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Abstract

This paper presents an approach for real-time traffic speed prediction via GPS speed readings.
The approach combines techniques from data mining with traffic speed estimates available from
other sources. In particular, we consider GPS data that is provided in the form of point speeds, rather
than trajectories. This is the case when GPS data from consumers is sampled at discrete points by
a service provider, e.g. to protect privacy of the consumers by not permitting a reconstruction of
their trajectories. In the context studied in this paper as well as others observed in practice, such
GPS sampling rates are quite low and hence the GPS-based speed readings can be quite unreliable.
Our method recognizes this fact and uses the GPS speed readings in a novel way in conjunction
with another source of speed data for the network. The example studied is drawn from the 2010
IEEE International Competition on Data Mining (ICDM) traffic prediction competition, in which the
authors were part of a team that finished second worldwide.
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1 Introduction

Real-time road traffic prediction is an important component of modern traffic management and informa-

tion systems. Reliable prediction of near-term traffic conditions in road networks allows traffic manage-

ment agencies to generate proactive traffic operation strategies to alleviate congestion and allows both

public agencies and private companies to provide accurate travel time estimates to road users.

In the past two decades, much research effort has been invested in developing accurate and robust

traffic prediction models. The modeling approaches can be classified into parametric methods and non-

parametric methods. The former category relies primarily on statistical techniques, including historical

average and smoothing techniques (e.g., Smith and Demetsky, 1997; Williams et al., 1998), autoregres-

sive moving average models (e.g., Ahmed and Cook, 1979; Levin and Tsao, 1980; Al-Deek et al., 2001;

Smith et al., 2002; Kamarianakis and Prastacos, 2003; Min and Wynter, 2011), and Kalman filter al-

gorithms (e.g., Okutani and Stephanedes, 1984; Guo and Williams, 2010). The main non-parametric

approaches published to date include non-parametric regression (e.g., Smith and Demetsky, 1996; Clark,

2003; Huang and Sadek, 2009) and artificial neural networks (ANN) (e.g., Clark et al., 1993; Vythoulkas,

1993; Yun et al., 1998; van Lint et al., 2005; Vlahogianni et al., 2005; Khosravi et al., 2011). See Vla-

hogianni et al. (2004) for a somewhat dated review of different traffic prediction models.

The above approaches have been designed in general for traffic prediction based on fixed-location

data sources such as inductive loops, roadside radar sensors, and traffic cameras. When using fixed-

location sensor data only, taking into account spatial and temporal correlations of traffic flow can be

done in a straightforward manner. For example, traffic measurements on neighboring links can be used

to formulate a univariate or mutlivariate linear/nonlinear prediction model.

While fixed-location traffic sensors are commonly available on expressways and other major road-

ways, real-time traffic data using fixed-location sensors is far less ubiquitous on urban networks. The

proliferation of GPS devices in fleets of vehicles, passenger cars in the form of in-vehicle navigation sys-

tems, and more recently from applications on smart phones, has led to an increasing emphasis on using

GPS data for the identification of traffic speeds on the roads. Some products exist in the marketplace

to determine traffic “color maps” for GPS-enabled mobile phones equipped with dedicated applications

that transmit periodically locations to a server. Such traffic estimation is related to the traffic prediction

problem that we are interested in but is different in two important ways. On the one hand, we are in-

terested in quantitative traffic prediction that produces a set of future speeds on the various road links,

rather than the types of ranges produced for use on “color maps”. Secondly, we are interested in going

beyond real-time traffic estimation to future traffic prediction, which in general requires more data than

the real-time estimation problem.

