
RC25232 (W1111-042) November 7, 2011
Mathematics

IBM Research Report

A Combinatorial Algorithm for Facility Location with
No G-odd Cycles

Mourad Baïou
CNRS

Laboratoire LIMOS
Campus des Cézeaux BP 125,
63173 Aubiere Cedex, France

Francisco Barahona
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A COMBINATORIAL ALGORITHM FOR FACILITY LOCATION

WITH NO G-ODD CYCLES

MOURAD BAÏOU AND FRANCISCO BARAHONA

Abstract. In [1] we had proved that the linear relaxation of a facility location model
defines an integral polytope if and only if the graph has no g-odd cycles. Here we give
a combinatorial algorithm for facility location in this class of graphs.

1. Introduction

Let G = (V, A) be a directed graph, not necessarily connected, where each arc and
each node has a weight associated with it. The linear system below defines a linear
programming relaxation of a “prize collecting” version of a location problem studied in
[1].

max
∑

w(u, v)x(u, v) +
∑

w(v)y(v)(1)
∑

(u,v)∈A

x(u, v) + y(u) ≤ 1 ∀u ∈ V,(2)

x(u, v) − y(v) ≤ 0 ∀(u, v) ∈ A,(3)

y(v) ≥ 0 ∀v ∈ V,(4)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(5)

For each node u, the variable y(u) takes the value 1 if the node u is selected and 0
otherwise. For each arc (u, v) the variable x(u, v) takes the value 1 if u is assigned to v

and 0 otherwise. Inequalities (2) express the fact that either node u can be selected or
it can be assigned to another node. Inequalities (3) indicate that if a node u is assigned
to a node v then this last node should be selected.

It was proved in [1] that this system of inequalities defines an integral polytope if
and only if the graph does not contain a g-odd cycle. The definition of g-odd cycle
will be given in the next section. In [1] it was also shown how recognize this class of
graphs. Later Chen et al. [2] showed that the constraint matrix is totally unimodular
if an only there is no g-odd cycle. This implies that the system (2)-(5) is totally dual
integral. This means that for any objective function with integer coefficients, the linear
program (1)-(5) has an optimal dual solution that is integral. Based on Yannakakis’s
work [3] on restricted totally unimodular matrices, Chen et al. [2] show that the linear
program (1)-(5) can be reduced to a b-matching problem in a bipartite graph and to a
maximum weighted independent set in a bipartite graph. In this paper we give a direct
combinatorial algorithm to solve the linear program (1)-(5) when graph does not contain
a g-odd cycle. This algorithm produces an optimal primal solution that is integral, and
if the objective function coefficients are integral then the algorithm also produces an
optimal dual solution that is integral.

Date: November 4, 2011.
Key words and phrases. facility location, g-odd cycles.

1

2 M. BAÏOU AND F. BARAHONA

This paper is organized as follows. In Section 2 we give some basic definitions. In
Section 3 we study the complemenary slackness conditions. Section 4 contains a labeling
procedure to change the dual variables. Then in Section 5 we analyse this procedure.
Section 6 shows how to change the primal variables. In Section 7 we study the Uncapac-
itated facility location problem.

2. Preliminary definitions

In this section we give some basic definitions. For a directed graph G = (V, A) and a
set W ⊂ V , we denote by δ+(W) the set of arcs (u, v) ∈ A, with u ∈ W and v ∈ V \ W .
Also we denote by δ−(W) the set of arcs (u, v), with v ∈ W and u ∈ V \ W . We write
δ+(v) and δ−(v) instead of δ+({v}) and δ−({v}), respectively. A simple cycle C is an
ordered sequence

v0, a0, v1, a1, . . . , ap−1, vp,

where

• vi, 0 ≤ i ≤ p − 1, are distinct nodes,
• ai, 0 ≤ i ≤ p − 1, are distinct arcs,
• either vi is the tail of ai and vi+1 is the head of ai, or vi is the head of ai and

vi+1 is the tail of ai, for 0 ≤ i ≤ p − 1, and
• v0 = vp.

By setting ap = a0, we associate with C three more sets as below.

• We denote by Ĉ the set of nodes vi, such that vi is the head of ai−1 and also the
head of ai, 1 ≤ i ≤ p.

• We denote by Ċ the set of nodes vi, such that vi is the tail of ai−1 and also the
tail of ai, 1 ≤ i ≤ p.

