

where I2n−1 is a binary (2n − 1) × (2n − 1) identity
matrix,

−→
0 is a binary 1 × (2n − 1) vector of 0’s, and

−→
0
T

is a binary (2n− 1)× 1 vector of 0’s;
3) the weight (i.e. the number of 1’s) of each row of H2n

is 2n− 1; and
4) for any m and k (where 0 ≤ m < k ≤ 2n − 1), the

square matrix (Hm Hk) is nonsingular.
If a code’s parity-check matrix is H2n, the code is then called
the C-Code of length 2n, denoted by C2n.

In the above definition, it should be noted that the length
of the C-Code is always an even number. This is guaranteed
by the MDS property of the B-Code [14].

Take C4 for example. The parity-check matrix for a C4

instance is as follows:

H4 =


0 1 0 0 1 0 1 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

0 0 1 0 1 0 0 1

 .

It can be easily checked that{
I2n, E2n, E

2
2n, · · · , E2n−1

2n

}
forms a cyclic group with binary matrix multiplication. We
also have

E2n
2n = I2n. (2)
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Thus, the code defined in Definition 2.1 has the property of
cyclic symmetry.

In addition, it can also be deduced from the results in [14]
that the C-Code defined in Definition 2.1 has all the following
optimal properties:

1) it is Maximum-Distance Separable (MDS);
2) its update complexity is 2, which is the minimum update

complexity that MDS codes of distance 3 can have; and
3) it achieves the maximum length that MDS codes with

optimal update complexity can have.
The structure of the C-Code of length 2n evolves from that

of the B-Code described in [14]. This kind of array code has
dimensions n×2n, i.e. n rows and 2n columns, where n is an
integer not smaller than 2. It was proved in [19] that this size
has optimal length. The first n−1 rows are information rows,
and the last row is a parity row. In other words, the bits in the
first n − 1 rows are information bits, while those in the last
row are parity bits. Because of the optimal update complexity,
each information bit contributes to the calculation of (or is
protected by) exactly 2 parity bits contained in other columns.
Moreover, any two information bits do not contribute to the
calculation of the same pair of parity bits.

Take the foregoing C4 instance for example. It has 2 rows
and 4 columns. Its array representation is given as follows:

d1,2 d2,3 d3,0 d0,1

p0 p1 p2 p3
,

where di,j (0 ≤ i 6= j ≤ 3) represents a information bit that
contributes to the calculation of (or is protected by) 2 parity
bits pi and pj . Then, take the parity bit p0 for example. It can
be calculated by p0 = d3,0 + d0,1.

B. Graph Description

In the C-Code, each information bit contributes to the cal-
culation of (or is protected by) exactly 2 parity bits contained
in other columns. Moreover, any two information bits do
not contribute to the same pair of parity bits. Thus, a graph
approach [14] can be used to describe the C-Code.

In the graph description of the C-Code, each parity bit
is represented by a vertex, and each information bit that
contributes to the calculation of 2 parity bits is represented by
the edge that connects the two corresponding vertices. Then,
a C-Code of length 2n can be described by a (2n− 2)-regular
graph G on 2n vertices. We label the 2n vertices with integers
from 0 to 2n−1 such that the i-th vertex (i = 0, 1, · · · , 2n−1)
represents the parity bit contained in the i-th column of the
C-Code. Then, for i = 0, 1, · · · , 2n − 1, the i-th column of
the C-Code can be represented by a set of n− 1 edges, i.e.

Ci = {{xi,1, yi,1}, {xi,2, yi,2}, · · · , {xi,n−1, yi,n−1}} ,

where {xi,j , yi,j} (j = 1, 2, · · · , n − 1) is an edge corre-
sponding to an information bit contained in the i-th column.
According to the cyclic symmetry of the C-Code, for i =
0, 1, · · · , 2n− 1, we have

Ci = {{x+ i mod 2n, y + i mod 2n} : {x, y} ∈ C0} . (3)

Thus, in this paper, we sometimes use C0 to simply represent
a C-Code.

(a)

1

2

(b)

Fig. 1. Constructing (a) a C4 instance from (b) a bipyramidal P1F of a
4-regular graph on 6 vertices.

Take the foregoing C4 instance for example. Figure 1(a)
shows its graph representation. The corresponding graph G is
a 2-regular graph on a set of 4 vertices {0, 1, 2, 3}. The four
columns of the code can be represented by

C0 = {{1, 2}} ;

C1 = {{2, 3}} ;

C2 = {{3, 0}} ;

C3 = {{0, 1}} .

It is clear that {C0, C1, C2, C3} meets Equation (3). Then, this
C4 instance can be represented simply by C0 = {{1, 2}}.

Recall the C-Code of length 2n can recover the erasure of
any two columns. This is guaranteed by the fourth condition
of Definition 2.1. In the graph description, this condition is
equivalent to the following one:

Condition 2.1: For any m and k (where 0 ≤ m < k ≤
2n− 1), the subgraph

G∗ = ({0, 1, · · · , 2n− 1}, Cm ∪ Ck)

does not contain a cycle or a path whose terminal vertices are
the two vertices m and k.

The above condition is explained by contradiction as fol-
lows:

We first consider the first opposite case where G∗ contains
a cycle of length r. In such a cycle, suppose the r edges
are e1, e2, · · · , er. As we know, in the corresponding square
matrix mentioned in the fourth condition of Definition 2.1, the
column vector corresponding to each edge is a vector of weight
2, whose two 1’s are in the two rows corresponding to the two
vertices of the edge. Then, in the square matrix, the binary
sum of the r column vectors corresponding to e1, e2, · · · , er
is a zero vertical vector, which conflicts with the nonsingular
property of the square matrix. Thus, G∗ should not contain a
cycle.

