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Partition Inequalities: Separation, Extensions and
Network Design

Mourad Baïou∗, Francisco Barahona†, A. Ridha Mahjoub‡

November 7, 2011

Abstract

Given a graphG = (V,E) with nonnegative weightsx(e) for each edge
e, a partition inequality is of the formx

(

δ(S1, ..., Sp)
)

≥ ap + b. Here
δ(S1, ..., Sp) denotes the multicut defined by a partitionS1, ..., Sp of V . Par-
tition inequalities arise as valid inequalities for optimization problems such
as survivable network design problems, and play a central role in solving
these problems using cutting planes. We attempt to survey some variants of
these inequalities, examine different separation algorithms and discuss ex-
tensions and applications in network design and other domains.

Keywords:Partition inequality, separation, submodular function,F-partition, network de-
sign.

1 Introduction

Let G = (V,E) be a graph with edge weightsx(e) ≥ 0 for all e ∈ E. Given a partition
S1, ..., Sp of the node setV , we denote byδ(S1, ..., Sp) the set of edges with endnodes
in different sets of the partition. We useδ(S) instead ofδ(S, V \ S) and we usex(T ) to
denote

∑

e∈T x(e).
Givena andb, an inequality of the type

x
(

δ(S1, ..., Sp)
)

≥ ap + b (1)
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is called apartition inequality. To motivate this, notice that the system of inequalities
below defines a polyhedron whose extreme points are the incidence vectors of spanning
trees, cf. [83, 73].

x
(

δ(S1, ..., Sp)
)

≥ p− 1, for all partitionsS1, . . . , Sp of V ,

x ≥ 0.

As we shall see later, partition inequalities arise as validinequalities or facets for
optimization problems related tok-connectivity. In this paper we survey theseparation
problem: Given a vectorx find a violated inequality (1), if there is any. The separation
problem is a key ingredient for being able to use these inequalities inside a cutting plane
algorithm.

If a ≤ 0 and there is a partition withp > 2 so that (1) is violated, we can collapse two
sets, then the left hand side does not increase, and the righthand side does not decrease.
So in this case one should only deal withp = 2 and the problem can be solved by finding
a minimum cut.

We have to treat with the casea > 0, and without loss of generality we can assume
thata = 1. Then we study the problem

minimizex
(

δ(S1, ..., Sp)
)

− p, (2)

where the minimization is among all partitions ofV . This is the subject of Section 2.
Consider first the case whenb ≤ −1. If the minimum in (2) is given by the trivial

partition (p = 1), then there is no violated inequality. If the minimum is given by a
different partition we just have to compare this value withb. For the case whenb > −1,
we could have that the minimum in (2) is given by the trivial partition, but it could exist a
violated partition inequality withp ≥ 2. Thus in this case we study (2) with the constraint
“p ≥ 2.” This case is somewhat harder, and it is treated in Section 3.

In some situations we might have some special set of nodesT = {t1, . . . , tr} called
terminals. Then we might have the additional condition thatT should not be included in
a setSi, i.e., at least two terminals should be in different sets of the partition. This case is
treated in Section 4.

In Section 5 we discuss extensions like the strength of a network, the principal se-
quence of partitions of a graph, network reinforcement, packing spanning trees, increasing
the weight of minimum spanning trees and the Potts’ model in Statistical Physics.

As we shall see, the main ingredients used are submodular functions, polymatroids,
submodular flows and minimum cuts. We conclude with some notation and definitions.
Given a ground setS, a set-functionf : 2S −→ R ∪ {∞} is calledfully submodularif

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) (3)

for all A,B ⊆ S. A pair of subsetsA andB of S is said to beintersectingif none ofA\B,
B \ A, A ∩ B is empty. Then a set-functionf is calledsubmodular on intersecting pairs
if inequality (3) is required only for intersecting pairs.

Sections 6, 7 and 8 are devoted to some applications of partition inequalities to net-
work design. In particular we consider optimization problems related to survivability in
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telecommunication networks. Partition inequalities haveshown to be very efficient for
solving these problems using cutting plane based algorithms. In Section 6 we present some
valid inequalities. In Section 7 we discuss the concept of the critical extreme points of the
2-edge connected subgraph polytope and show how the so-calledF-partition inequalities
may be used to cut those extreme points. In Section 8 we discuss applications to survivable
networks when bound constraints are considered.

Throughout this paper we deal with a graphG = (V,E), we usen to denote|V | and
m to denote|E|.

2 The case b ≤ −1

Cunningham [19] studied theattack problem, defined as follows. Given a graphG = (V,E)
with edge weightsw(e) ≥ 0, for all e ∈ E, and a numberλ > 0; find and edge setA that
minimizes

w(A)− λ
(

c(E \A)− 1
)

,

wherec(E \ A) is the number of connected components ofG after deleting the edges in
A. One can visualizew(e) as the effort required by an attacker to destroy the edgee, and
λ as the benefit to the attacker for each additional component created. This reduces to

minimizew
(

δ(S1, ..., Sp)
)

− λ(p− 1),

among all partitions ofV . Cunningham gave an algorithm that requires solvingm mini-
mum cut problems. Later algorithms that requiren minimum cut problems were given in
[75, 7, 77]. Below we present the algorithm of [7].

2.1 The attack problem

We shall see that this problem reduces to optimizing a linearfunction over anextended
polymatroid. These concepts are discussed in [45] for instance. This problem can be
solved with the greedy algorithm used by Edmonds [30]. At each iteration, finding an
inequality that becomes tight reduces to finding a minimum cut in a network.

Given a graphG = (V,E) the spanning tree polytopeT (G) is the convex hull of
incidence vectors of spanning trees ofG, its dominant is the polyhedronP (G) = T (G) +
RE

+ obtained by adding the nonnegative orthant. It has been proved in [83, 73] thatP (G)
is defined by

x(δ(V1, ..., Vp)) ≥ p− 1, for every partition ofV, (4)

x ≥ 0. (5)

Jünger and Pulleyblank [57] have given an extended formulation for P (G) as follows.
Associate the variablesx with the edges and the variablesy with the nodes. The system
below defines a polyhedron whose projection onto the variablesx is P (G). This will be
proved at the end of this section. The noder is an arbitrary element ofV .
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x(δ(S)) + y(S) ≥ 2, if r /∈ S, S ⊂ V, (6)

x(δ(S)) + y(S) ≥ 0, if r ∈ S, S ⊂ V, (7)

y(V ) = 0, (8)

x ≥ 0. (9)

So given a vector̄x ≥ 0, to check if inequalities (4) are satisfied, we can try to find a
vectorȳ such that(x̄, ȳ) satisfies (6)-(9), or prove that̄y does not exist.

Let

f(S) =

{

2− x̄ (δ(S)), if r /∈ S,

−x̄ (δ(S)), if r ∈ S,

for ∅ 6= S ⊆ V . The function−f is submodular on intersecting pairs.
We are going to solve

minimizey(V )
subject to
y(S) ≥ f(S), for S ⊆ V.

(10)

Edmonds [30] showed that the greedy algorithm solves this linear program. This al-
gorithm, which we present below, produces also an optimal solution of the dual problem.
We shall see that this gives a most violated partition inequality, if there is any. The dual
problem is

maximize
∑

zS f(S)
subject to
∑

{zS |u ∈ S} = 1, for all u ∈ V,
z ≥ 0.

(11)

Given a vectory satisfying (10), a setS is calledtight if y(S) = f(S). The function
y(·) − f(·) is nonnegative and submodular on intersecting pairs. So ifS andT are tight,
andS ∩ T 6= ∅, thenS ∩ T andS ∪ T are also tight.

We start withy(vi) = 2 ∀i, and decrease the value of eachy(vi) until a set becomes
tight. We denote byF the family of tight sets with a positive dual variable. If we try to add
S toF and there is a setT ∈ F with S ∩ T 6= ∅, then we replaceS andT by S ∪ T . This
is also tight.

Let V = {v1, ..., vn}, the algorithm is below.

Algorithm A

Step 0. Setȳ(vi)← 2 for i = 1, ..., n; k ← 1; F ← ∅.

Step 1. If vk belongs to a set inF go to Step 3, otherwise
setα← f(S̄)− ȳ(S̄) = max {f(S)− ȳ(S) | vk ∈ S},
ȳ(vk) ← ȳ(vk) + α,
F ← F ∪ {S̄}.

Step 2. While there are two setsS andT in F with S ∩ T 6= ∅ do
F ← (F\{S, T}) ∪ {T ∪ S}.
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Step 3. Setk ← k + 1, if k ≤ n go to Step 1, otherwise stop.

The vectorȳ is built so it satisfies (10), the familyF defines a partition ofV and
ȳ(S) = f(S) for everyS ∈ F . We set̄zS = 1, if S ∈ F , andz̄S = 0 otherwise. We have

ȳ(V ) =
∑

{ȳ (S) |S ∈ F} =
∑

{f(S) |S ∈ F} =
∑

{f(S) z̄S |S ⊆ V }.