• We denote by C̃ the set of nodes vi, such that either vi is the head of ai−1 and
also the tail of ai, or vi is the tail of ai−1 and also the head of ai, 1 ≤ i ≤ p.

Notice that |Ĉ| = |Ċ|. A cycle will be called g-odd if p + |Ċ| (or |C̃| + |Ċ|) is odd,

otherwise it will be called g-even. A cycle C with Ċ = ∅ is a directed cycle. The set of
arcs in C is denoted by A(C). The notion of g-odd cycle generalizes the notion of odd
directed cycle.

2.1. First labeling procedure. Given a path P = v0, a0, . . . , ap−1, vp. Assume that
the label of a0, l(a0) has the value 1 or −1. We define the first labeling procedure used
in [1] as follows.

For i = 1 to p − 1 do

L1: If vi is the head of ai−1 and it is the tail of ai then l(vi) = l(ai−1), l(ai) = −l(vi).
L2: If vi is the head of ai−1 and it is the head of ai then l(vi) = l(ai−1), l(ai) = l(vi).
L3: If vi is the tail of ai−1 and it is the head of ai then l(vi) = −l(ai−1), l(ai) = l(vi).
L4: If vi is the tail of ai−1 and it is the tail of ai then l(vi) = 0, l(ai) = −l(ai−1).

Notice that the labels of v0 and vp were not defined.

This procedure will be used in two different cases as below.

Case 1. G contains a directed cycle C = v0, a0, . . . , ap−1, vp. Assume that the head
of a0 is v1, set l(v0) = −1, l(a0) = 1 and extend the labels as above.

A COMBINATORIAL ALGORITHM FOR FACILITY LOCATION WITH NO G-ODD CYCLES 3

Case 2. G contains a cycle C = v0, a0, . . . , ap−1, vp and Ċ 6= ∅. Assume v0 ∈ Ċ. Set
l(v0) = 0, l(a0) = 1 and extend the labels.

The lemma below was proved in [1].

Lemma 1. If C is g-even, then after labeling as in Cases 1 and 2 we have l(ap−1) =
−l(a0).

On the other hand if C is g-odd we have the following.

Lemma 2. If C is g-odd, then after labeling as in Cases 1 and 2 we have l(ap−1) = l(a0).

Proof. Let ap−1 = (u, v). Replace ap−1 by (u, v′), v′, (v′, v), and let C ′ be the new cycle.
Since C ′ is g-even, it follows from Lemma 1 that in Case 1 we have l(v′, v) = −l(a0) and
l(u, v′) = l(a0).

Similarly in Case 2 we have l(u, v′) = −l(a0) and l(v′, v) = l(a0). �

From these two lemmas we derive the following basic property of the labeling proce-
dure.

Lemma 3. If we apply the labeling procedure on a cycle C, the labels are consistent with

the rules L1, . . . , L4 if and only if C is g-even.

2.2. Second labeling procedure. In this paper we need a second labeling procedure
derived from the one above as follows.

• Construct a graph G′ by reversing the orientation of all arcs.
• Apply the above labeling procedure to G′.
• Copy the labels to G and reverse the signs of the node labels.

Thus the rules above become as follows

L′

1: If vi is the head of ai−1 and it is the tail of ai then l(vi) = l(ai−1), l(ai) = −l(vi).
L′

2: If vi is the head of ai−1 and it is the head of ai then l(vi) = 0, l(ai) = −l(ai−1).
L′

3: If vi is the tail of ai−1 and it is the head of ai then l(vi) = −l(ai−1), l(ai) = l(vi).
L′

4: If vi is the tail of ai−1 and it is the tail of ai then l(vi) = −l(ai−1), l(ai) = l(ai−1).

Lemma 3 is translated as below.

Lemma 4. If we apply the second labeling procedure on a cycle C, the labels are consistent

with the rules L′

1, . . . , L
′

4 if and only if C is g-even.