We then consider the second opposite case where G∗

contains a path of length r′ whose terminal vertices are the
two vertices m and k. In such a path, suppose the r′ edges
are e′1, e′2, · · · , e′r′ . As we know, in the corresponding square
matrix mentioned in the fourth condition of Definition 2.1, the
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column vector corresponding to the terminal vertex m (or k) is
a vector of weight 1, whose only 1 is in the row corresponding
to the vertex m (or k). Then, in the square matrix, the binary
sum of the r′ + 2 column vectors corresponding to the two
terminal vertices m and k and the r′ edges e′1, e′2, · · · , e′r′
is a zero vertical vector, which conflicts with the nonsingular
property of the square matrix. Thus, G∗ should not contain a
path whose terminal vertices are the two vertices m and k.

C. The Equivalence Between C-Code Constructions and
Bipyramidal P1Fs

Definition 2.2: For a 2n-regular graph on 2n + 2 ver-
tices 0, 1, · · · , 2n − 1,∞1,∞2 (where the two vertices ∞1

and ∞2 are not adjacent to each other), a bipyramidal
one-factorization is a one-factorization consisting of 2n factors
F0, F1, · · · , F2n−1, which are defined as

Fi =
{
{σi(x), σi(y)} : {x, y} ∈ F0

}
(4)

for i = 0, 1, · · · , 2n− 1, where

σ = (0 1 · · · 2n− 1)(∞1)(∞2)

is a permutation represented by a product of disjoint cycles.
In the above definition, if the one-factorization is perfect,

it is then called a bipyramidal P1F of a 2n-regular graph on
2n+ 2 vertices.

Then, we present the following theorem:
Theorem 2.1: The constructions of the C-Code of length 2n

are equivalent to bipyramidal P1Fs of a 2n-regular graph on
2n+2 vertices. Suppose F is a bipyramidal P1F of a 2n-regular
graph on 2n+ 2 vertices 0, 1, · · · , 2n−1,∞1,∞2 (where the
two vertices ∞1 and ∞2 are not adjacent to each other), in
which F0 is the one-factor that contains the edge {0,∞1}.
Then, the first column of the corresponding C-Code C2n is

C0 = F0 \ {{0,∞1}, {r,∞2}} , (5)

where r is the vertex that is adjacent to the vertex ∞2 in F0.
Proof: See Appendix A.

III. CONSTRUCTING A C-CODE USING EVEN STARTERS

We first give the definition of an even starter [30] in
(Z2n,+).

Definition 3.1: An even starter SE in (Z2n,+) is a set of
n− 1 pairs of non-zero elements, i.e.

SE = {{x1, y1}, {x2, y2}, · · · , {xn−1, yn−1}} ,

such that every non-zero element except n occurs in

∆ = {x− y, y − x : {x, y} ∈ SE} .

Its twin even starter SτE is defined as

SτE = {{x− r, y − r} : {x, y} ∈ SE} , (6)

where r is the one and only non-zero element that does not
occur in SE .

Take SE = {{1, 2}, {3, 5}} in (Z6,+) for example. For
every non-zero element except 3, we have

1 = 2− 1 mod 6;

2 = 5− 3 mod 6;

4 = 3− 5 mod 6;

5 = 1− 2 mod 6.

Thus, SE is an even starter in (Z6,+). Its twin even starter is
SτE = {{3, 4}, {5, 1}}.

Then, we present the following theorem:
Theorem 3.1: For a 2n-regular graph on 2n + 2 vertices

0, 1, · · · , 2n−1,∞1,∞2 (where the two vertices∞1 and∞2

are not adjacent to each other), suppose a one-factorization F
is a bipyramidal one-factorization in which F0 is the one-factor
that contains the edge {0,∞1}. Let

S = F0 \ {{0,∞1}, {r,∞2}} , (7)

where r is the vertex that is adjacent to the vertex ∞2 in F0.
Then, S is an even starter in (Z2n,+).

Proof: See Appendix B.
According to Theorem 2.1 in Section II-C, we can further

make the following conclusion:
Theorem 3.2: In a C-Code C2n, the first column C0 is

always an even starter in (Z2n,+). An even starter SE in
(Z2n,+) can be used to construct a C-Code of length 2n if
and only if SE can induce a bipyramidal P1F of a 2n-regular
graph on 2n+ 2 vertices.

At the same time, we can deduce the following conclusion:
Theorem 3.3: If a C2n instance can be constructed using

an even starter SE in (Z2n,+), another C2n instance can also
be constructed using the twin even starter SτE . They are called
twin C2n instances.

The above conclusion can be easily understood because
twin even starters SE and SτE induce the same bipyramidal
one-factorization.

Now, we discuss how to construct a C-Code C2n using
even starters in (Z2n,+). The steps to construct C2n are
to first find an even starter SE in (Z2n,+) and then check
whether the bipyramidal one-factorization F induced by SE
is a P1F of a 2n-regular graph on a set of 2n + 2 vertices
0, 1, · · · , 2n−1,∞1,∞2 (where the two vertices∞1 and∞2

are not adjacent to each other). Here, let

F = {F0, F1, · · · , F2n−1}.

According to the cyclic symmetry of F, it is clear that if F0∪Fi
is a Hamiltonian cycle for all i from 1 to n, F is then a P1F.
Thus, only n rather than

(
2n
2

)
subgraphs need to be checked

in determining whether F is a P1F. According to Theorem 3.2,
if F is a P1F, a C2n instance

C0 = SE (8)

can be constructed; otherwise we try other even starters in
(Z2n,+) until a C-Code is constructed, or all even starters in
(Z2n,+) have been checked.

For example, the foregoing even starter SE =
{{1, 2}, {3, 5}} in (Z6,+) induces a P1F of a 6-regular
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graph on 8 vertices. Thus, a C6 instance illustrated as follows
can be constructed using SE :

d1,2 d2,3 d3,4 d4,5 d5,0 d0,1
d3,5 d4,0 d5,1 d0,2 d1,3 d2,4

p0 p1 p2 p3 p4 p5

.