There are two major issues in using GPS data for traffic prediction. First, disclosing detailed vehicular

trajectory data is always associated with privacy and security concerns. Even if trajectory data is broad-

casted in an anonymous manner, it is still possible to identify individuals from the trajectory data (Hoh

et al., 2006). Hence, in some cases, GPS measurements are sampled at random times/locations/devices

so that vehicular trajectories cannot be inferred. One example of such an approach is the Virtual Trip

Line proposed by Hoh et al. (2008), which is essentially a spatial trigger for GPS devices to collect
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and report measurements when pre-defined virtual lines in the network are crossed. The data collection

procedure for our study is similar in nature to the idea of Virtual Trip Line. The only difference is that

sampling is performed on devices rather than on locations. More specifically, for each given interval,

only a sampled collection of GPS devices report their location and speed information. The second chal-

lenge is that traditional traffic prediction methods which are based on reliable traffic observations from

fixed locations are usually inapplicable in this context. Indeed, the proportion of vehicles who disclose

their location or speed information to any given application provider is typically very low and hence the

amount of real-time and historical data on each road link is insufficient for standard traffic prediction

approaches to apply.

The method presented in this paper is based on the approach developed for such a problem as part

of the 2010 IEEE International Conference on Data Mining (ICDM) TomTom Traffic Prediction Contest

for Intelligent GPS Navigation. The authors were part of the team which placed second worldwide in

that contest. The remainder of this paper is structured as follows. Section 2 introduces the problem

setting and the data used for developing our approach. Section 3 describes the hybrid method developed.

Section 4 presents the prediction performance of the proposed method on the test data set, and Section 5

concludes the paper by summarizing the major findings.

2 Problem Setting and Data

The traffic prediction problem investigated in this paper is as follows: Suppose that GPS data is available

from a sampling of drivers at random points on a road network. Suppose further that trajectory data

cannot be gathered, as is the case with numerous smartphone applications that sample user locations and

speeds at separate points in time far enough apart to be unable to redraw the users’ paths. This is done

primarily to protect the users’ privacy as part of an opt-in approach to the application. Since the data is

available only to the particular application provider, the subset of the population available to the provider

is limited. In addition, given the sampling that the provider agrees to do to protect users’ privacy, the

available population is reduced further still.

Because of the sparsity of available signals on all of the urban road links at all points in time, a

secondary source of data is useful. Specifically, we make use of a set of additional information on

average travel speeds for the links of interest, which may have been obtained from other sources but not

available as a fixed-sensor-based real-time data feed. We term these travel times “historical” because in

our setting they are available for the training data but not as part of the testing data set.

The goal, as stated previously, is to perform near-term prediction of traffic speeds on selected road

links.

The specific data used in this paper was obtained as part of the 2010 IEEE ICDM Traffic Predic-

tion competition. In this case, the GPS data was generated by a traffic simulation program rather than

from live users. The simulator, called the Traffic Simulation Framework (TSF), was developed at the

University of Warsaw, and is based on the well-known Nagel-Schreckenberg’s cellular automata traffic

flow models (Nagel and Schreckenberg, 1992). The functionality of TSF was described in detail in Gora

(2009).
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Traffic simulation was performed for the network of Warsaw, Poland (Figure 1), and contains in all

18716 nodes and 35170 links. Among the links, 8631 are classified as major roads, and 100 are further

termed “critical” links. Our goal was to perform traffic prediction on the 100 critical links.

Critical road segments

Major Road

Minor road

Figure 1: Network of Warsaw, Poland

The simulation was run for essentially 500 simulation-hours, thereby representing 50 10-hour day-

time periods on similar days, such as 10 weeks’ worth of five-day weeks, during the daytime hours. That

data was considered to be historical data to be used for training. An additional set of data of the same

quantity was generated and was used as testing data. However, for each hour of the testing data set, only

GPS information of the first 30 minutes of each of the 500 hours was revealed. In terms of simulated

sampled GPS data, 1% of the vehicles simulated were sampled during each 10-second interval and the

instantaneous speed and location recorded.

Each GPS record contains a timestamp, latitude and longitude coordinates, and the instantaneous

speed of the sampled vehicle. Before any prediction model can be applied, a procedure is needed to map

GPS location to the road segments on the network. Since GPS data are generally noisy, the reported

coordinates may not necessarily fall precisely on any link. Map-matching algorithms (e.g., Greenfeld,

2002; Alt et al., 2003) are therefore needed to accurately approximate the location of the GPS points on

the links. Since the simulated traffic data was less noisy, we were able to employ the built-in spatial join

function in ArcGIS for the map matching function; specifically, each GPS data point was associated with

the closest link within a 20-meter radius. If no such link is found, the GPS data point was discarded.