3. Complementary Slackness

The dual of (1)-(5) is

min
∑

α(u)

α(u) + β(u, v) ≥ w(u, v) ∀(u, v) ∈ A,(6)

α(u) −
∑

w

β(w, u) ≥ w(u) ∀u ∈ V,(7)

α, β ≥ 0.(8)

4 M. BAÏOU AND F. BARAHONA

The complementary slackness conditions are

x(u, v) > 0 =⇒ α(u) + β(u, v) = w(u, v)(9)

y(u) > 0 =⇒ α(u) −
∑

w

β(w, u) = w(u)(10)

α(u) > 0 =⇒
∑

(u,v)∈A

x(u, v) + y(u) = 1(11)

β(u, v) > 0 =⇒ x(u, v) = y(v).(12)

The algorithm will start with a primal solution that satisfies (2)-(5), and a dual solution
that satisfies (6)-(8), and the only complementary slackness conditions that are violated
are (11). At each iteration the algorithm produces solutions with the same properties,
and such that the number of violated conditions (11) decreases by at least one at every
iteration.

4. Dual Changes

We start with α(u) = M , a big number, for each node u. We set to zero all other
variables. Then we look for a node r such that (11) is violated and we give it the label
′′−′′. This means that we will try to decrease the value of α(r). The node r will be called
the root. Nodes and arcs will receive the labels ′′+′′ or ′′−′′. This means that we will
try to add or substract some value ǫ from the dual variables associated with them. The
labels are propagated through different paths as described below.

After labeling a node (resp. an arc), if no further labels are needed from this node
(resp. arc), we say that we have a success for this node (resp. arc). On the other hand
if after labeling this node (resp. arc), we conclude that a dual change is not possible, we
have a failure for this node (resp. arc).

In Figure 1 we illustrate the different cases that will be treated in the labeling pro-
cedure below. If an arc (u, v) is depicted with a thin line, it means x(u, v) = 0. If it is
depicted with a thick line, it means x(u, v) = 1. A node u with y(u) = 0 is represented
by a circle, and it is represented by a square if y(u) = 1. The numbers correspond to the
different subsections. It should be easy to see that the labeling procedure below follows
the rules L′

1, . . . , L
′

4 of Subsection 2.2.

4.1. Treating a node u with the label ′′−′′. If a node u has the label ′′−′′, we should
treat tight constraints (6) associated with u as in 4.2, and a tight constraint (7) associated
with u as in 4.3. If none of these constraints is tight, we can decrease the value of α(u)
and we have a success.

4.2. Treating a node u with the label ′′−′′ to satisfy (6). We give the label ′′+′′ to
each arc (u, v) with x(u, v) = 0 for which (6) is tight. Then each of these arcs should be
treated to satisfy (7) as in 4.4.

Remark 5. If an arc (u, v) had a label, it should be the label ′′+′′ and we should have

x(u, v) = 1.

Proof. If (u, v) had the label ′′−′′, it was given in 4.3 or in 4.4, and we would have a
g-odd cycle.

A COMBINATORIAL ALGORITHM FOR FACILITY LOCATION WITH NO G-ODD CYCLES 5

3.2 3.3 3.4

− + − +

−
+

+

+

−
− + + + − + −+

−
+ − −

− − +

3.5 3.6

+ −

3.7 3.8

+
+

Figure 1. Overview of the labeling procedure

If (u, v) had the label ′′+′′, it had been given in 4.6 or in 4.8. In both cases we had
x(u, v) = 1. �

4.3. Treating a node u with the label ′′−′′ to satisfy (7). If (7) for u is tight, we
give the label ′′−′′ to an arc (w, u) with β(w, u) > 0. It follows from Remark 6 that (w, u)
did not have a label. Then (w, u) should be treated to satisfy (6) as in 4.5. If there are
several canditate arcs, we should search for a successful path using each of them. If there
is no candidate arc, we have found a failure.

Remark 6. There is no arc (v, u) that has a label.

Proof. If u is the root it is obvious. Otherwise u had received its label in 4.7, and there
is an arc leaving u with the label ′′+′′. An arc (v, u) could have received a label in 4.2
or in 4.4. In both cases there is an arc directed into u with the label ′′+′′, this implies
the existance of a g-odd cycle. �

4.4. Treating an arc (u, v) with the label ′′+′′ and x(u, v) = 0 to satisfy (7). If
constraint (7) for v is not tight, condition (10) implies y(v) = 0 = x(u, v), then we can
increase the value of β(u, v) and we have a successful path. Otherwise (7) is tight and
we have the five cases below.

• If y(v) = 1, then β(u, v) = 0 and the value of β(u, v) cannot be increased, because
a complementary slackness condition (12) would be violated. Here we have found
a failure.