At the same time, we can construct the twin C6 instance
illustrated as follows using the twin even starter SτE =
{{3, 4}, {5, 1}}:

d3,4 d4,5 d5,0 d0,1 d1,2 d2,3
d5,1 d0,2 d1,3 d2,4 d3,5 d4,0

p0 p1 p2 p3 p4 p5

.

Finally, in the literature of graph theory, some bipyramidal
P1Fs of a complete graph on 2n + 2 vertices (denoted by
K2n+2), which are induced by even starters in (Z2n,+), have
been found for the following values of 2n: 4, 6, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28, 30, 34, 38, and 50 [22], [24], [25],
[27]. Here, a bipyramidal P1F F of K2n+2 is induced by an
even starter SE in (Z2n,+) as follows:

F = {F0, F1, · · · , F2n−1, F2n} ,

where {F0, F1, · · · , F2n−1} is a bipyramidal P1F of a
2n-regular graph on 2n+ 2 vertices induced by SE , and

F2n = {{0, n}, {1, n+ 1}, · · · , {n− 1, 2n− 1}, {∞1,∞2}} .

Thus, C-Codes for these values of 2n can be constructed using
the corresponding even starters presented in [24], [22], [25],
and [27]. For example, a C50 instance can be constructed using
the even starter presented in [27]:

C0 = {{2, 29}, {3, 35}, {4, 16}, {5, 33}, {6, 43}, {7, 15},
{8, 19}, {9, 30}, {10, 41}, {11, 46}, {12, 17},
{13, 20}, {14, 28}, {18, 38}, {21, 27}, {22, 23},
{24, 48}, {25, 34}, {26, 36}, {31, 47}, {32, 49},
{37, 39}, {40, 44}, {42, 45}} .

Then, C-Codes for lengths 14, 20, 24, 26, 34, 38, and 50,
which are not covered by the family of length p−1 presented
in [6] (where p is a prime), can be constructed here.

It should be noted that an exhaustive search showed that
a C-Code exists for most but not all of even lengths. For
example, a C-Code exists for every even length from 4 to
36 except 8 (see Table II). Here, the length 32 is also not
covered by the family of length p− 1 presented in [6].

It should also be noted that there are often more than one
C-Code instances for a given even length. For example, besides
the C34 instance listed in Table II, another C34 instance can
be constructed using the even starter presented in [24]:

C0 = {{1, 2}, {3, 5}, {4, 24}, {6, 9}, {7, 22}, {8, 18},
{10, 17}, {12, 25}, {13, 21}, {14, 23}, {15, 31},
{16, 28}, {19, 30}, {20, 26}, {27, 32}, {29, 33}} .

These two C34 instances are not twin instances. In addition,
even for a length 6 covered by the family of length p − 1
presented in [6], besides the instance C0 = {{1, 3}, {4, 5}}
constructed in [6], we can find another instance in Table II.

These two C6 instances are also not twin instances. Further-
more, as will be shown in the next section, there exist four
families of Cp−1 instances. Besides, Table III gives the number
of C-Codes for even lengths from 4 to 30. These results are
derived from [22]. From this table, we can see that for most but
not all of even lengths, the number of C-Codes increases with
the length. We can also observe that the number of C-Codes for
each length is always an even number. The reason is that each
C-Code instance always has a twin instance (see Theorem 3.3).

TABLE III
THE NUMBER (#) OF C-CODES FOR EVEN LENGTHS FROM 4 TO 30.

Length 4 6 8 10 12 14 16
# 2 4 0 16 24 12 80

Length 18 20 22 24 26 28 30
# 120 272 440 576 2016 4992 11104

IV. FOUR INFINITE FAMILIES OF Cp−1 INSTANCES

In the previous section, we have obtained C-Codes for some
sporadic even lengths listed as follows:

4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 50.

Then, someone may wonder if there exists an infinite family
of C-Codes. A positive answer to this question will be given
in this section. Exactly speaking, this section will construct
four infinite families of Cp−1 instances.

We first give the extended definition of an event starter as
follows:

Definition 4.1 ( [30]): Let (A2n, ◦) be an abelian group
(written multiplicatively) of order 2n with identity e and
unique element a∗ of order 2 (i.e. a∗ ◦ a∗ = e). An even
starter ŜE in (A2n, ◦) is a set of n− 1 pairs of non-identity
elements of A2n, i.e.

ŜE = {{x1, y1}, {x2, y2}, · · · , {xn−1, yn−1}} ,

such that every non-identity element of A2n except a∗ occurs
in {

x−1 ◦ y, x ◦ y−1 : {x, y} ∈ ŜE
}
.

Let
(
Z∗p ,×

)
be a multiplicative group of congruence classes

modulo p. For p = 7,

Z∗7 = {1, 2, · · · , 6}.

It is clear that (Z∗7 ,×) is an abelian group of order 6 with
identity 1 and unique element 6 of order 2. Take ŜE =
{{2, 6}, {3, 5}} in (Z∗7 ,×) for example. For every non-identity
element of Z∗p except 6, we have

2 = 3× 5−1 mod 7;

3 = 2−1 × 6 mod 7;

4 = 3−1 × 5 mod 7;

5 = 2× 6−1 mod 7.

Thus, ŜE is an even starter in (Z∗7 ,×).
An even starter ŜE in (A2n, ◦) induces a bipyramidal

one-factorization of a 2n-regular graph on 2n+ 2 vertices as
follows. Label the 2n + 2 vertices with the elements of A2n
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TABLE II
SOME EXAMPLES OF C-CODES FOR EVEN LENGTHS FROM 4 TO 36.