This proves that̄y andz̄ are optimal solutions.
If the value of the optimum is 0 then(x̄, ȳ) satisfies (6), (7), (8). In this case we can

pick any partition ofV into V1, ..., Vp, add the inequalities in (6), (7) associated with the
sets{Vi}, and−y(V ) ≥ 0. We obtain a partition inequality. This shows thatx̄ satisfies all
the partition inequalities.

Now assume that the value of the optimum is greater than 0. Letz̄ be a 0-1 vector
that satisfies the equations of (11), the familyG = {S | z̄S = 1} = {S1, ..., Sp} gives a
partition of the setV and

∑

f(S) z̄S = 2(p− 1)− 2 x̄ (δ(S1, ..., Sp)),

so
1

2

∑

f(S) z̄S = (p− 1)− x̄ (δ(S1, ..., Sp)).

If z̄ is an optimum of (11), then it gives a most violated partitioninequality. Because
of this we have a solution of the separation problem not only for b = −1, but also for any
b ≤ −1.

This procedure shows that (11) has an optimal integer solution, this is known as the
total dual integralityof (10). It also shows that̄x satisfies (4)-(5) if and only if there is
a vectorȳ such that(x̄, ȳ) satisfies (6)-(9), so projecting the variablesy in (6)-(9), gives
(4)-(5).

2.2 Finding tight sets

It remains to show how to compute the numberα in Step 1. Construct a directed graph
D = (N,A), whereN = V ∪ {s, t} and

A = {(i, j), (j, i) | ij ∈ E} ∪ {(s, i), (i, t) | i ∈ V }.

Define

η(i) = ȳ(i), for i ∈ V, i 6= r,

η(r) = ȳ(r) + 2,

define capacities

c(s, i) = −η(i), c(i, t) = 0, if η(i) < 0, i 6= vk, i ∈ V,

c(i, t) = η(i), c(s, i) = 0, if η(i) ≥ 0, i 6= vk, i ∈ V,

c(s, vk) =∞, c(vk, t) = η(vk),

c(i, j) = c(j, i) = x̄(i, j), for ij ∈ E.
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Lemma 1 Suppose that{s} ∪ T induces a cut separatings from t that has capacityλ.
Then

ȳ(T ) + x̄(δ(T )) =

{

λ +
∑

{η(v) | η(v) < 0} − 2, if r ∈ T

λ +
∑

{η(v) | η(v) < 0} if r /∈ T.

Proof. Suppose thatr ∈ T . Then

λ =
∑

{−η(i)|i /∈ T, η(i) < 0}+ x̄(δ(T )) +
∑

{η(i)|i ∈ T, η(i) ≥ 0},

and

λ +
∑

{η(v) | η(v) < 0} − 2 =
∑

{η(i)|i ∈ T, η(i) < 0}+ x̄(δ(T )) +
∑

{η(i)|i ∈ T, η(i) ≥ 0} − 2 =

ȳ(T ) + x̄(δ(T )).

The caser /∈ T is analogous. 2

Therefore ifβ is the minimum capacity of a cut separatings from t, then the valueα
is

2− β −
∑

{η(v) | η(v) < 0}.

Suppose now that we have solved problem (10), and that we add anew vertex to the
graph. We are going to show that resolving (10) takes just onemin-cut calculation. This
will be used in the next section.

Lemma 2 After solving problem(10), if we add a new vertex, it will take one minimum
cut calculation to resolve(10).

Proof. Suppose that̄y is the solution of (10), for the graphG = (V,E). Suppose that we
add the vertexw. Define

¯̄y(v) = ȳ(v)− x̄(wv),

for all v ∈ V , and ¯̄y(w) = 2. It is easy to see that̄̄y satisfies the inequalities of (10),
and every set that was tight before will remain tight. Thus the only component that can be
modified by the greedy algorithm isy(w), this takes one minimum cut problem. 2

This Lemma shows that we can solve (10) adding the nodes one byone. Then at
iterationi one has to solve a minimum cut problem withi + 2 nodes.

Lemma 3 If the setS̄ in Step 1 is of maximum cardinality, then Step 2 is not needed.

Proof. If S̄ is of maximum cardinality then it is a maximal tight set, and no uncrossing is
needed. 2

The preflow-push algorithm of [44] produces a minimum cut so that the source side
has maximum cardinality, so it produces the set needed in Lemma 3. One should also
notice that because of this noncrossing property, each tight set inF can be shrunk to a
single node and the minimum cut problem is solved in a smallergraph. The algorithm
given in [77] has similar properties.

This concludes the treatment of the case whenb ≤ −1. We have seen that it reduces
to n minimum cut problems.
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3 The case b > −1

As we mentioned in the Introduction, the case whenb > −1 will be treated as

minimizex(δ(S1, ..., Sp))− p, (12)

with p ≥ 2. We follow the approach presented in [5].
This is equivalent to minimize

g(S) = x(δ(S))− 1 + min
{

x(δS(T1, ..., Tk))− k
}

, (13)

where∅ 6= S ⊂ V and{Ti} is a partition ofS. Notice that{Ti} could be the trivial
partition, i.e.,k = 1. In this section we useδS(T1, ..., Tk) to denote the set of edges with
endnodes in different setsTi. The resulting partition is{S̄, T1, ..., Tk}.

First we have to see thatg is submodular. Consider

f(S) = x(δ(S))− 2,

for S ⊆ V . The functionf is submodular. The functionf ′ : 2V −→ R ∪ {∞} given by

f ′(A) = min{
∑

i

f(Ai) : {Ai} is a partition ofA, ∅ 6= Ai ∀i}

for A ⊆ V , A 6= ∅, f ′(∅) = 0, is called theDilworth truncation of f . Notice that
f ′(A) ≤ f(A) for ∅ 6= A ⊆ V . The following holds.

Theorem 4 [63]. The Dilworth truncation of a submodular function on intersecting pairs
is fully submodular.

We have that

g(S) =
1

2

(

x(δ(S))− 2 + f ′(S)
)

,

thereforeg is submodular.
Queyranne [78] gave an algorithm to minimize a symmetric submodular functionh

that takesO(n3) evaluations of the function. Symmetric means thath(S) = h(S̄) for all
S ⊆ V . Sinceg is not symmetric, we defineg′(S) = f ′(S) + f ′(S̄) and look for the
minimum of g′(S), for ∅ 6= S ⊂ V . It is clear thatg′ is symmetric, and submodular
because it is the sum of submodular functions.

3.1 Queyranne’s algorithm

An algorithm to minimize a symmetric submodular functionh was given in [78], it gen-
eralizes the minimum cut algorithm of Nagamochi and Ibaraki[69] as simplified by Stoer
and Wagner [82] and Frank [37]. The algorithm is below, we useS + u to denoteS ∪{u}.

Algorithm B

Step 0. Start withW0 = ∅, i = 0.
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Step 1. For allu /∈Wi setk(u) = h(Wi + u)−h(u). Letk(ui+1) = min{k(u)}.

Step 2. SetWi+1 ←Wi +ui+1, seti← i+1. If i = n stop, otherwise go to Step
1.

In [78] it was proved that

h(un) = min{h(S) | S separatesun andun−1}.

The next step is to identifyun andun−1, apply Algorithm B, and continue until we are left
with two elements.

If we apply this algorithm with a submodular functionh that is not symmetric, we
obtain the minimum ofh(S) + h(S̄), cf. [78]. In our case we just have to use the function
f ′ defined above.

Each application of Algorithm B requiresO(n2) evaluations ofh. Since Algorithm B
is usedn − 1 times, we needO(n3) evaluations ofh. In our case, one evaluation of the
functionf ′ with the algorithm of Section 2 takesO(n) min-cut problems, thus the straight-
forward implementation of this method requiresO(n4) min-cut problems. However each
evaluation in Step 1 is of the typef ′(Wi + u) wheref ′(Wi) is already known. We have
seen at the end of Section 2 that this takes only one min-cut calculation. Thus the entire
algorithm requiresO(n3) min-cut problems.

4 Partition inequalities with terminals

Given a set of terminalsT = {t1, . . . , tk}, we need partitions so that the set of terminals
intersects at least two sets of the partition. In [59] it was shown that this reduces to min-
imizing a submodular function, later in [11] a reduction to submodular flows was given.
We present the latter approach here.

We fix two terminals and look for partitions separating them.Suppose each edgee ∈ E
has a weight̄x(e) ≥ 0. Let us consider two terminalst1 andt2 of T , t1 6= t2. We are
going to solve

minimizex̄(δ(V1, . . . , Vp))− p

with the constraint thatt1 ∈ V1 andt2 ∈ V2 say. This can be reduced to a submodular flow
problem as described below.