• If v already has a label, it should be the label ′′+′′, and no other arc (w, v),
w 6= u, can have a label. This follows from Remarks 7 and 8 below. In this case
we have a success.

• If y(v) +
∑

w x(v, w) = 0, and α(v) > 0, we give the label ′′+′′ to v, and we have
a successful path. Here (11) for v was violated and remains violated.

• If y(v)+
∑

w x(v, w) = 0, and α(v) = 0. If there is an arc (w, v) with β(w, v) > 0,
w 6= u, we give the label ′′−′′ to (w, v), then (w, v) is treated to satisfy (6) as in
4.5. It follows from Remark 8 that such an arc did not have a label. If there are
several arcs with these characteristics, a search for a dual change should be done

6 M. BAÏOU AND F. BARAHONA

from each of them. If there is no arc (w, v) with β(w, v) > 0, w 6= u, we have
found a failure.

• If there is an arc (v, w) with x(v, w) = 1, we have two possibilities.
– We can give the label ′′+′′ to v, then in order to satisfy (9) we give the label

′′−′′ to (v, w). If β(v, w) = 0 we have a failure, otherwise if β(v, w) > 0, the
arc (v, w) should be treated to satisfy (10) as in 4.6.

– If there is an arc (t, v) with β(t, v) > 0, we can give it the label ′′−′′, then
(t, v) is treated to satisfy (6) as in 4.5.

It follows from Remarks 8 and 9, that the arcs being labeled in the two cases
above, did not have a label before being treated here. A search for a dual change
should be done for each of these two possibilities. If none of these posibilities
exists we have a failure.

Remark 7. If y(v) = 0 and v had a label before being treated here it should be ′′+′′, and

it should have been received in 4.5.

Proof. Assume that v had a label. If it had the label ′′−′′, it would have been received
in 4.7 and we would have a g-odd cycle. If it had the label ′′+′′, and it had been received
in 4.4 we would have a g-odd cycle. So it had been received in 4.5. �

Remark 8. If y(v) = 0, an arc (w, v), w 6= u, could not have a label before being treated

here.

Proof. If (w, v) had received a label, it could not have been in 4.3 because v would have
the label ′′−′′ and this contradicts the previous remark. So it would have been either in
4.2 or in 4.4. In either case we would have an arc different from (u, v), directed into v

and with the label ′′+′′. This implies the existance of a g-odd cycle. �

Remark 9. If y(v) = 0, and v had no label, then an arc (v, t) with x(v, t) = 1, could

not have a label before being treated here.

Proof. If an arc (v, t), with x(v, t) = 1, had received a label, it would have been either
in 4.6 or in 4.8. In both cases we would have a g-odd cycle. �

4.5. Treating an arc (u, v) with the label ′′−′′ and x(u, v) = 0 to satisfy (6).
Let (u, v) be an arc with the label ′′−′′, if (6) is not tight, we have a successful path.
Otherwise (6) is tight and we have five cases.

• If u already has a label, it should be the label ′′+′′, otherwise there is a g-odd
cycle. In this case we have found a successful path.

• If u has no label, α(u) = 0 and y(u) +
∑

w x(u, w) = 0, we have found a failure.
• If u has no label, α(u) > 0 and y(u)+

∑
w x(u, w) = 0, we just give the label ′′+′′

to u and we have found a successful path. Here condition (11) for u is violated,
and it will remain violated after the dual change.

• If u has no label and y(u) = 1, we give the label ′′+′′ to u. Then u is treated to
satisfy (10) as in 4.8.

• If u has no label and there is an arc (u, w) with x(u, w) = 1, we have two cases.
– If β(u, w) > 0, we give the label ′′+′′ to u and in order to satisfy (9) we give

the label ′′−′′ to (u, w). It follows from Remark 10 that (u, w) did not have
a label before being treated here. Then (u, w) is treated to satisfy (10) as
in 4.6.

– If β(u, w) = 0, we have found a failure.

A COMBINATORIAL ALGORITHM FOR FACILITY LOCATION WITH NO G-ODD CYCLES 7

Remark 10. If x(u, w) = 1 for an arc (u, w), then (u, w) did not have a label before

being treated here.