To reduce computational time, only major links were included as candidate links for matching. The

map-matching procedure was performed for the GPS data points of both the training and test data sets.

Roughly 80% of the GPS points were able to be map-matched of the approximately 280,000 GPS points

provided during an average training hour.

As the secondary source of average-case data, 6-minute (harmonic) average speeds were provided

for all of the 100 critical links for each hour of the training data. No average-case speed information
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was available for the testing data to reflect the fact that such data is not typically available on the links in

question as a real-time feed.

As part of the IEEE ICDM competition, the objective was to perform two traffic speed predictions on

the full set of 100 critical links: a 6-minute-ahead prediction and a 30-minute-ahead prediction, in both

cases with the speeds being harmonic averages of the preceding 6 minutes.

Figure 2 illustrates all the GPS points collected during a sample 10-hour simulation cycle. As shown,

GPS data points cover most of the Warsaw network, with a preponderance on the central region.

Figure 2: GPS points in a 10-hr simulation cycle

Suppose the speed estimate for a link during any 6-min interval is regarded as missing only if no

GPS sample points fall on the link during the corresponding time interval. In the training data, the

overall missing data percentage is 76.94% on the major links and 68.24% on the 100 critical links. In

fact, 22 of the 100 critical links have no GPS records at all in any of the training data history.

For time intervals with at least one GPS sample point on a critical link, we investigate whether the

GPS instantaneous speed records provide reliable estimates of the link-level space-mean, or harmonic-

averaged, speed readings available as part of the “historical” data on speeds from a “different” data

source. A comparison of the average of the GPS-based speeds and the historical average speeds on two

sample links during a randomly chosen 10-hour training period is shown in Figure 3(a) and Figure 4(a).

The average of the GPS-based speed readings is depicted by a red line, and gaps on the red lines mark the

time intervals without any GPS speed samples. In addition, the actual number of GPS samples collected

for each corresponding 6-min interval on these two sample links are shown in Figure 3(b) and Figure

4(b).

6



0

20

40

60

80

0 20 40 60 80 100

6-min time intervals

sp
ee

d 
(k

m
/h

)

actual link speed
average speed of GPS sample points

(a) Actual link speed v.s. average speed of GPS sample points

0

10

20

30

40

0 20 40 60 80 100

6-min time intervals

# 
of

 G
P

S
 s

am
pl

e 
po

in
ts

(b) # of GPS sample points during each 6-min interval

Figure 3: Comparison of the actual speed profile and speed estimates based on GPS samples on link 1
during one simulation cycle
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Figure 4: Comparison of the actual speed profile and speed estimates based on GPS samples on link 2
during one simulation cycle

Figures 3 and 4 highlight some interesting features of the GPS-based speed data set. First, the red

lines of both links have many gaps, indicating that many time intervals have no GPS records. Secondly,

for time intervals which do have GPS sample points, the speed estimates based on the limited number of
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available individual speed samples can be very far from the link speed provided by the other data source,

which we consider to be accurate. Finally, observe that time intervals with lower average speed tend to

have more GPS points. This is likely to occur as congested links usually accommodate more vehicles at

any point in time, and hence are likely to contain more GPS samples.

3 Methodology

A straightforward approach for traffic prediction based on GPS data is to construct good estimates of

link speed for each time interval on each link, based on its corresponding GPS speed samples, and treat

them as fixed location observations. Then any number of traffic prediction approaches could be used on

the aggregated data.

The question is whether this method is feasible with such a low sampling rate (i.e., 1%). Figures 3

and 4 imply that such a method will not fare well due to the unreliable nature of the sampled GPS speed

data. As such, averaging the values does not tend to replicate observed speeds from other data sources.