Length C0 (i.e. SE )
4 {{1, 2}}
6 {{1, 2}, {3, 5}}
8 (Not Exist!)
10 {{1, 2}, {3, 5}, {4, 8}, {6, 9}}
12 {{1, 10}, {2, 6}, {3, 5}, {4, 9}, {7, 8}}
14 {{1, 2}, {3, 11}, {4, 6}, {5, 9}, {7, 10}, {8, 13}}
16 {{1, 2}, {3, 13}, {4, 15}, {5, 14}, {6, 8}, {7, 11}, {9, 12}}
18 {{1, 2}, {3, 7}, {4, 11}, {5, 15}, {6, 9}, {8, 13}, {10, 16}, {12, 14}}
20 {{1, 2}, {3, 5}, {4, 17}, {6, 14}, {7, 18}, {8, 13}, {9, 12}, {10, 16}, {11, 15}}
22 {{1, 2}, {3, 6}, {4, 12}, {5, 9}, {7, 13}, {8, 21}, {10, 20}, {11, 18}, {14, 19}, {15, 17}}
24 {{1, 2}, {3, 5}, {4, 21}, {6, 11}, {7, 20}, {8, 12}, {9, 19}, {10, 16}, {13, 22}, {14, 17}, {15, 23}}
26 {{1, 2}, {3, 6}, {4, 25}, {5, 19}, {7, 14}, {8, 24}, {9, 11}, {10, 18}, {12, 23}, {13, 22}, {15, 21}, {16, 20}}
28 {{1, 2}, {3, 6}, {4, 25}, {5, 21}, {7, 11}, {8, 16}, {9, 18}, {10, 27}, {12, 22}, {13, 26}, {14, 20}, {15, 17}, {19, 24}}
30 {{1, 2}, {3, 5}, {4, 9}, {6, 25}, {7, 13}, {8, 21}, {10, 24}, {11, 29}, {12, 16}, {14, 23}, {15, 22}, {17, 20}, {18, 28},

{19, 27}}
32 {{1, 2}, {3, 5}, {4, 8}, {6, 27}, {7, 24}, {9, 21}, {10, 19}, {11, 29}, {12, 31}, {13, 18}, {14, 17}, {15, 25}, {16, 22},

{20, 28}, {23, 30}}
34 {{1, 2}, {3, 5}, {4, 10}, {6, 25}, {7, 14}, {8, 32}, {9, 18}, {11, 22}, {12, 20}, {13, 26}, {15, 33}, {16, 30}, {17, 21},

{19, 31}, {23, 28}, {24, 27}}
36 {{1, 2}, {3, 5}, {4, 8}, {6, 11}, {7, 20}, {9, 18}, {10, 34}, {12, 26}, {13, 28}, {14, 33}, {15, 35}, {16, 22}, {17, 25},

{19, 29}, {21, 32}, {23, 30}, {24, 27}}

and two infinity elements ∞1 and ∞2 such that there is no
edge between the following pairs of vertices: {∞1,∞2} and
all {a, a ◦ a∗} for a ∈ A2n. Let

∼
SE = ŜE ∪ {{e,∞1}, {r,∞2}} , (9)

where r is the non-identity element that does not appear in ŜE .
For all a ∈ A2n, define a ◦∞1 =∞1 and a ◦∞2 =∞2. The
corresponding bipyramidal one-factorization F is then given
by

F =

{
a ◦
∼
SE : a ∈ A2n

}
, (10)

where

a ◦
∼
SE =

{
{a ◦ x, a ◦ y} : {x, y} ∈

∼
SE

}
.

Here, if the bipyramidal one-factorization induced by ŜE in
(A2n, ◦) is a P1F, a non-cyclic B-Code of length 2n, in which
the a-th column (a ∈ A2n) is a ◦ ŜE , can be constructed [14].

Take the foregoing even starter ŜE = {{2, 6}, {3, 5}} in
(Z∗7 ,×) for example. Since the corresponding bipyramidal
one-factorization is a P1F, a non-cyclic B-Code of length 6
constructed using ŜE is illustrated as follows:

d2,6 d4,5 d6,4 d1,3 d3,2 d5,1
d3,5 d6,3 d2,1 d5,6 d1,4 d4,2

p1 p2 p3 p4 p5 p6

.

This code is the same as the P-Code of length 6 constructed
in [20] (in fact, P-Code is just one family of the B-Code of
length p−1, and its code structure was originally derived from
[19]).

We now consider the case where (A2n, ◦) is a cyclic group
of which g is a generator. Then, in the non-cyclic B-Code
of length 2n constructed using ŜE in (A2n, ◦), the (gi)-th
column (i = 0, 1, · · · , 2n − 1) can be expressed as gi ◦ ŜE .
For i = 0, 1, · · · , 2n − 1, replace gi with i and then relabel

the (gi)-th column with i. Reorder all the 2n columns in order
according to their new labels. Then, a C-Code of length 2n is
obtained.

Take the foregoing non-cyclic B-Code of length 6 for
example. Since (Z∗7 ,×) is a cyclic group of which 3 is a
generator, the code can then be represented by

d32,33 d34,35 d33,34 d30,31 d31,32 d35,30

d31,35 d33,31 d32,30 d35,33 d30,34 d34,32

p30 p32 p31 p34 p35 p33

.

In the above representation, replace 3i with i for i =
0, 1, · · · , 5 and then reorder all the 6 columns in order ac-
cording to their new labels. We can obtain a C6 instance as
follows:

d2,3 d3,4 d4,5 d5,0 d0,1 d1,2
d1,5 d2,0 d3,1 d4,2 d5,3 d0,4

p0 p1 p2 p3 p4 p5

.

In a cyclic group (written multiplicatively) of which g is a
generator, for x = gi, define logg (x) = i. Then, we can easily
make the following conclusion:

Theorem 4.1: If (A2n, ◦) is a cyclic group of which g is a
generator, a non-cyclic B-Code of length 2n constructed using
an even starter ŜE in (A2n, ◦) can always be transformed to
a C2n instance

C0 =
{{

logg (x), logg (y)
}

: {x, y} ∈ ŜE
}
. (11)

At the same time, we can get the twin C2n instance

Cτ0 = {{x∗ − r∗, y∗ − r∗} : {x∗, y∗} ∈ C0} , (12)

where r∗ is the one and only non-zero element of (Z2n,+)
that does not occur in C0.