Proof. If such an arc would have received a label, it would be either in 4.6 or in 4.8. In
both cases we would have a g-odd cycle. �

4.6. Treating an arc (u, v) with label ′′−′′ and x(u, v) = 1 to satisfy (10). Here we
have three cases.

• If α(v) > 0, we can give it the label ′′−′′ to v, then v should be treated as in 4.2.
It follows from Remark 11 that v did not have a label before being treated here.

• Or if there is an arc (w, v) with x(w, v) = 1, we can give it the label ′′+′′, then
(w, v) should be treated to satisfy (9) as in 4.7. Remark 12 shows that (w, v) did
not have a label before being treated here.

• If α(v) = 0 and there is no other arc (w, v) with x(w, v) = 1, then a failure has
been found.

A search for a dual change should be done for each of the first two cases, if they exist.

Remark 11. The node v did not have a label before being treated here.

Proof. If v had received a label in 4.5 it would be ′′+′′, this implies the existance of a
g-odd cycle. If v had received a label in 4.6 we would have a g-odd cycle. �

Remark 12. An arc (w, v) with x(w, v) = 1 and w 6= u, could not have a label before

being treated here.

Proof. The first time that such an arc receives a label, it would be in 4.4 or in 4.5 and
it would be ′′−′′. This implies the existance of a g-odd cycle. �

4.7. Treating an arc (u, v) with x(u, v) = 1 and with the label ′′+′′ to satisfy (9).
Here we have two cases.

• If α(u) > 0 we give the label ′′−′′ to u, and u should be treated as in 4.1.
• If α(u) = 0, we have found a failure.

Remark 13. The node u could not have a label before being treated here.

Proof. If it had a label it should be ′′−′′, otherwise there is a g-odd cycle. Here is the
only case where a node u with y(u) = 0, different from r receives the label ′′−′′, so we
should have another arc (u, w) with x(u, w) = 1, this violates (2). �

Remark 14. There is no other arc incident to u that has a label

Proof. If an arc (w, u) has a label, it should be the label ′′−′′, otherwise we would have
a g-odd cycle. From the previous remark we have that u did not have a label before, so
(w, u) had received a label in 4.4. In this case we would have another arc directed into
u with the label ′′+′′. This implies the existance of a g-odd cycle.

If an arc (u, w), with w 6= v, has a label, it should be the label ′′+′′, otherwise there is
a g-odd cycle. But it is not possible for such an arc to receive the label ′′+′′. �

8 M. BAÏOU AND F. BARAHONA

4.8. Treating a node u with the label ′′+′′ and y(u) = 1 to satisfy (10). If the
node u has the label ′′+′′ and y(u) = 1, in order to satisfy (10), we should give the label
′′+′′ to an arc (w, u) with x(w, u) = 1, then (w, u) should be treated to satisfy (9) as in
4.7. If there are several arcs with the above properties, we should search for a successful
path from each of them. If such an arc does not exist, we have found a failure.

Remark 15. The node u received its label in 4.5 from an arc (u, v) having the label ′′−′′.

There is no arc (w, u) with x(w, u) = 1, that had a label before treating u here.

Proof. Suppose that an arc (w, u) with x(w, u) = 1 had a label. If it is the label ′′−′′ we
would have a g-odd cycle. If it is the label ′′+′′, it was given in 4.6. Then we would have
another arc arc (t, u) with x(t, u) = 1 and with the label ′′−′′. This implies the existence
of a g-odd cycle. �

5. Analysis of the labels

From all remarks in the preceding section it follows that each time that a node or
an arc receives a label, it did not have a label before. For a particular root, the labels
should be extendeded in a depth first search fashion. When there are several choices,
one should pick one and if it does not lead to a success, one should backtrack and try a
different choice. Since each node and arc is labeled at most once, the labeling procedure
takes O(n + m) operations. Each path ends either with a success or a failure.

If the labeling procedure determines that a dual change is possible, then a value ǫ is
added or subtracted from the dual variables based on the labels. This is the largest value
so that all dual constraints remain satisfied. We have the following integrality property.

Lemma 16. If the objective function coefficients are all integral, and and the initial dual

solution is integral, then ǫ is an integer, and every dual vector produced by this procedure

is integral.

Proof. Consider an inequality (6) that is not tight. If it leads to a fractional value of ǫ,
then u and (u, v) should have the label ′′−′′. In this case we would have a g-odd cycle.

Consider now an inequality (7) that is not tight and that leads to a fractional value
of ǫ. This can happen in the following two cases.