We construct two baseline values for use in the prediction step. The first baseline corresponds also

with that provided by the contest and is constructed based on the GPS data only. Namely, the average

speed of all the vehicles passing through each critical link in the first 30min interval of an hour is used

as the 6min-ahead and 30min-ahead predicted link speed. If no GPS point is recorded on a critical link

during that initial 30min interval, the average speed over all the GPS sample points in the network is

used as the baseline for that link. The second baseline is based exclusively on the historical observed

link speed. Namely, the average speed of the corresponding time intervals in an hour (i.e., 30-36 min, and

54 - 60min) for a given link and during all the training hours are used as the 6min-ahead and 30min-ahead

prediction.

Prediction accuracies are evaluated by calculating the root mean squared error (RMSE) of the inverse

of a prediction. That is, predicted speeds are transformed - through inverting and multiplying by 60 -

into predicted travel time over 1km of the road segment, expressed in minutes. These travel times are

then compared with speed as provided through an alternative data source, using the RMSE measure.

Using the actual link speed provided by the contest website for post-competition analysis, we can

easily calculate the prediction performance of the inverse of the predictions for both baselines. The

RMSE values for the first and second baselines are 18.065min/km and 14.785min/km, respectively.

Figure 5 further illustrates the predicted v.s. the actual link speed for the two baselines on two sample

hours. The X-Y coordinates of each point in Figure 5 represent the predicted and actual speed on one

critical link. Both the 6min-ahead and 30min-ahead predictions are included.

The four illustrations in Figure 5 indicate that the second baseline is superior to the first. As shown

in Figures 5(a) and 5(c), it is quite common that no GPS samples appear on some critical links during

the entire 30min interval. For those links, predicted values based on network wide average GPS sample

speed can be very far from the actual. The better prediction performance of the second baseline may

be due to the recurrent feature of traffic evolution and congestion development in road networks. As is

reported frequently in the literature, historical data can carry valuable information for predicting future

traffic condition during the analogous time intervals.
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Figure 5: Prediction performance of two baselines
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Figure 6: Data framework of the prediction model

Our hybrid approach is thus motivated by this observation: a long-running data source with broad

coverage but low sampling rate (i.e., GPS records) along with another periodic short-term data source
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which collects traffic observations on critical links may be combined to generate reliable traffic predic-

tions. As shown in Figure 6, during calibration periods, actual link speed observations on critical links

are collected. Together with the GPS data received during the same period, these data are stored as pre-

diction candidates. The GPS records received in real time can then be used to determine which prediction

candidate is most appropriate.

The data analysis indicated that although the GPS speed samples may not be sufficient to construct

reliable speed estimates, the number of GPS samples received in each time interval may be a good

indicator of how congested the network is, both globally at the network level and locally at the link level.

Figures 7 and 8 plot the relationship between the total number of GPS samples received globally

during the entire 30min interval and the actual 6min-ahead (30min-ahead) speed on six sample critical

links, as obtained from the alternative data source. Each point in a plot corresponds to 1 out of 500

simulation hours in the training data set.
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Figure 7: 30min GPS count v.s. 6min-ahead speed
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As shown, the global GPS count seem to carry seem valuable information for determining the link

level traffic condition. For most links in Figures 7 and 8, the congested state appears when the number

of global GPS counts reach a certain level. On the other hand, the figures also indicate that multiple

states (congested, uncongested) may still exist for many links for cases with large numbers of global

GPS counts.

Figure 9 depicts the sampled speed received from the GPS records and the actual speed on six sample

links during one 10-hr simulation period in the training data. Similar to the number of global GPS

records, the congested state is correlated with a higher number of GPS samples than the uncongested

state. Second, the GPS samples with zero instanteneous speed seem to only appear during the congested

state, e.g. where stop-and-go traffic patterns are likely to occur.
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Figure 9: GPS sampled speed v.s. actual speed on six sample links during one simulation day
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Our method therefore works by selecting from the historical link-level speed observations the K

most similar hours and uses a linear combination of the corresponding speed observations as prediction

values. Parameters of the selection criterion and the coefficients of the values in the weighted average

are optimized through a 5-fold cross-validation framework. The final predictions are then generated by

grouping several solutions generated by different neighboring criterions.