Specially, we consider even starters in
(
Z∗p ,×

)
, where p is

a prime. It is well-known that when p is a prime,
(
Z∗p ,×

)
is

a cyclic group in which

Z∗p = {1, 2, · · · , p− 1}.
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Thus, we can make the following conclusion:
Theorem 4.2: A non-cyclic B-Code of length p − 1 con-

structed using an even starter in
(
Z∗p ,×

)
can always be

transformed to a C-Code of length p− 1.
Finally, in

(
Z∗p ,×

)
, there exist two infinite families of even

starters [28] as follows:

ŜAE =
{
{x, y} : x, y ∈ Z∗p \ {1, 2−1}, x+ y = 1

}
, (13)

and

ŜBE =
{
{x, y} : x, y ∈ Z∗p \ {1, 2−1, 2, p− 1},

x+ y = 1}
⋃{
{2−1, p− 1}

}
. (14)

It was proved in [28] that ŜAE and ŜBE can induce two
families of non-isomorphic bipyramidal P1Fs of Kp+1, re-
spectively. Note that the P1F induced by ŜAE is isomorphic to
the well-known patterned P1F (induced by the well-known
patterned starter in (Zp,+)) [31], which has been used to
construct the family of non-cyclic B-Codes of length p − 1
in [20], [14], and [19]. Thus, two families of non-cyclic
B-Codes of length p − 1 can be constructed using ŜAE and
ŜBE , respectively.

Suppose g is a generator of
(
Z∗p ,×

)
. Then, two families of

Cp−1 instances

CA0 =
{{

logg (x), logg (y)
}

: x, y ∈ Z∗p \ {1, 2−1}, x+ y = 1
}

(15)
and

CB0 =
{{

logg (x), logg (y)
}

: x, y ∈ Z∗p \ {1, 2−1, 2, p− 1},

x+ y = 1}
⋃{
{2−1, p− 1}

}
(16)

and their twin instances can be constructed. Therefore, there
exist four families of Cp−1 instances.

Take (Z∗7 ,×) for example. We then have ŜAE =

{{2, 6}, {3, 5}} and ŜAE = {{3, 5}, {4, 6}}. In (Z∗7 ,×), pick
g = 3. From ŜAE , we obtain a C6 instance

CA0 = {{2, 3}, {1, 5}}

and its twin instance(
CA0
)τ

= {{4, 5}, {3, 1}} .

Here, the twin instance is the same as the instance constructed
in [6]. Also, from ŜBE , we obtain a C6 instance

CB0 = {{1, 5}, {4, 3}}

and its twin instance(
CB0
)τ

= {{5, 3}, {2, 1}} .

Thus, we construct four C6 instances.
From the above results, we can make two observations as

follows:
1) Non-cyclic B-Codes of length p − 1 constructed in

[20], [14], and [19] can always be transformed to Cp−1
instances; and

2) The family of Cp−1 instances constructed in [6] can also
be obtained from ŜAE .

V. CONSTRUCTING A QUASI-C-CODE USING EVEN
MULTI-STARTERS

As mentioned in Section III, our exhaustive search showed
that there is no C-Code for some even lengths, such as 8. Then,
someone may ask: Can we construct quasi-C-Codes (which
partially hold cyclic symmetry [6]) for these even lengths?

In this section, we will introduce a concept of even
multi-starters and then discuss how to construct quasi-C-Codes
using even multi-starters.

An even κ-starter in (Z2n,+) (where κ|2n) is defined as
follows:

Definition 5.1: An even κ-starter Sκ in (Z2n,+) (where
κ|2n) is a set

Sκ = {S0, S1, · · · , Sκ−1} ,

where Si (i = 0, 1, · · · , κ− 1) is a set of n− 1 pairs of non-i
elements of Z2n, such that every integer from 1 to n−1 occurs
κ times as a difference of a pair of Sκ. Its twin even κ-starter
(Sκ)

τ is defined as

(Sκ)
τ

=
{
S′ri mod κ = Si − κ

⌊ri
κ

⌋
: i = 0, 1, · · · , κ− 1

}
,

(17)
where ri is the non-i element that does not appear in Si, and

Si − κ
⌊ri
κ

⌋
=
{{

x− κ
⌊ri
κ

⌋
, y − κ

⌊ri
κ

⌋}
: {x, y} ∈ Si

}
.

Take S2 = {S0, S1} in (Z8,+) for example, where S0 =
{{1, 2}, {3, 5}, {4, 6}}, and S1 = {{0, 3}, {2, 7}, {4, 5}}. For
every integer from 1 to 3, we have

1 = 2− 1 = 5− 4 mod 8;

2 = 5− 3 = 6− 4 mod 8;

3 = 3− 0 = 2− 7 mod 8.

Thus, S2 is an even 2-starter in (Z8,+). Its twin even 2-starter
is (S2)

τ
= {S′0, S′1}, where S′0 = {{2, 5}, {4, 1}, {6, 7}}, and

S′1 = {{3, 4}, {5, 7}, {6, 0}}.
An even κ-starter

Sκ = {S0, S1, · · · , Sκ−1}

in (Z2n,+) (where κ|2n) induces a one-factorization of a
2n-regular graph on 2n + 2 vertices as follows. Label these
2n + 2 vertices with the elements of Z2n and two infinity
elements ∞1 and ∞2 such that there is no edge between the
following pairs of vertices: {∞1,∞2} and all {i, i + n} for
i = 0, 1, · · · , n− 1. For every z ∈ Z2n, define z +∞1 =∞1

and z +∞2 =∞2. For i = 0, 1, · · · , κ− 1, let
∼
Si = Si ∪ {{i,∞1}, {ri,∞2}} , (18)

where ri is the non-i element that does not appear in Si. The
corresponding one-factorization Fκ is then given by

Fκ =

{
κτ +

∼
S0, κτ +

∼
S1, · · · , κτ +

∼
Sκ−1 :

τ = 0, 1, · · · , 2n

κ
− 1

}
, (19)
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where

κτ +
∼
Si =

{
{κτ + x, κτ + y} : {x, y} ∈

∼
Si

}
for i = 0, 1, · · · , κ − 1. Such a one-factorization is called a
κ-quasi-bipyramidal one-factorization.