For a node subsetW ⊆ V , W 6= ∅, let

f1(W ) =

{

x̄(δ(W ))− 2 + M if t1 ∈W,
x̄(δ(W ))− 2 if t1 6∈W,

and

f2(W ) =

{

x̄(δ(W ))− 2 + M if t2 ∈W,
x̄(δ(W ))− 2 if t2 6∈W.

whereM is a big value. Andf1(∅) = f2(∅) = 0.

Lemma 5 Both functionsf1 andf2 are submodular on intersecting pairs.
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Proof. We only prove the result for the functionf1, the proof being similar forf2. We
must show that

f1(A) + f1(B) ≥ f1(A ∩B) + f1(A ∪B) (14)

for all intersecting pairsA,B ⊆ V . Let A,B ⊆ V such thatA ∩ B 6= ∅, A \ B 6= ∅ and
B \A 6= ∅. We first notice that, since the vectorx̄ is nonnegative, we have

x̄(δ(A)) + x̄(δ(B)) ≥ x̄(δ(A ∩B)) + x̄(δ(A ∪B)). (15)

Moreover, the nodet1 belongs as many times toA andB as toA ∩ B andA ∪ B. Thus,
from (15), we can deduce the inequality (14). 2

Let us associate a variabley(u) to every nodeu ∈ V . From Lemma 5 and [31], it
follows that the system

y(W ) ≤ f1(W ) for all W ⊆ V,
y(W ) ≤ f2(W ) for all W ⊆ V,

is totally dual integral. Therefore, the dual of the following linear program

maximizey(V ) (16)

subject to

y(W ) ≤ f1(W ) for all W ⊆ V, (17)

y(W ) ≤ f2(W ) for all W ⊆ V, (18)

has an optimal solution that is integer valued. The dual program of (16)-(18) is the follow-
ing:

minimize
∑

W⊆V

f1(W )α1
W +

∑

W⊆V

f2(W )α2
W (19)

subject to
∑

W⊆V :u∈W

α1
W +

∑

W⊆V :u∈W

α2
W = 1 for all u ∈ V, (20)

α1 ≥ 0, (21)

α2 ≥ 0. (22)

Lemma 6 An integer optimal solution to the linear program (19)-(22)defines a partition
of V which minimizes

x̄(δ(V1, . . . , Vp))− p (23)

with the property that the nodest1 andt2 appear in different sets of the partition.

Proof. First of all, we know that the system (17)-(18) is totally dual integral, and then the
linear program (19)-(22) has an integer optimal solution. Let us denote by(ᾱ1, ᾱ2) such a
solution. Since the right-hand sides of the equations (20) are 1, and the dual variables are
nonnegative,(ᾱ1, ᾱ2) is clearly 0-1 valued.
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Therefore, from the equations (20), any nodeu of V belongs exactly to one subset
W of V with ᾱ1

W + ᾱ2
W = 1. Thus the familyF = {W : W ⊂ V, and either̄α1

W =
1 or ᾱ2

W = 1} = {W1, . . . ,Wq} defines a partition ofV .
Furthermore, because of the objective function (19), the nodest1 andt2 belong to two

different sets of the partition. In fact, this is the only manner to avoid having big valueM
in the objective function (19). The partition{W1, . . . ,Wq} gives

∑

W⊆V

f1(W )ᾱ1
W +

∑

W⊆V

f2(W )ᾱ2
w = 2x̄(δ(W1, . . . ,Wq))− 2q,

and therefore, minimizes (23) with the constraint that the nodest1 andt2 should appear in
two different sets of the partition. 2

This procedure has been described for two specific terminalst1 andt2 of T , now we
can fix t1 ∈ T and try allt2 ∈ T \ {t1}. These submodular flow problems can be solved
with the algorithm of Fujishige and Zhang [40], a detailed description of this is in [11].
One application of this requiresO(n3) minimum cut problems, so to treat all terminals we
needO(n4) minimum cut problems.

5 Extensions

Here we present several extensions of the problem studied inSection 2.

5.1 The strength of a network

Consider a graphG = (V,E), it has been proved in [83] and [73] that the maximum
number of disjoint spanning trees inG is

σ = min
⌊ |δ(S1, . . . , Sp)|

p− 1

⌋

, (24)

where the minimum in (24) is taken among all partitions{S1, . . . , Sp} of V with p ≥ 2.
The numberσ has been proposed as a measure of the invulnerability of a network in [49].

In general suppose that each edgee has astrengths(e) ≥ 0. The strengthof this
network is

σ(G, s) = min
s
(

δ(S1, . . . , Sp)
)

p− 1
(25)

where the minimum in (25) is taken among all partitions{S1, . . . , Sp} of V with p ≥ 2.
Algorithms for computingσ(G, s) have been given in [19], [50], [41] and [15]. In this

last reference it is shown that it can be computed in the same asymptotic complexity asn
applications of the minimum cut algorithm of [44]; this is based on the parametric mini-
mum cut algorithm of [43]. Now we describe this approach. Onehas to apply Dinkelbach’s
method [29] as follows.

Algorithm C
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Step 0. Pick any partition{S1, . . . , Sl} of V , l ≥ 2. Setλ = s
(

δ(S1, . . . , Sl)
)

/(l−
1).

Step 1. Solve
minimizes

(

δ(T1, . . . , Tp)
)

− λ(p− 1)

Step 2. If the minimum above is zero, stop. Otherwise let{U1, . . . , Ur} be a solu-
tion. Setλ = s

(

δ(U1, . . . , Ur)
)

/(r − 1), and go to Step 1.

Cunningham [19] showed that the valuer in Step 2 decreases at every iteration, so this
algorithm takes at most|V | − 2 iterations. The minimization in Step 1 can be done by
solving (10), where the right hand side of (6) should be2λ instead of2. Since the value of
λ decreases at every iteration, an optimal solution of (10) isfeasible for the next value of
λ.

Now consider the minimum cut problem that one has to solve foreach node as in
Subsection 2.2. For the sources, capacitiesc(s, i) do not decrease from one iteration
to the next. For the sinkt, capacitiesc(i, t) do not increase. The capacities of all other
arcs remain the same. These properties permit the use of the parametric minimum cut
algorithm of Gallo et al. [43]. For every nodev one has to solve a sequence of minimum cut
problems, (one for each value ofλ). This sequence can be solved with the same asymptotic
complexity as one application of the preflow-push algorithmof [44]. Since we have such
a sequence for each node, the complexity of this procedure isO(n4). Notice that one has
to keep the data for each sequence, so the storage required isO(nm).

5.2 Principal sequence of partitions of a graph

Let us denote byP (λ) the following parametric problem. For a graphG = (V,E) with
edge weightsw(e) ≥ 0 for eache ∈ E, and a parameterλ ≥ 0, solve

minimizew(δ(S1, ..., Sp))− λp, (26)

where the minimization is over all partitions ofV .
If Π = {S1, . . . , Sp} is a partition ofV , the setsSi are called theblocksof the partition.

We have a partial order “�” on the set of partitions, whereΠ1 � Π2 if and only if each
block ofΠ2 is contained in a block ofΠ1.

The set of partitions that are either maximal or minimal optimal solutions ofP (λ) for
at least oneλ can be arranged in a decreasing sequenceΠ1, . . . ,Πr called theprincipal
sequence of partitionsof the graphG. Each successive pairΠi,Πi+1 in the sequence
consists of the maximal and minimal optimal partition for some (unique) value ofλ. The
resulting increasing sequence ofλ’s is called the sequence of critical values of the principal
sequence of partitions ofG. Notice that the first partition consists of just the node-set V ,
and the last partition consists of all singletons.

Several algorithms have been proposed for this, see [54, 70,75, 76, 62]. Here we
discuss the approach of Kolmogorov [62].

Define
fλ(S) = w(δ(S))− 2λ,
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for ∅ 6= S ⊆ V . The functionf is submodular for intersecting pairs. Then the linear
program below can be solved with the greedy algorithm [30].

maximizey(V )

y(S) ≤ fλ(S), for all S, ∅ 6= S ⊆ V .

As in Section 2, the dual solution gives a partition that solves (26). At each iteration of the
greedy algorithm one has to increase the value ofy(v) for some nodev. The amount that
one can increase is obtained by solving a minimum cut problem. So the greedy algorithm
requires solvingn minimum cut problems.

Kolmogorov [62] showed how to modify this approach so that one can use the para-
metric minimum cut algorithm of Gallo et al [43], and solveP (λ) for all λ ≥ 0, in the
same asymptotic complexity asn applications of the preflow-push algorithm of [44].

One can useP (λ) and Lagrangian relaxation to derive a lower bound for thek-cut
problem, see [9], [79]. Also approximation algorithms based onP (λ), for thek-cut prob-
lem and min-k-overlap have been given in [72].

The minimum critical value also gives the strength of a network, cf. [39]. To see this,
notice that one can apply Algorithm C from Subsection 5.1, using the solutions ofP (λ).
Then one can see that the value ofλ given by Algorithm C is exactly the smallest critical
value.