4 Optimized Model and Results

As shown, both the overall sample counts of GPS records and the link-level GPS counts carry valuable

information for determining the link-level traffic state. Therefore, the nearest-neighbor distance criterion

we employ in our prediction model is constructed by taking into account both a global and a local

similarity index, defined as follows.

1) Global similarity: Sg
i j measures how close the total number of GPS counts in one test hour is to that

of a training hour. To construct Sg
i j , let ct

i and Ct
j be the total number of GPS points received during every

1-min interval t = 1, . . . ,30 of test hour i = 1, . . . ,500 and training hour j = 1, . . . ,500, respectively. The

global similarity between a test hour i and a training hour j, denoted as Sgi j, is measured by the RMSE of

ct
j and Ct

j. Namely,

Sg
i j =

√
∑30

t=1(c
t
i −Ct

j)
2

30
. (1)

2) Local similarity: We construct two versions of local similarity, zero and non-zero: Sl1i jk and Sl2
i jk.

A local similarity measure based on the total number of GPS records with zero and nonzero values on

any critical link k, Sl1
i jk and Sl2

i jk measuring the similarity of a test hour i, i = 1, . . . ,500 and a training hour

j, j = 1, . . . ,500 on link k,k = 1, . . . ,100, is computed as follows:

Sl1
i jk = |pik −Pjk|, Sl2

i jk = |qik −Qjk|, (2)

where

pi and Pj are the total number of GPS records with zero values during the first half of test hour i and

training hour j, respectively;

qi and Qj are the total number of GPS records with nonzero values during the first half of test hour i and

training hour j, respectivley.

Given link k = 1, . . . ,100 and test hour i = 1, . . . ,500, the overall similarity measure Si jk for each

training hour j = 1, . . . ,500 is then computed as the weighted sum of the ranks of the global similarity

and the local similarities. Namely,

Si jk = αkrank(Sg
i j)+βkrank(Sl1

i jk)+ γkrank(Sl2
i jk), (3)

where the rank of a training hour is measured by its position when the corresponding similarity measure

for all training hours is sorted in ascending order.

Finally, the harmonic average speeds of the first and last 6-min intervals of the second half of each

test hour are estimated as the weighted harmonic average speeds of the corresponding intervals of the K
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most similar training hours. The inverse of the similarity metric of each candidate training hour is used

as the weight.

One potential problem in using the harmonic mean of the K nearest neighbors is that if all the candi-

date hours in the neighbor list have high speeds except for a few small outliers, the harmonic mean can

be very small. The existence of such cases contributes to quite a significant portion of the error. To avoid

the outlier effect, a conditional trimmed harmonic mean is used by filtering out the rare small outliers

when most of the neighbors have high velocity values.

Note that there is some flexibility in constructing the estimator. For example, in the global similarity

measure, we may use time aggregation granularity other than 1 minute; When combining solutions from

the K nearest neighbors, besides harmonic mean, other choices may include arithmetic mean, median,

etc. Our final solution is an ensemble of six different estimators constructed from combinations of

two time granularity levels (1min and 6min) and three different aggregation methods (arithmetic mean,

median, and harmonic mean).

For each link k of interest, our K nearest neighbor method with the outlier filter has seven parameters

in total:

1) K - the total number of neighbors used in constructing the velocity estimate;

2) αk - weight of the global similarity measure;

3) βk - weight of the local congested (zero-speed) similarity measure;

4) γk - weight of the local uncongested (higher-speed) similarity measure;

5) nk - the total number of high speed candidates for the outlier filter to be initiated;

6) hk - the high cut-off value of the outlier filter;

7) lk - the low cut-off value of the outlier filter.

In addition, for the ensemble, we also determine the weight wi for each estimator i = 1, . . . ,6. This

requires another 5 parameters as the sixth one can be determined as w6k = 1−∑5
i=1 wik.

A 5-fold cross validation framework was employed to determine the parameters of our prediction

model. Within a 5-fold cross validation framework, the entire training data set is evenly divided into 5

subsets. For each of the five test-training data sets, one subset is used as “test data” and the remainders as

“training data”. A set of parameters are regarded as optimal if it generated the best average performance

over the five test-training data sets. Finally, the optimal parameter settings are applied to the real test data

to obtain the final predicted values.