For an even κ-starter

Sκ = {S0, S1, · · · , Sκ−1}

in (Z2n,+) (where κ|2n), if the κ-quasi-bipyramidal
one-factorization Fκ induced by Sκ is a P1F of a 2n-regular
graph on 2n+ 2 vertices, a κ-quasi-C-Code of length 2n (de-
noted by Cκ2n), in which the i-th column (i = 0, 1, · · · , 2n−1)
is

Ci =

{{
x+ κ

⌊
i

κ

⌋
mod 2n, y + κ

⌊
i

κ

⌋
mod 2n

}
:

{x, y} ∈ Si mod κ} , (20)

can be constructed using Sκ. It can be easily checked that in
a Cκ2n instance, for i = 0, 1, · · · , κ − 1, each group of 2n

κ
columns

Ci+κ×0, Ci+κ×1, · · · , Ci+κ×( 2n
κ −1)

hold cyclic symmetry.
Similar to Theorem 3.3 in Section III, we give the following

theorem:
Theorem 5.1: If a Cκ2n instance can be constructed using

an even κ-starter Sκ in (Z2n,+), another Cκ2n instance can
also be constructed using the twin even κ-starter (Sκ)τ . They
are called twin Cκ2n instances.

The above conclusion can also be easily understood
because twin even κ-starters Sκ and (Sκ)τ induce the same
κ-quasi-bipyramidal one-factorization.

For example, the foregoing even 2-starter
S2 = {S0, S1} (where S0 = {{1, 2}, {3, 5}, {4, 6}},
and S1 = {{0, 3}, {2, 7}, {4, 5}}) in (Z8,+) induces a
2-quasi-bipyramidal P1F of a 8-regular graph on 10 vertices.
Thus, a C2

8 instance illustrated as follows can be constructed
using S2:

d1,2 d0,3 d3,4 d2,5 d5,6 d4,7 d7,0 d6,1
d3,5 d2,7 d5,7 d4,1 d7,1 d6,3 d1,3 d0,5
d4,6 d4,5 d6,0 d6,7 d0,2 d0,1 d2,4 d2,3

p0 p1 p2 p3 p4 p5 p6 p7

.

At the same time, we can construct the twin C2
8 instance

illustrated as follows using the twin even 2-starter (S2)
τ

=
{S′0, S′1}, where S′0 = {{2, 5}, {4, 1}, {6, 7}}, and S′1 =
{{3, 4}, {5, 7}, {6, 0}}:

d2,5 d3,4 d4,7 d5,6 d6,1 d7,0 d0,3 d1,2
d4,1 d5,7 d6,3 d7,1 d0,5 d1,3 d2,7 d3,5
d6,7 d6,0 d0,1 d0,2 d2,3 d2,4 d4,5 d4,6

p0 p1 p2 p3 p4 p5 p6 p7

.

VI. TWO INFINITE FAMILIES OF C2
2(p−1) INSTANCES

In this section, we will construct two infinite families of
C2

2(p−1) instances. We start with an infinite family of even
2-starter S2 and its twin even 2-starter

(
S2
)τ

in
(
Z2(p−1),+

)
.

Suppose g is a generator of
(
Z∗p ,×

)
. In
(
Z∗p ,×

)
, for x = gi,

define logg (x) = i. Then, S2 = {S0, S1} in
(
Z2(p−1),+

)
is

constructed as follows:

S0 =
{{

2 logg (x), 2 logg (y) + 1
}

: x ∈ Z∗p \ {1},
y ∈ Z∗p \ {p− 1}, x− y = 1

}
, (21)

and

S1 =
{
{2x+ 1, 2y + 1} : {x, y} ∈ CA0

}⋃
{
{2x, 2y} : {x, y} ∈ CA0

}⋃
{{2r, 2r + 1}} ,

(22)

where CA0 is defined in Equation (15) in Section IV, and r
is the one and only non-zero element of (Zp−1,+) that does
not occur in CA0 . Its twin even 2-starter in

(
Z2(p−1),+

)
is(

S2
)τ

= {S′0, S′1}, where

S′0 = S1, (23)

and

S′1 =
{{

2 logg (x) + 1, 2 logg (y)
}

: x ∈ Z∗p \ {1},
y ∈ Z∗p \ {p− 1}, x− y = 1

}
. (24)

Take (Z8,+) for example. Pick g = 2 in (Z∗5 ,×). We then
have S2 = {S0, S1}, where S0 = {{2, 1}, {6, 3}, {4, 7}}, and
S1 = {{2, 4}, {3, 5}, {6, 7}}. Its twin even 2-starter in (Z8,+)
is
(
S2
)τ

= {S′0, S′1}, where S′0 = {{2, 4}, {3, 5}, {6, 7}}, and
S′1 = {{3, 0}, {7, 2}, {5, 6}}.

It can be verified that this family of even 2-starter S2 and
its twin even 2-starter

(
S2
)τ

in
(
Z2(p−1),+

)
can induce the

same 2-quasi-bipyramidal P1F of K2p, which is isomorphic
to the well-known P1F GA2p of K2p [31]. Thus, two families
of C2

2(p−1) instances can be constructed using S2 and
(
S2
)τ

,
respectively.