For applications of these concepts to Electrical Network theory see [55, 71].

5.3 Network reinforcement

Now suppose that there is a per-unit costc(e) of increasing the strength of each edgee,
and a numberσ0. Thereinforcement problemconsists of finding a minimum cost way to
increase edge strengths so that the resulting network has strength at leastσ0. An algorithm
for this was given in [19], it requires solving2m minimum cut problems. Later an algo-
rithm was given in [41] that requiresn iterations, each of them consisting of three steps.
The first step uses the parametric network flow algorithm of [1], the second step requires
an adaptation of the Hao-Orlin minimum cut algorithm [51], the third step uses the original
Hao-Orlin algorithm. The algorithm of [41] requiresO(m) space.

In [10] an algorithm was given that has the same asymptotic complexity asn applica-
tions of the minimum cut algorithm of [44]. This set of minimum cut problems has to be
kept in memory simultaneously, so the space required isO(nm). This algorithm has the
same asymptotic complexity as the one of [41] although it is quite different.

Now we describe the basics of this approach. Consider a slightly different question,
suppose that each edgee has a nonnegative per-unit costd(e) and a nonnegative integer
capacityu(e), that gives the maximum number of copies allowed of edgee. For a nonneg-
ative numberk, consider the problem of choosing a minimum cost spanning subgraph of
strengthk. This can be modeled as the linear program below.

min dx (27)

subject to

x
(

δ(S1, . . . , Sp)
)

≥ k(p− 1), for all partitions{S1, . . . , Sp} of V, (28)

0 ≤ x(e) ≤ u(e). (29)

12



We can reduce the reinforcement problem to this problem by allowing parallel edges and
giving the cost zero to the already existing edges. For the case whenu(e) = 1 for all
e ∈ E, anO(m log m + k2n2) algorithm has been given in [80].

As seen in Section 2, this is equivalent to the linear program

min
∑

d(e)x(e)

x(δ(S)) + y(S) ≥

{

2k if r /∈ S, S ⊂ V,
0 if r ∈ S, S ⊂ V,

y(V ) = 0,

−x ≥ −u,

x ≥ 0.

A combinatorial algorithm was given in [10]. Its complexityis dominated by the
complexity ofn applications of the preflow-push algorithm of [44]. Relatedreinforcement
questions have been studied in [76].

5.4 Packing spanning trees

We have seen that the minimum in (24) gives the maximum numberof disjoint spanning
trees in a graph. There are several algorithms to solve (24),but they do not give a maximum
set of disjoint spanning trees. Given a graphG = (V,E), with edge capacitiesw(e) ≥ 0
for all e ∈ E, consider the following problem:

maximize
∑

{λT : T is a spanning tree}

subject to
∑

{λT : e ∈ T} ≤ w(e), for all e ∈ E,

λ ≥ 0, integral.

This gives a maximum integral packing of spanning trees. A combinatorial algorithm
for this was given in [8], it requiresO(n2) minimum cut problems. Another combinatorial
algorithm was given in [42], its complexity isO(n3m log(n2/m)).

5.5 Increasing the weight of minimum spanning trees

We deal with a graphG = (V,E) where each edgee ∈ E has an original weightw0
e and

we can assign toe a new weightwe ≥ w0
e . Thecostof giving the weightwe is ce(we).

The functionce(·) is nondecreasing, convex, piecewise linear andce(w
0
e) = 0. We study

the following problem: Given a valueλ ≥ 0 find a minimum cost set of weights so that the
weight of a minimum spanning tree isλ.

Frederickson and Solis-Oba [38] gave an algorithm for the case whence(·) is linear
and nondecreasing, later a different derivation of their algorithm and a slight extension to
deal with convex piecewise linear costs, was given in [4]. Weoutline this approach below.
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For every edgee we have a convex nondecreasing piecewise linear cost function of the
weightwe. This is easy to model using linear programming as follows. Assume that for
every edgee there areme possible slopesd1

e, . . . , d
me
e of ce(·). For the valuew̄ the cost

ce(w̄) can be obtained as the optimal value of

min
∑

k

dk
e xk

e (30)

∑

k

xk
e + w0

e = w̄ (31)

0 ≤ xk
e ≤ uk

e , 1 ≤ k ≤ me. (32)

We assume thatdk
e < dk+1

e , for k = 1, . . . ,me − 1. The valueuk
e is the size of the

interval for which the slopedk
e is valid. The solution̄x of this linear program is as follows:

there is an indexke ≥ 1 such that (33)

x̄k
e = uk

e , for 1 ≤ k ≤ ke − 1, (34)

uke

e > x̄ke

e = w̄ − w0
e −

∑

1≤k≤ke−1

uk
e ≥ 0, (35)

x̄k
e = 0, for ke + 1 ≤ k ≤ me. (36)

Thus the problem can be modeled as

min dx (37)
∑

e∈T

we ≥ λ, for each treeT (38)

we = w0
e +

me
∑

k=1

xk
e , for each edgee (39)

0 ≤ x ≤ u. (40)

A combinatorial algorithm for solving this parametric linear program was given in
[4]. It uses as subroutines the strength problem, packing spanning trees and network rein-
forcement. The complexity of producing the primal solutions isO(mn5

∑

me), and the
complexity of obtaining the dual solutions isO(mn6

∑

me).

5.6 Potts’ model in Statistical Physics

Here we describe an application presented in [2, 77]. We start with a brief description of
Potts’ model from Statistical Physics, for a more complete treatment see [84]. Alattice of
spinsis a graph where each nodei has an associated variableσi. Eachσi can take values
in Zq = {0, . . . , q − 1}. Edgesij are calledbonds, and they have an associated weight
Kij ≥ 0. Each configurationσ = (σ1, . . . , σn) has an energy

E(σ) =
∑

ij

Kijδσiσj
.
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Here the sum runs over all bonds, andδσiσj
takes the value1 if σi = σj , and0 otherwise.

The partition function is
Z =

∑

σ

exp(E(σ)),

where the sum runs over all possible values ofσ ∈ Zn
q . The partition function encodes the

statistical properties of a system in thermodynamic equilibrium.
Using the transformationexp(Kij)−1 = qαij , and after some algebraic manipulation

the partition function can be written as

Z =
∑

F

qc(F )+
P

ij∈F
αij . (41)

Here the sum runs over all subsetsF of bonds, andc(F ) is the number of connected
components ofF , counting isolated nodes as components. As pointed out in [56], whenq
tends to infinity the sum in (41) converges toNqf∗

, where

f∗ = max
F
{c(F ) +

∑

ij∈F

αij}, (42)

andN is the number of optimal solutions of (42). It is easy to see that finding the maximum
in (42) is equivalent to finding the minimum in (2). The value of the maximum in (42) gives
the order of magnitude of the partition function, and if the weightsKij are arbitrary reals,
then the numberN is likely to be one, and one can have a good approximation of the
partition function value.

6 Survivable networks

Satisfying a suitable degree of survivability has become one of the most important issues in
the design of telecommunication networks. Survivable networks must fulfill some connec-
tivity requirement that ensure connections between parts of the network, that is networks
that are still functional after the failure of certain links. Computing network topologies that
provide a sufficient degree of survivability has become the main objective when designing
telecommunication networks.

As fiber-optic technology provides high transmission capacity, telecommunication net-
works tend to be sparse, and in consequence, the failure of a single (or more) link (node)
of the network might be of heavy consequences if the network does not provide alternative
routing paths. This leads to the problem of designing minimum-cost telecommunication
network with high reliability level, namely with sufficientrouting paths between each pair
of nodes.

More precisely, consider an undirected graphG = (V,E) such that with each node
u ∈ V is associated a nonnegative integerr(u), called itsconnectivity type, that repre-
sents its importance of communication from and to it. The edge-survivability (resp. node-
survivability) conditions are then stated as the requirement of the existence of at least

r(s, t) = min{r(s), r(t)} (43)
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edge-disjoint (resp. node-disjoint) paths in the subgraphof G for any pair of nodess, t ∈
V . Given edge costsc(e) ∈ R+, e ∈ E, theedge (node) survivable network design prob-
lemis to determine a minimum cost subgraph ofG satisfying the edge (node-) survivability
conditions. This model, introduced by Grötschel and Monma [46], has received consid-
erable attention in the past. Moreover, partition inequalities arise as valid inequalities for
many variants of this model.

Expressing the survivability requirements using the connectivity types allows to model
a wide variety of well-known combinatorial optimization problems which have been in-
tensely studied for several decades. For instance, if the connectivity type vectorr =
(r(u), u ∈ V ) is uniform, sayr(u) = k for all u ∈ V wherek is a positive integer,
then the edge (node-) survivable network design problem is nothing but thek-edge (node)
connected subgraph problem. Another variant whose underlying topology is of great in-
terest in telecommunications is when the connectivity types are 1 and 2. Here the nodes
are of two types: ordinary nodes which should be linked to thefinal network and important
nodes with high degree of survivability. As we will see later, many classes of partition in-
equalities are valid for these problems. Moreover they playa central role in their resolution.