• If u has the label ′′−′′ and and arc (w, u) has the label ′′+′′. Here we would have
a g-odd cycle.

• If two arcs (w, u) and (t, u) have the label ′′+′′. Again this implies the existance
of a g-odd cycle.

�

After each dual change, a new dual constraint becomes tight. Once a constraint
becomes tight, it remains tight after all dual changes made using the same root. So
2(m + n) is a bound for the number of consecutive dual changes before a new condition
(11) is satisfied, or a primal change is needed.

6. Primal Changes

If a dual change is not possible, we have found at least one path that leads to a failure.
We use this path to change the primal solution. We denote by (x′, y′) the new primal

A COMBINATORIAL ALGORITHM FOR FACILITY LOCATION WITH NO G-ODD CYCLES 9

vector. We start with x′ = x, y′ = y. We repeat the labeling procedure starting from r,
but with the following changes. These changes are so that primal feasibility is maintained,
and all complementary slackness conditions that are satisfied remain satisfied.

• In 4.1 we have to decide if the failure comes from 4.2 or 4.3. If both lead to a
failure we choose arbitrarily one. Then the primal change is propagated as below.

• If in 4.2 we had one arc (u, v) that leads to a failure, we set x′(u, v) = 1 and the
primal change is propagated as in 4.4. If several arcs lead to a failure, we choose
one arbitrarily.

• If in 4.3 we had a failure, then we set y′(u) = 1 and for every arc (w, u) with
β(w, u) > 0 we set x′(w, u) = 1. Then the primal change is propagated for each
of these arcs as in 4.5.

• Now we discuss the five cases arising in 4.4:
– If y(v) = 1, nothing else has to be done here.
– The case when v already has a label cannot arise here, because it would

imply that it is a successful path.
– For the same reasons the case when y(v)+

∑
x(v, w) = 0 and α(v) > 0, does

not arise.
– If y(v) +

∑
x(v, w) = 0 and α(v) = 0, we set y′(v) = 1. We also set

x′(w, v) = 1 for each arc (w, v) with β(w, v) > 0, w 6= u. Then for each of
these arcs, we keep propagating the primal change as in 4.5. If arcs with
these characteristics do no exist, nothing else is needed here.

– If there is an arc (v, w) with x(v, w) = 1, then we set x′(v, w) = 0. If
β(v, w) > 0 then the arc (v, w) should be treated as in 4.6. Also we set
y′(v) = 1 and if there is some arc (w, v) with β(w, v) > 0, w 6= u, we set
x′(w, v) = 1 for each of these arcs, and we keep propagating the primal
change as in 4.5.

• In 4.5 there are five cases:
– The case when u already has a label cannot arise, because it implies a

succesful path.
– If u has no label, α(u) = 0 and y(u) +

∑
w x(u, w) = 0, nothing else is done

here.
– The third case (u has no label, α(u) > 0 and y(u)+

∑
w x(u, w) = 0) cannot

arise. We would have a successful path.
– If u has no label and y(u) = 1, then we set y′(u) = 0 and u is treated as

in 4.8.
– If u has no label and there is an arc (u, w) with x(u, w) = 1, we set

x′(u, w) = 0; and if β(u, w) > 0 then (u, w) is treated as in 4.6, otherwise
β(u, w) = 0 and nothing else is done here.

• In 4.6 we set y′(v) = 0. Then there are three cases to treat:
– If α(v) > 0 then v should be treated as in 4.2.
– For any arc (w, v), w 6= u, with x(w, v) = 1, we set x′(w, v) = 0 and (w, v)

should be treated as in 4.7.
– In the third case (α(v) = 0 and there is no other arc (w, v), w 6= u, with

x(w, v) = 1), nothing else is done here.
• In 4.7 we have two cases:

– In the first case (α(u) > 0), we continue to propagate the primal change as
in 4.1.

– In the second case (α(u) = 0), nothing else has to be done here.

10 M. BAÏOU AND F. BARAHONA

• In 4.8 we have set y′(u) = 0 for the node u. Then for each arc (w, u) with
x(w, u) = 1, we set x′(w, u) = 0 and (w, u) should be treated as in 4.7. If there
is no arc as described, nothing else is done here.

When we start the primal change from the root r, either a variable x′(r, v) is set to
one, or the variable y′(r) is set to one, so a new condition (11) is satisfied.

Remark 17. During the primal change each variable is changed at most once.