Here, the family of C2
2(p−1) instances constructed using

S2 can be shown to be the same as those constructed in
[6]. Besides, it was proved in [32] that the P1F GN2p of
K2p, which was adopted in [14] to construct the family of
non-cyclic B-Codes of length 2(p− 1), is also isomorphic to
GA2p. Thus, we can make two observations as follows:

1) Non-cyclic B-Codes of length 2(p − 1) constructed in
[14] can always be transformed to C2

2(p−1) instances;
and

2) The family of C2
2(p−1) instances constructed in [6] can

also be constructed using S2.

VII. CONCLUSIONS AND REMARKS

This paper investigated the underlying connections between
distance-3 cyclic (or quasi-cyclic) lowest-density MDS array
codes and starters in group theory. Some interesting new
results listed as follows were obtained:
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1) Each cyclic code of length 2n can be constructed using
an even starter in (Z2n,+) (see Section III), while each
quasi-cyclic code of length 2n can be constructed using
an even multi-starter in (Z2n,+) (see Section V);

2) Each cyclic (or quasi-cyclic) code has a twin cyclic (or
quasi-cyclic) code (see Sections III and V);

3) A cyclic code exists for most but not all of even lengths
(one exception is 8) (see Section III);

4) Four infinite families of cyclic codes of length p − 1
(which cover the family of cyclic codes of length p− 1
constructed in [6]) were constructed from two infinite
families of even starters in

(
Z∗p ,×

)
(where p is a prime)

in Section IV;
5) Besides the family of length p−1, cyclic codes for some

sporadic even lengths listed as follows were obtained in
Section III:

14, 20, 24, 26, 32, 34, 38, 50;

6) Two infinite families of quasi-cyclic codes of length
2(p− 1) (which cover the family of quasi-cyclic codes
of length 2(p− 1) constructed in [6]) were constructed
using an infinite family of even 2-starter in

(
Z2(p−1),+

)
in Section VI; and

7) Non-cyclic B-Codes of length p−1 constructed in [20],
[14], and [19] can always be transformed to cyclic codes
(see Section IV), while non-cyclic B-Codes of length
2(p− 1) constructed in [14] can always be transformed
to quasi-cyclic codes (see Section VI).

TABLE IV
THE EXISTENCE OF DISTANCE-3 CYCLIC (OR QUASI-CYCLIC)

LOWEST-DENSITY MDS ARRAY CODES FOR EVEN LENGTHS FROM 4 TO
58.

Length 4 6 8 10 12 14 16
Cyclic

√ √
×

√ √ √ √

Quasi-Cyclic
√ √

Length 18 20 22 24 26 28 30
Cyclic

√ √ √ √ √ √ √

Quasi-Cyclic
√ √

Length 32 34 36 38 40 42 44
Cyclic

√ √ √ √ √ √
?

Quasi-Cyclic
√ √ √

Length 46 48 50 52 54 56 58
Cyclic

√
?

√ √
? ?

√

Quasi-Cyclic
√

√
: existence; ×: inexistence; ?: unknown.

According to the above results, we can obtain Table IV.
From this table, we can see that for even lengths from 4 to
58, there are one length 8, for which the cyclic code does
not exist, and four lengths 44, 48, 54, and 56, for which
cyclic codes are still unknown. Luckily, quasi-cyclic codes for
lengths 8, 44, and 56 can be constructed in Section VI. Then,
the constructions of cyclic (or quasi-cyclic) codes for the rest
two lengths 48 and 54 are left as open problems. Here, two
points deserve future researchers’ attention:

1) Non-cyclic B-Codes of length 48 can be constructed
using P1Fs of K50 found in [26]. However, these P1Fs
were induced by starters in (Z49,+). Whether these

non-cyclic B-Codes can be transformed to cyclic codes
is left as an open problem.

2) Since 2009, when a P1F of K52 was found (see [27]),
K56 has been the smallest complete graph for which a
P1F has not been known. The construction of a P1F
of K56 is left as an open problem in graph theory.
Consequently, the construction of a B-Code of length
54 is still unknown.

APPENDIX A
PROOF OF THEOREM 2.1

We prove this theorem by two algorithms. Here, note that
the basic idea comes from the work of [14], and a similar
proof was given in [33].

We now first propose Algorithm 1 to construct a C2n in-
stance from a bipyramidal P1F of a 2n-regular graph on 2n+2
vertices. In this algorithm, it is clear that {C0, C1, · · · , C2n−1}
meets Equation (3) in Section II-B. It can also be proved as
follows that {C0, C1, · · · , C2n−1} meets Condition 2.1 in Sec-
tion II-B. Thus, a corresponding C2n instance is constructed
by Algorithm 1.

Algorithm 1 Constructing a C2n instance from a bipyramidal
P1F of a 2n-regular graph on 2n+ 2 vertices.

(S1) Choose arbitrary pair of vertices that are not adjacent
to each other in the regular graph and label them with
∞1 and ∞2. Then, label the other 2n vertices of the
regular graph with integers from 0 to 2n− 1.

(S2) If a bipyramidal P1F exists for the regular graph,
then let Fi denote the one-factor that contains the
edge {i,∞1}, where i = 0, 1, . . . , 2n− 1.

(S3) In each Fi, delete the two edges that are incident
to the two vertices ∞1 and ∞2. Then, delete the
two vertices ∞1 and ∞2 in the graph. For i =
0, 1, . . . , 2n− 1, let Ci = Fi \ {{i,∞1}, {ri,∞2}},
where ri is the vertex that is adjacent to the vertex
∞2 originally in Fi, and label all the edges in Ci
with i.