In the rest of this paper we will mostly deal with the edge version of the survivable
network design problem. So we will usually omit the "edge" prefix and simply consider
survivable network design problem instead (SNDP for short). Given a graphG = (V,E)
andW ⊆ V , we letW = V \W . For a nonempty node subsetW ( V , the set of edges
having exactly one endnode inW is called acut or a cutsetand is denoted byδG(W ).
Moreover, if s ∈ W and t /∈ W , thenδ(W ) is called anst-cut. For all our notations,
we don’t use the subscriptG whenever the graphG can be deduced from the context.
For F ⊆ E, we denote byV (F ) the set of nodes which are spanned by the edges in
F . For W ⊆ V , we denote byE(W ) the set of edges with both endnodes inW , and
by G(W ) = (W,E(W )) the subgraph induced byW . Given a polytopeP ⊆ Rn, the
dominantof P is the polyhedron given byP + Rn

+.

6.1 Valid inequalities

In this subsection we shall present some families of valid inequalities for the SNDP. Through-
out we consider a graphG = (V,E) and a connectivity type vectorr ∈ {0, 1, 2}V .
For all W ⊆ V, ∅ 6= W 6= V , con(W ) = min{r(W ), r(V \ W )} wherer(W ) =
max{r(u) : u ∈W}. From Menger’s theorem [68], it follows that the SNDP is equivalent
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to the following integer linear program

minimize
∑

e∈E

c(e)x(e)

subject to

x(e) ≥ 0 for all e ∈ E, (44)

x(e) ≤ 1 for all e ∈ E, (45)

x(δ(W )) ≥ con(W ) for all W ⊆ V, ∅ 6= W 6= V, (46)

x(e) ∈ {0, 1} for all e ∈ E. (47)

Inequalities (44) and (45) are calledtrivial inequalitiesand inequalities (46) are calledcut
inequalities.

It is not hard to see that the following inequalities, introduced by Grötschel et al. [48](see
also [81]), are valid for the node version of the problem

x(δG\U (W )) ≥ conG\U (W )− |U |, for all U ⊆ V, ∅ 6= U 6= V, |U | < conG\U (W ),
(48)

and for allW ⊆ V \ U.

Inequalities (48) are callednode cut inequalities. By adding these inequalities to the above
integer linear program and using again Menger’s theorem [68], we obtain an integer linear
programming formulation for the node-SNDP.
Let us note that the cut and node cut inequalities can be separated in polynomial time us-
ing network flows. In what follows further valid inequalities induced by partitions of the
underlying graph are given.

Multicut inequalities

Let {V1, . . . , Vp} be a partition ofV . If con(Vi) = 1 for i = 1 . . . , p, the graph ob-
tained from any solution to the SNDP by contracting every subgraphG(Vi), i = 1, . . . , p,
must then be connected. Therefore, the following inequality is valid for the SNDP.

x(δ(V1, . . . , Vp)) ≥ p− 1 for all partition{V1, . . . , Vp} such that (49)

con(Vi) = 1, for i = 1, . . . , p.

Inequalities of type (49) are calledmulticut inequalities. In [46], Grötschel and Monma
(see also [48, 81]) showed that inequalities (49), togetherwith the trivial inequalities (44)
and (45), suffice to describe the survivable network design polytope whenr(i) = 1 for
all i ∈ V . Moreover, as mentioned before, the dominant of the spanning tree polytope is
defined by (49) and the nonegativity constraints [83, 73]. This inequalities have been used
inside an algorithm for theNetwork Loading Problemin [7].

For general connectivity vectorr ∈ ZV having at least one nodeu ∈ V with r(u) = 0,
Grötschel et al. [47] showed that the separation problem forinequalities (49) is NP-hard.
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Furthermore, ifr(u) ≥ 1 for all u ∈ V , as mentioned by Kerivin and Mahjoub [59],
inequalities (49) can then be separated in polynomial time by applying Cunningham or
Barahona algorithms on the graph obtained fromG by contracting the set of nodes{u ∈
V : r(u) > 1}.

Partition inequalities

In [48], Grötschel et al. introduced a class of valid inequalities for SNDP(G, r), called
partition inequalities, that generalizes the cut inequalities (46). These inequalities are as
follows. Let {V1, . . . , Vp}, p ≥ 3, be a partition ofV such that1 ≤ con(Vi) ≤ 2 for
i = 1, . . . , p. DenoteI2 = {i : con(Vi) = 2, i = 1, . . . , p}. Thepartition inequality
induced by{V1, . . . , Vp} is given by

x(δ(V1, . . . , Vp)) ≥

{

p− 1 if I2 = ∅,

p otherwise.
(50)

Obviously, if all connectivity types are equal to 2, a partition inequality (50) is implied by
the cut constraintsx(δ(Vi)) ≥ 2. (We remark that considering the case wherep = 2 gives
a cut inequality (46).)

The separation problem for the partition inequalities (50)is NP-hard in general [47]
(Recall that we are considering herer ∈ {0, 1, 2}V ). As mentioned above, Grötschel et
al. [47] showed that, even in the restricted case wherer ∈ {0, 1}V , the separation problem
remains NP-hard. Ifr ∈ {1, 2}V , Kerivin and Mahjoub [59] proved that the separation
problem associated with

x(δ(V1, . . . , Vp)) ≥ p if I2 6= ∅, (51)

where{V1, . . . , Vp} is a partition ofV , reduces to minimizing a submodular function and
therefore can be solved in polynomial time. As mentioned before, Barahona and Kerivin
[11] devised a pure combinatorial algorithm, based on the submodular intersection prob-
lem, for separating inequalities (51).

F -partition inequalities

Suppose the connectivity type vectorr is such thatr(u) = 2 for all u ∈ V . A class
of valid inequalities for the survivable network design polytope in this case was introduced
by Mahjoub [64] as follows. Consider a partition{V1, . . . , Vp} of V and letF ⊆ δ(V1)
with |F | odd. By adding the inequalities

x(δ(Vi)) ≥ 2 for i = 2, . . . , p,

− x(e) ≥ −1 for e ∈ F,

x(e) ≥ 0 for e ∈ δ(V1) \ F,

we obtain
2x(∆) ≥ 2(p− 1)− |F |,
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where∆ = δ(V1, . . . , Vp) \ F . Dividing by 2 and rounding up the right-hand side lead to

x(∆) ≥ p−
⌈ |F |

2

⌉

. (52)

Inequalities (52) are calledF -partition inequalities. Note that if |F | is even, the corre-
sponding inequality (52) is then implied by inequalities (44), (45) and (46). It is straight-
forward that inequalities (52) remain valid for SNDP whenr ∈ {0, 1, 2}V andcon(Vi) = 2
for i = 1, . . . , p.

The partition andF -partition inequalities are special cases of more general classes of
inequalities given by Grötschel et al. [48] for SNDP (see also [81]). Furthermore, Kerivin
et al. [61] considered a subclass ofF -partition inequalities, called generalized odd-wheel
inequalities, to give sufficient conditions for inequalities (52) to be facet-defining. They
also introduced an extension of inequalities (52) to the case where the inducing partition
{V1, . . . , Vp} is such thatcon(Vi) ∈ {1, 2} for i = 1, . . . , p.

The separation problem for theF -partition inequalities is still an open question. How-
ever, if the setsVi of partitions are singletons, the correspondingF -partition inequalities
are then blossom inequalities forb-matching which can be separated in polynomial time
with the algorithm of Padberg and Rao [74]. Moreover, when the edge subsetF is fixed, as
pointed out by Baïou et al. [5], the separation problem for inequalities (52) can be solved
in polynomial time. In fact, one can delete the set of edgesF from G and consider the
resulting graphG′ = (V ′, E′), say. AnF -partition inG can be written inG′ as

x(δG′(V1, . . . , Vp)) ≥ p−
⌈ |F |

2

⌉

, (53)

whereV1 contains exactly one endnode of each edge ofF . There are2|F | possibilities to
assign nodes ofF to V1. For each one we can contract the nodes ofF in V1 and solve
the separation problem for inequalities (53). As Cunningham’s algorithm and Barahona’s
algorithm provide a most violated multicut inequality, if there is any, this can then be done
in polynomial time. As it is shown in [61],F -partition inequalities play a central role for
solving SNDP in the low connectivity case, within the framework of a cutting plane algo-
rithm.