Our prediction model results in the overall prediction performance measure of inverted RMSE =

7.46 min/km, which is significantly better than both of the two baselines discussed previously, namely

18.065min/km and 14.785min/km. Figure 10 through Figure 12 provides a closer look at the prediction

performance of our model.

Figure 10 illustrates the relationship between predicted v.s. actual values on two sample test hours.

Both the 6min-ahead and 30min-ahead predictions on all the 100 critical links are included. Comparing

Figure 10 to Figure 5, we can see that the instances which performed poorly using the second baseline

are corrected using our approach.
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Figure 10: Prediction performance of the solution

Illustrations in Figure 11 depict the RMSE of inverted predictions by test hours, for both the 6min-

ahead and 30min-ahead predictions. Figures 11(a) and 11(c) on the left show the exact RMSE values for

all the 500 test hours while Figures 11(b) and 11(d) on the right present the RMSE’s in histograms. The

same predicted measure of baseline II is included in the value plots for comparison.

0.000

5.000

10.000

15.000

20.000

25.000

1 51 101 151 201 251 301 351 401 451

R
M

SE
 (m

in
/k

m
)

Test hour

Our solution Baseline II

(a) RMSE values of 6min-ahead prediction

RMSE (min/km)

F
re

qu
en

cy

4 6 8 10 12

0
50

10
0

15
0

(b) RMSE histogram of 6min-ahead
prediction by our solution

0

5

10

15

20

25

1 51 101 151 201 251 301 351 401 451

R
M

SE
 (m

in
/k

m
)

Test hour

Our solution Baseline II

(c) RMSE values of 30min-ahead prediction

RMSE (min/km)

F
re

qu
en

cy

4 6 8 10 12

0
50

10
0

15
0

(d) RMSE histogram of 30min-ahead
prediction by our solution

Figure 11: Prediction performance by test hours

As shown, our prediction model provides much better performance than baseline II in almost all the
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test hours. The RMSE values are in general lower by a large margin (approximately 7 min/km) and

are less volatile. Similar patterns can be seen for both the 6min-ahead and 30min-ahead predictions.

The overall performance of 6min-ahead prediction (RMSE = 7.30 min/km) is slighly better than that of

30min-ahead prediction (RMSE = 8.23 min/km), which can be expected as prediction far into the future

is usually more difficult to make.

A similar comparison of the prediction performance of our solution and baseline II to Figure 11 is

included Figure 12. This time, RMSE values are compuated by links instead of by test hours. As shown,

the variance of RMSE by links is much larger than the variance of RMSE by test hours. Our solution is

able to significantly improve the prediction performance especially for links with huge RMSE values in

baseline II. We also notice that a quite large portion of links have very small RMSE values in both our

solution and baseline II. Basically, these are links which are either congested or uncongested all the time.
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Figure 12: Prediction performance by links

5 Conclusions

This paper proposes an approach for the traffic prediction problem using GPS data with low sampling

rates, where typical prediction models based on fixed-location data sources break down, in conjunction

with limited speed data as obtained from fixed data sources, but unavailable in real-time. We propose a

hybrid approach that combines these two data sources in a novel manner.

Main observations from our results are that the speed data as obtained from sampled, isolated (i.e.
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non-trajectory-based) GPS readings are in some cases oscillatory and hence unreliable as surrogates for

observed speeds either in their raw form or averaged over multiple such readings. On the other hand,

data obtained from more traditional, e.g. fixed, sensors can provide a stabilizing element to the real-time

GPS-based speed information.

In our case, we used the real-time GPS readings primarily to identify traffic state, and used the speed

data from alternate sources to determine the likely speeds given the real-time estimated state.

As far as future work is concerned, one may wish to explore whether further improvements can

be obtained from a finer categorization of the GPS speed readings and/or from the incorporation of

information from other links in geographic proximity to the prediction links. Alternatively, an in-depth

exploration of the optimal frequency and time span for calibration periods would be of use. Finally, in

future studies, it would likely be valuable to make use of other information such as day of week, time of

dayweather, etc.
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