According to Definition 1.1 in Section I, in a P1F, for any
pair of one-factors Fi1 and Fi2 , the union of them forms a
Hamiltonian cycle. Then, in the union of Fi1 and Fi2 , after
we delete all the edges that are incident to the two vertices∞1

and ∞2, no cycle can exist. In addition, there also does not
exist a path whose terminal vertices are the two vertices i1 and
i2, otherwise the union of the path and the two edges {i1,∞1}
(contained in Fi1 ) and {i2,∞1} (contained in Fi2 ) can form
a cycle that does not visit the vertex ∞2, which conflicts
with the fact that the union of the two one-factors Fi1 and
Fi2 forms a Hamiltonian cycle. Thus, {C0, C1, · · · , C2n−1}
in Algorithm 1 meets Condition 2.1 in Section II-B.

To make Algorithm 1 more easily understood, we give an
example of constructing the C4 instance in Section II-A from a
bipyramidal P1F of a 4-regular graph on 6 vertices in Figure 1.

Then, the next natural question is: Can we get a bipyramidal
P1F of a 2n-regular graph on a set of 2n+ 2 vertices from a



10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. XX, MONTH YEAR

C2n instance? A positive answer to this question will be given
by Algorithm 2.

Algorithm 2 Constructing a bipyramidal P1F of a 2n-regular
graph on 2n+ 2 vertices from a C2n instance.

(S1) If a C2n instance exists, describe the code using the
graph representation mentioned in Section II-B and
let Ci represent the i-th column of the code in the
graph description, where i = 0, 1, . . . , 2n− 1.

(S2) Add two vertices∞1 and∞2 to the (2n− 2)-regular
graph G of vertices 0, 1, . . . , 2n− 1.

(S3) For i = 0, 1, . . . , 2n−1, add two edges {i,∞1} and
{ri,∞2} to Ci, where ri is an integer from 0 to
2n− 1 such that the expanded set

∼
Ci is a one-factor

of the expanded graph
∼
G of vertices 0, 1, · · · , 2n −

1,∞1,∞2.

In Algorithm 2, for i = 0, 1, · · · , 2n − 1,
∼
Ci has the

following form:
∼
Ci = Ci ∪ {{i,∞1}, {ri,∞2}} . (25)

It is clear that the new graph
∼
G is a 2n-regular graph on

2n+ 2 vertices.
For i = 0, 1, · · · , 2n−1, define∞1+i =∞1 and∞2+i =
∞2. Then, for i = 0, 1, · · · , 2n− 1, we have
∼
Ci =

{
{x+ i mod 2n, y + i mod 2n} : {x, y} ∈

∼
C0

}
.

(26)
Consequently,

F =

{
∼
C0,

∼
C1, · · · ,

∼
C2n−1

}
(27)

is a bipyramidal one-factorization of a 2n-regular graph on
2n+ 2 vertices.

Take the C4 instance in Section II-A for example. Fig-
ure 1(b) shows the corresponding expanded graph

∼
G, which is

a 4-regular graph on a set of 6 vertices {0, 1, 2, 3,∞1,∞2}.
The four corresponding expanded sets are

∼
C0 = {{1, 2}, {0,∞1}, {3,∞2}} ;
∼
C1 = {{2, 3}, {1,∞1}, {0,∞2}} ;
∼
C2 = {{3, 0}, {2,∞1}, {1,∞2}} ;
∼
C3 = {{0, 1}, {3,∞1}, {2,∞2}} .

It is clear that

F =

{
∼
C0,

∼
C1,

∼
C2,

∼
C3

}
is a bipyramidal one-factorization of a 4-regular graph on 6
vertices.

We then prove that the bipyramidal one-factorization ob-
tained in Algorithm 2 is perfect as follows:

From Condition 2.1 in Section II-B, we can deduce that for
any m and k (where 0 ≤ m < k ≤ 2n− 1), the subgraph

G∗ = ({0, 1, · · · , 2n− 1}, Cm ∪ Ck)

can be in one of the following two forms:

1) G∗ consists of an isolated vertex m (or k) and a path
of length 2n − 2 one of whose terminal vertices is the
other vertex k (or m); or

2) G∗ consists of two paths that satisfy: i) the sum of their
length is 2n− 2, and ii) one of the terminal vertices of
each path is the vertex m or k.

Then, in the one-factorization constructed in Algorithm 2,
the union of any pair of one-factors forms a Hamiltonian
cycle. Thus, according to Definition 1.1 in Section I, the
one-factorization obtained in Algorithm 2 is a bipyramidal P1F
of a 2n-regular graph on 2n+ 2 vertices.

APPENDIX B
PROOF OF THEOREM 3.1

It is clear that S consists of n − 1 pairs of non-zero
elements in (Z2n,+). We then prove by contradiction that
every non-zero element except n occurs in ∆.

We first consider the first opposite case where n occurs in
∆. Suppose the corresponding pair is {x∗, y∗}, i.e.

y∗ − x∗ = x∗ − y∗ = n.

Then, we have

{x∗ + n, y∗ + n} = {x∗, y∗}.

F is a bipyramidal one-factorization in which

Fn = {{x+ n, y + n} : {x, y} ∈ F0} .

Consequently, {x∗, y∗} is contained in both F0 and Fn — a
contradiction!

Now, under the condition n /∈ ∆, we then consider the
second opposite case where a non-zero and non-n element
does not occur in ∆. Then, according to the pigeonhole
principle, there exist two pairs {x′1, y′1} and {x′2, y′2}, which
meet

y′1 − x′1 = y′2 − x′2.

Then, we have

x′2 − x′1 = y′2 − y′1.

Let
k = x′2 − x′1.

Then, we have

{x′1 + k, y′1 + k} = {x′2, y′2}.

F is a bipyramidal one-factorization in which

Fk = {{x+ k, y + k} : {x, y} ∈ F0} .

Consequently, {x′2, y′2} is contained in both F0 and Fk — a
contradiction!

Therefore, according to Definition 3.1 in Section III, S is
an even starter in (Z2n,+).
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