Consider the inequalities of type

x(δ(V1, . . . , Vp)) ≥ ap + b. (54)

where{V1, . . . , Vp} is a partition ofV anda andb are two fixed scalars. These inequalities
have been the subject of a large part of the first part of the paper. And consider now the
k-edge connected network problem, that is, the SNDP wherer(u) = k for all u ∈ V .
Grötschel et al. [48] introduced the following inequalities

x(δ(V1, . . . , Vp)) ≥
⌈kp

2

⌉

, (55)
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where{V1, . . . , Vp} is a partition ofV . Inequalities (55) are clearly redundant with respect
to the cut inequalities (46) ifkp is even. In order to have an approximate separation routine,
instead of separating inequalities (55), one can separate the inequalities

x(δ(V1, . . . , Vp)) ≥
kp

2
,

which are nothing but inequalities (54) wherea = k
2 andb = 0.

Let Z ⊂ V be a node set with|Z| = t ≤ k − 1 and{V1, . . . , Vp} a partition of
V \Z. For thek-node connected network problem, Grötschel and Monma [46] introduced
thenode partition inequalitieswhich are as follows

x(δG\Z(V1, . . . , Vp)) ≥







p− 1 if k − t = 1,
⌈p(k − t)

2

⌉

if k − t ≥ 2.
(56)

Grötschel and Monma [46] also gave necessary and sufficient conditions for inequalities
(56) to be facet-defining. Ifk − t = 1, inequalities (56) are then multicut inequalities,
and therefore can be separated in polynomial time. Ifk − t is positive and even, they are
nothing but inequalities (54) and their separation is also polynomially solvable. As we
mentioned for inequalities (55), one can use Baïou, Barahona and Mahjoub’s algorithm for
separating inequalities (54) in order to approximate the separation problem for inequalities
(56) wherek − t is positive and odd.

6.2 Polyhedral consequences

We now shall discuss some polyhedral consequences of the valid inequalities introduced
above. But first let us define three classes of graphs we are going to consider hereafter
and in this section. Ahomeomorphof K4 (i.e., the complete graph on four nodes) is a
graph obtained fromK4 when its edges are subdivided into paths by inserting new nodes
of degree two. A graph is calledseries-parallelif it contains no homeomorph ofK4 as a
subgraph. A graph is calledouterplanarif it can be drawn in the plane as one cycle with
noncrossing chords. We note that outerplanar graphs are also series-parallel. A graph is
said to be aHalin graphif it consists of a cycle and a tree without nodes of degree 2 whose
pending nodes are precisely the nodes of the cycle.

In [64], Mahjoub showed that whenG is series-parallel andr(u) = 2 for all u ∈ V
(that is the 2-edge connected subgraph problem), the corresponding polytope is given by
the trivial inequalities (44) and (45), and the cut inequalities (46). This linear description
was generalized to the case wherer ∈ {0, 2}V by Baïou and Mahjoub [6] as well as to
the case wherer ∈ {0, k}V andk is even by Didi Biha and Mahjoub [27]. Kerivin and
Mahjoub [60] extended those results to the more general casewhere the connectivity types
are all even. For connectivity type vectorsr such thatr(u) = 2 for all u ∈ V , Barahona and
Mahjoub [12] studied the 2-edge and 2-node connected subgraph polytopes in the graphs
that can be decomposed by 3-edge cutsets. (A3-edge cutsetis a cut that consists of exactly
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three edges.) They showed that if a graphG decomposes intoG1 andG2 by a 3-edge
cutset, the system describing the polytope is then the unionof both systems describing the
polytopes associated withG1 andG2. As a consequence, they obtained that inequalities
(52) together with the trivial and cut inequalities completely describe the 2-edge connected
subgraph polytope on Halin graphs for this case of connectivity type vectors. They also
presented similar results for the node version. Some extensions of this work to the case
wherer ∈ {0, 2}V were studied in [67].

In some practical situations, one may need to use more than one link between two given
nodes of a survivable network. This case can be seen as a relaxation of the survivable
network problem, and is usually easier to handle. LetP (G, r) be thedominantof the
survivable network design polytope.
In [16], Chopra studiedP (G, r) whenr(u) = k for all u ∈ V andG is an outerplanar
graph. For this case withk odd, he showed that the following inequalities are valid forthe
polyhedronP (G, r)

x(δ(V1, . . . , Vp)) ≥
⌈k

2

⌉

p− 1 for all partitions{V1, . . . , Vp} of V. (57)

Moreover, he proved the following.

Theorem 7 [16] If G = (V,E) is outerplanar,r(u) = k for all u ∈ V with k odd, the
polyhedronP (G, r) is then given by the nonnegativity inequalities(44) and inequalities
(57).

The polyhedronP (G, r) was previously studied by Cornuéjols et al. [18]. They
showed that on series-parallel graphs and forr(u) = 2 for all u ∈ V , the polyhedron
P (G, r) is completely described by the nonnegativity inequalities(44) and the cut inequal-
ities (46). In [3], Baïou showed that this result also holds if r ∈ {0, 2}V . In the more
general class of series-parallel graphs, Didi Biha and Mahjoub [28] (see also Didi Biha
[25]) proved that inequalities (57) remain valid for the survivable network design problem
wherer(u) = k for all u ∈ V with k odd, and called these inequalitiesSP-partition in-
equalities(SP stands for Series-Parellel). They also showed that inequalities (57) together
with the nonnegativity inequalities (44) completely describe the polyhedronP (G, r) in
that case. As a consequence, they obtained that Theorem 7 also holds on series-parallel
graphs, as conjectured by Chopra [16]. This conjecture was also proved independently
by Chopra and Stoer [17]. We remark that inequalities (57) are a particular case of the
partition inequalities (54). Therefore, a direct consequence of the result of Baïou et al. [5],
inequalities (57) can be separated in polynomial time. As itis shown in [14, 24], SP-
partition inequalities (57) have shown to be very utile for solving the SNDP with high
survivability requirements. (We remind that those inequalities are valid for the SNDP only
if the graph induced by the partition is series-parallel.) Didi Biha et al. [26] showed that,
in a subclass of series-parallel graphs containing all the outerplanar graphs, the survivable
network polytope is completely described by the trivial inequalities (44) and (45), the cut
inequalities (46) and the partition inequalities (50) whenr ∈ {1, 2}V .
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7 Critical extreme points

It is well known that the linear relaxation of a combinatorial optimization problem usu-
ally provides near optimal solution. In order to improve this solution, one has to add
valid inequalities which are violated by fractional solutions. Many of these solutions may
be extreme points of the linear relaxation and therefore, characterizing the extreme points,
among the ones of the linear relaxation, which may be separated in polynomial time, would
be of great interest for solving the whole optimization problem. This question was first
studied by Fonlupt and Mahjoub [32] for the 2-edge connectednetwork polytope. They
introduced the concept of critical extreme points of the linear relaxation of the 2-edge con-
nected subgraph polytope. In this section, we discuss theseextreme points.

Consider a graphG = (V,E). We denote byP (G) the polytope given by the trivial
inequalities (44) and (45) and the following cut inequalities

x(δ(W )) ≥ 2 for all W ⊂ V, W 6= ∅. (58)

We observe that the polytopeP (G) is the linear relaxation of the 2-edge connected net-
work polytope.

Let x be a noninteger extreme point ofP (G). Let x′ be a solution obtained by replac-
ing some (but at least one) noninteger components ofx by 0 or 1 (and keeping all the other
components ofx unchanged). Ifx′ is a point ofP (G), thenx′ can be written as a strict
convex combination of extreme points ofP (G). If y is such an extreme point, theny is
said to bedominatedby x, and we writex ≻ y. Note that an extreme point ofP (G) may
dominate more than one extreme point ofP (G). Notice also that, ifx dominatesy, that is,
x ≻ y, we then have

{e ∈ E | 0 < y(e) < 1} ⊂ {e ∈ E | 0 < x(e) < 1}

{e ∈ E | x(e) = 0} ⊆ {e ∈ E | y(e) = 0}, and

{e ∈ E | x(e) = 1} ⊆ {e ∈ E | y(e) = 1}.

The relation≻ defines a partial ordering on the extreme points ofP (G). The minimal
elements of this ordering (i.e., the extreme pointsx for which there is no extreme pointy
such thatx ≻ y) correspond to the integer extreme points ofP (G). The minimal extreme
points ofP (G) are called extreme points ofrank 0. An extreme pointx of P (G) is said
to be ofrank k, for a fixedk, if x only dominates extreme points of rank less or equal than
k − 1 and if it dominates at least one extreme point of rankk − 1. We notice that ifx is
an extreme point ofP (G) of rank1 and if we replace one fractional component ofx by 1,
keeping unchanged the other components, we obtain a feasible pointx′ of P (G) which can
be written as a convex combination of integer extreme pointsof P (G). We also observe
that the extreme points ofP (G) may have rank at most|V |.

Fonlupt and Mahjoub [32] introduced the following reduction operations with respect
to a solutionx of P (G).
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θ1: Delete an edgee with x(e) = 0.

θ2: Contract an edgee having one of its endnodes of degree 2.