Proof. It follows from all remarks in Section 4 that each node and each arc receives a
label at most once. �

After a primal change, condition (11) for r is satisfied. When condition (11) for r is
satisfied we say that we have completed a major iteration.

To summarize, the algorithm consists of the following steps:

Step 1. Pick a root r for which (11) is violated. I none exists stop.
Step 2. Apply the labeling procedure starting from r. If a dual change is possible

go to Step 3, otherwise go to Step 4.
Step 3. Change the dual solution. If (11) for r is still violated go to Step 2,

otherwise go to Step 1.
Step 4. Change the primal solution, go to Step 1.

For a fixed root r we can have at most 2(m + n) dual changes, so the complexity of
one major iteration is O(m2) (Can we improve this bound?). Since we have at most n

major iterations, the entire algorithm takes O(nm2) operations.

We have now an algorithmic proof of the following theorem proved in [1].

Theorem 18. If G is a graph with no g-odd cycle, then (2)-(5) defines an integral

polytope.

Also we have a proof of the theorem below proved in [2].

Theorem 19. If G is a graph with no g-odd cycle, then the system (2)-(5) is totally dual

integral.

7. Uncapacitated Facility Location

A commonly studied case is the Uncapacitated Facility Location Problem. Here we
assume that V is partitioned into V1 and V2, A ⊆ V1 × V2, and we deal with the linear
programming relaxation

max
∑

w(u, v)x(u, v) +
∑

w(v)y(v)(13)
∑

(u,v)∈A

x(u, v) = 1 ∀u ∈ V1,(14)

x(u, v) − y(v) ≤ 0 ∀(u, v) ∈ A,(15)

0 ≤ y(v) ≤ 1 ∀v ∈ V2,(16)

x(u, v) ≥ 0 ∀(u, v) ∈ A.(17)

We denote by Π(G) the polytope defined by (14)-(17). Notice that Π(G) is a face of
P (G). Let V̄1 be the set of nodes u ∈ V1 with |δ+(u)| = 1. Let V̄2 be the set of nodes in
V2 that are adjacent to a node in V̄1. It is clear that the variables associated with nodes

A COMBINATORIAL ALGORITHM FOR FACILITY LOCATION WITH NO G-ODD CYCLES 11

in V̄2 should be fixed, i.e., y(v) = 1 for all v ∈ V̄2. Let us denote by Ḡ the subgraph
induced by V \ V̄2. In [1] we proved that Π(G) is an integral polytope if and only if Ḡ

has no g-odd cycle. Later in [2] it was proved that the system (14)-(17) is totally dual
integral if and only if Ḡ has no g-odd cycle.

In order to use our combinatorial algorithm to solve (13)-(17) when Ḡ has no g-odd
cycle, we apply the following transformations.

• Split the nodes in V̄2 as follows. For v ∈ V̄2 and for each arc (u, v) ∈ δ−(v) we add
a node vu and replace (u, v) by (u, vu). We set w(vu) = 0, and w(u, vu) = w(u, v).

Once all arcs in δ−(v) are treated, the node v is removed. Let G̃ be this new

graph. Clearly G̃ has no g-odd cycle and we can solve (1)-(5).
• Set M =

∑
(u,v) w(u, v) +

∑
v w(v). Give the weight −M to each node u ∈ V1,

this implies y(u) = 0.
• Add M to each weight w(u, v) for each arc (u, v). This is to impose equations

(14).

Let λ be the optimal value obtained after solving (1)-(5). Then the optimal value of
(13)-(17) is λ − M |V1| +

∑
v∈V̄2

w(v).

References

[1] M. Bäıou and F. Barahona, On the integrality of some facility location polytopes, SIAM J. Discrete
Math., 23 (2009), pp. 665–679.

[2] X. Chen, Z. Chen, and W. Zang, Total dual integrality in some facility location problems, Technical
Report, The University of Hong Kong, 2009.

[3] M. Yannakakis, On a class of totally unimodular matrices, Math. Oper. Res., 10 (1985), pp. 280–304.

(M. Bäıou) CNRS, Laboratoire LIMOS, Campus des cézeaux BP 125, 63173 Aubière cedex,

France.

E-mail address, M. Bäıou: baiou@isima.fr

(F. Barahona) IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA.

E-mail address, F. Barahona: barahon@us.ibm.com