θ3: Contract a node subsetW such thatG(W ) is 2-edge connected andx(e) = 1 for
all e ∈ E(W ).

Starting from a graphG and a pointx of P (G), letG′ be a reduced graph andx′ be a point
of P (G′), both obtained by applying operationsθ1, θ2, θ3. It is not hard to see thatx is an
extreme point ofP (G) if and only if x′ is an extreme point ofP (G′). Moreover we have

Lemma 8 [32] x is an extreme point ofP (G) of rank 1 if and only ifx′ is an extreme point
of P (G′) of rank 1.

An extreme point ofP (G) is said to becritical [32] if it is of rank 1 and if none of
the operationsθ1, θ2, θ3 can be applied for it. By Lemma 8, the characterization of the
extreme points of rank1 thus reduces to those of the critical extreme points ofP (G). In
[32], Mahjoub and Fonlupt gave the following necessary conditions for a fractional extreme
point ofP (G) to be critical.

Theorem 9 [32] LetG = (V,E) be a 2-edge connected graph andx a fractional extreme
point ofP (G). If x is a critical extreme point ofP (G), then the following hold.

(i) V = V 1 ∪ V 2 with V 1 ∩ V 2 = ∅,

E = E1 ∪ E2 with E1 ∩ E2 = ∅,

(V 1, E1) is an odd cycle,

(V 1 ∪ V 2, E2) is a forest whose set of pending nodes isV 1 and such that all the
nodes inV 1 have degree 3,

(ii) x(e) = 1
2 for e ∈ E1,

x(e) = 1 for all e ∈ E2, and

(iii) x(δ(W )) > 2 for all cut δ(W ) such that|W | ≥ 2 and|W | ≥ 2.

Remark 2.1 By (ii) and (iii) of Theorem 9, ifG supports a critical extreme point, thenG
is 3-edge connected, and|δ(S)| ≥ 4 for every cutδ(S) such that|S| ≥ 2 and|S| ≥ 2.

Theorem 9 has some interesting algorithmic and polyhedral consequences. We first
note that operationsθ1, θ2, θ3 can be performed in polynomial time and in any order. Con-
sider now a graphG = (V,E) and a critical extreme point̄x. From Theorem 9, it follows
that there exists an odd cycleC of G such that̄x(e) = 1

2 for e ∈ C and x̄(e) = 1 for
e ∈ E \C. MoreoverE \C induces a forest whose pending nodes are precisely the nodes
of V (C). So the inequality

∑

e∈C

x(e) ≥
|C|+ 1

2
, (59)

which is valid for the 2-edge connected network problem, is violated byx̄. Actually, a
constraint (59) is anF -partition inequality (52) whereF is the set of leaves of the forest.
Thus, by the remark above we have the following.
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Theorem 10 [32] Critical extreme points can be separated from the 2-edge connected
network polytope in polynomial time.

Kerivin et al. [61] showed that an inequality (59) is a special case of a more general
class of facet-defining inequalities for the 2-edge connected network polytope. Conse-
quently, by Theorem 10, critical extreme points may be separated byF -partition facets.

The concept of critical extreme points has also been studiedby Mahjoub and Nocq
[66] for the 2-node connected network polytope. The following inequalities

x(δG\v(W )) ≥ 1 for all v ∈ V,W ⊂ V \ {v},W 6= ∅. (60)

are valid for the 2-node connected network polytope. We observe that these inequalities
are a special case of the node partition inequalities (56). In [66], Mahjoub and Nocq stud-
ied the polytopeQ(G) given by inequalities (44), (45), (58) and (60). This polytope is the
linear relaxation of the 2-node connected network polytope. They extended the concept of
extreme points of rank 1 and critical extreme points to the polytopeQ(G). They also gave
necessary and sufficient conditions for an extreme point ofQ(G) to be critical.

We now look at the case wherer ∈ {1, 2}V . As pointed out in [61] (see also [58]), the
F -partition inequalities (52) can straighforwardly be extended to the caser ∈ {1, 2}V as
follows

x(∆) ≥ p− 1−
⌊p1 + |F |

2

⌋

, (61)

wherep1 = |{i | con(Vi) = 1, i = 2, . . . , p}|. We remark here that|F | is not necessarily
odd. In fact, inequalities (61) are dominated by the cut and trivial inequalities if and only
if p1 and|F | have the same parity.

Let R(G, r) be the polytope described by the trivial inequalities (44) and (45), the
cut inequalities (46) and the partition inequalities (50).The interest in considering the
partition inequalities (50) forR(G, r) is because they can be separated in polynomial time
in the caser ∈ {1, 2}V as proved in [59]. Given a solutionx of R(G, r), the following
operations, described in [61] and given with respect tox, extend in a straightforward way
the operationθ2, introduced above, to the case wherer ∈ {1, 2}V .

θ′1: Contract an edgeuv such that̄x(uv) = 1, r(u) = 1 andx(δ(u)) ≤ 2.

θ′2: Contract an edgeuv such thatr(u) = 2, δ(u) = {uv, uw} andr(w) = 2.

Note that these reduction operations can also be realized inpolynomial time. We also no-
tice that operationθ3, previously given for the case wherer(u) = 2 for all u ∈ V , can be
extended to the (1,2)-survivable network problem by considering node setsW ⊂ V with
r(u) = 2 for all u ∈W .

With a graph obtained fromG by contracting an edgee = uv ∈ E, we associate the
connectivity type vectorre ∈ {1, 2}|V |−1 such thatre(w) = con({u, v}) andre(u) =
r(u) if u ∈ V \ {u, v}, wherew is the node that arises from the contraction ofe. Let
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G′ = (V ′, E′) be a graph obtained by repeated applications of operationsθ1, θ2, θ3, θ′1,
θ′2. Denote byr′ ∈ {1, 2}V

′

the connectivity type vector corresponding to the graphG′

and byx̄′ the restriction of̄x onE′. Kerivin et al. [61] showed that if̄x is an extreme point
of R(G, r), thenx̄′ is also an extreme point ofR(G′, r′). Moreover they proved that these
operations keep trace of the validity and the violation of the inequalities of type (46), (50)
or (61) in the graphG′ with respect to the connectivity type vectorr′. Thus for looking for
a violated inequality of type (46), (50) or (61) inG with respect tor, one can compute a
violated one inG′ with respect tor′. MoreoverG′ can be relatively small.

Operationsθ1, θ2, θ3, θ′1, θ
′
2) have been used by Kerivin et al. [61] in a preprocessing

phase of a cutting plane algorithm for the (1,2)-survivablenetwork design problem (re-
spectively the 2-node connected network problem), and haveshown to be very effective
for solving these problems.

8 Survivability with length constraints

In general, survivability requirement is not sufficient to guarantee a cost effective routing.
Indeed, the alternative routing paths may be too long and then, too costly to be suitable. In
consequence, further technical constraints have to be added, in particular one can impose
a limit on the length of the rerouting paths. In order to limitthe rerouting, one thus must
have at least two edges (node)-disjoint paths with bounded length between each pair origin-
destination, so that if one of the paths fails, the traffic maybe rerouted (in a minimum
time) on the second one. In many practical situations, the length of the routing path is
considered as the number of links (also called hops) in the path, and then we talk about
hop-constrained path. In this section, we shall discuss valid partition inequalities for some
variants of the constrained survivable network design problems.

8.1 Survivability with bounded rings

In [35], Fortz et al. considered the problem of designing a minimum cost 2-node connected
network such that each edge belongs to a cycle of a bounded length. This problem can be
presented as follows: Given a graphG = (V,E) such that each edgee ∈ E has a costc(e)
and a lengthd(e), and a positive integerL, the problem consists of finding a minimum cost
2-node connected subgraph(W,F ) such that each edge ofF belongs to a cycle of length
less or equal thanL. In [34], Fortz and Labbé provided classes of valid inequalities and
discussed the associated separation problems. In particular they introduced the inequalities

x(δ(V1, . . . , Vp)) ≥ 2M(p, L) (62)

whereM(p, L) = n+ min{⌈p−L
L−2⌉, ⌈

p
L−1⌉}. They approximateM(p, L) with a(p − 1)

wherea = nL
(n−1)(L−1) . They showed empirical evidence that this is a good approxima-

tion. They also reported computational results obtained with a cutting plane algorithm. For
a complete survey of this problem, see Fortz [33].

In [36], Fortz et al. studied the edge version of the above problem, the2-edge con-
nected subgraph with bounded rings problem (2ECSBR). They considered the case where
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the length of each edge is 1. So the problem here is to find a minimum cost2-edge con-
nected subgraph such that each edge belongs to a cycle with nomore thanL edges. Fortz
et al. [36] introduced a class of valid inequalities, and, using this, they gave an integer
programming formulation for the problem in the space of the design variables. In what
follows we describe these inequalities.

Let G = (V,E) be a graph andL ≥ 3. If π = {V0, . . . , Vp} is a partition ofV , then
we letCπ = ∪p−1

i=0 [Vi, Vi+1] ∪ [V0, Vp] andTπ = δ(V0, . . . , Vp) \ Cπ. Suppose now that
the partitionπ is such thatp ≥ L and lete ∈ [V0, Vp]. Consider the inequality

x(T e
π) ≥ xe (63)

where
T e

π = Tπ ∪ ([V0, Vp] \ {e}). (64)

Fortz et al. [36] showed that inequalities (63) are valid forthe polytope associated with
the 2ECSBR. Inequalities (63) are calledcycle inequalities. Moreover they proved that
trivial, cut and cycle inequalities together with the integrality constraints yiels an integer
programming formulation for the 2ECSBR. Moreover, by adding the constraints

x(δG−v(W )) ≥ 1, W ⊂ V \ {v}, v ∈ V,

we obtain a formulation for the2-node connected subgraph with bounded rings problem
(when the lengths are equal to 1).

It is not hard to see that the separation problem for inequalities (63) associated with an
edgee = st reduces to finding a minimum weight edge subset that intersects all st-paths
of length≤ L− 1. Fortz et al. [36] (see also [65]) showed that, whenL ≤ 4, this problem
reduces to a max-flow problem in an appropriate directed graph and hence can be solved in
polynomial time. As a consequence, they obtained a polynomial time separation algorithm
for inequalities (63) whenL ≤ 4. In what follows we present their algorithm.

First it can be easily shown ( see Fortz et al. [36]) that the separation problem for in-
equalities (63) can be solved in polynomial time for a0− 1 solutionx̄.
Now suppose that the solution contains fractional values. Let G = (V,E) be a graph and
s, t two nodes ofV . Given a positive integerB, define an(s, t)-B-path cutto be any edge
setC of E that intersects everyst-path ofG with at mostB edges. Given a weight vector
w ∈ Rm

+ , the minimum(s, t)-B-path cut problem (BPCP) is to find an(s, t)-B-path cut
of minimum weight. Fortz et al. [36] showed that the separation problem for inequalities
(63) reduces to solving BPCP for every edgee = st ∈ E andB = L − 1 with respect to
the weight vector̄x.

Observe that ifB = 2, finding a minimum(s, t)-2-path cut reduces to finding a min-
imum cut separatings andt in the graph induced bys, t and the nodes adjacent to boths
andt.
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Figure 1: Construction of̃G

For B = 3, they showed that the minimum(s, t)-B-path cut problem reduces to a
maximum flow problem, and can then be solved in polynomial time.
First, note that any nodeu of V which is not adjacent neither tos nor tot cannot belong to
anst-path of length at most3 and so can be deleted. So we may assume thatG does not
contain such nodes.

Now the idea consists in constructing a directed graphG̃ = (Ñ , Ã) from the original
one as follows. LetN = V \ {s, t}. Let N ′ be a disjoint copy ofN (where we denote
the copy ofu ∈ N that is inN ′ by u′), and setÑ = {s} ∪ {t} ∪N ∪N ′. For each edge
su ∈ E with weightwsu make arc(s, u) ∈ Ã with capacitywsu, for each edgevt ∈ E
make arc(v′, t) ∈ Ã with capacitywvt, and for each edgeuv ∈ E with u, v 6∈ {s, t},
make arcs(u, v′) and(v, u′), both with capacitywuv. For eachu ∈ N with u 6= s, t make
an arc(u, u′) ∈ Ã with an infinite capacity (see Figure 1 for an illustration).Note that
there is a 1-1 correspondence between thest-paths of length≤ 3 in G and thest-directed
paths of length3 in G̃.

It has been shown in [36] (see also [65]) that to each(s, t)-3-path cut in G corresponds
a finite capacity cut inG̃ separatings andt. Moreover, both cuts have the same weight.
Which implies that one can solve the BPCP forB = 3 in G by solving a maximum flow
problem inG̃.

In [36], Fortz et al. also extended inequalities ( 62) to 2ECSBR. They proved that the
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inequalities

x(δ(V0, . . . , Vp)) ≥ ⌈
Lp

L− 1
⌉, (65)

are valid for 2ECSBR. To separate inequalities (65), Fortz et al. [36] developed a heuristic
based on Barahona’s algorithm [7] for separating the partition inequalities

x(δ(V0, . . . , Vp)) ≥ p. (66)

Consider the following inequalities obtained from inequalities (65) by deleting the upper
integral part from the right hand side.

x(δ(V0, . . . , Vp)) ≥
Lp

L− 1
. (67)

Clearly, inequalities (67) are of type (66) (it suffices to set x′ = L−1
L

x). Moreover, if (67) is
violated, then (65) is so. However, it may that all the inequalities of type (67) are satisfied
whereas some inequalities of type (65) are violated. In order to strengthen inequalities
(67), Fortz et al. [36] considered the inequalities

x(δ(V0, . . . , Vp)) ≥
Lp

L− 1
+ ǫ (68)

with ǫ = p
100n

and used the same algorithm of Barahona to separate these inequali-
ties. (Here inequalities (68) can be transformed to inequalities of type (66) by setting
x′ = (100nL+L−1

100n(L−1) )x.) As shown in [36], these algorithmic transformations havebeen very
effective for solving the2ECSBR.

8.2 Hop-constrained paths

The closely related and basic routinghop-constrained path problemhas also seen a partic-
ular attention last years. This problem consists of finding between two distinguished nodes
s and t a minimum cost path with no more thanL edges whenL is fixed. TheL-path
polytope, denoted byLPP(G) is the convex hull of the incidence vectors of thest-paths
having no more thanL edges. Clearly, the following inequalities are valid forLPP(G).

x(δ(W )) ≥ 1, for all st-cut δ(W ), (69)

and are calledst-cut inequalities. In [20], Dahl considered the dominant of theL-path
polytope, that is the polyhedronLPP(G)+RE

+. He described a class of valid inequalities
for the problem and gave a complete description of that polyhedron whenL ≤ 3. In par-
ticular, he introduced a class of valid inequalities as follows.

Let {V0, V1, . . . , VL+1} be a partition ofV such thats ∈ V0, t ∈ VL+1 andVi 6= ∅
for all i = 1, . . . , L. LetT be the set of edgese = uv whereu ∈ Vi, v ∈ Vj and|i−j| > 1.
Then the inequality

x(T ) ≥ 1, (70)
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is valid for theL-path polyhedron. Using the same partition, this inequality can be gen-
eralized in a straightforward way as follows to the case whenk edge-disjoint paths are
required betweens andt

x(T ) ≥ k. (71)

Inequalities (70) and (71) are calledL-path cut inequalities(or jump inequalities[21]).
The separation problem for these inequalities can be solvedin polynomial time, ifL ≤ 3.
In fact, it is easily seen that this problem reduces to findinga minimum edge set that inter-
sects all thest-paths with no more thanL edges. SinceL ≤ 3, as it has been shown by
Fortz et al. [36], this can be done in polynomial time. Dahl [20] showed that inequalities
(70) together with inequalities (69) and the nonnegativityinequalities completely describe
theL-path polyhedron whenL ≤ 3.

In [21], Dahl and Gouveia considered the directed hop-constrained path problem. Note
that thest-cut inequalities (69) and theL-path-cut inequalities (70), (71) can be easily ex-
tended to that problem. Dahl and Gouveia [21] described a class of valid inequalities
obtained by lifting from the directedL-path-cut inequalities and showed that these inequal-
ities together with the flow conservation constraints and the trivial inequalities characterize
the directedL-path polytope whenL ≤ 3. They also identified valid inequalities and ad-
dressed some polyhedral issues for the case whenL ≥ 4.

A more general network design problem with hop-constraints, that has also been inves-
tigated isthe hop-constrained network design problem (HCNDP). This can be presented
as follows: Given a graphG = (V,E) with weights on the links, a set of pairs of terminals
and two positive integersk andL, find a minimum weight subgraph such that between
each pair of terminals there are at leastk edge-disjoint paths with no more thanL links.
This problem is NP-hard even whenk = 1 andL = 2 [23].

In [53], Huygens et al. studied the HCNDP in the case when there is only one pair of
terminals, says andt, k = 2 andL = 3. They gave an integer programming formulation
for the problem in this case in the space of the design variables. They showed that thest-
cut inequalities (inequalities (69) with right hand side2) and theL-path inequalities (71)
(with k = 2) together with the0 − 1 integrality constraints formulate this problem, and
they gave an extension of this formulation to the case wherek ≥ 2. They also discussed
the polytopeP (G,L) given by the constraints of the linear relaxation of this formulation.
In particular, they proved thatP (G,L) is integral, ifL ≤ 3. This Theorem implies that
the associated polytope is equal toP (G,L). This result has been generalized by Dahl et
al. [22] for L = 2 andk arbitrary. Recently Bendali et al. [13] extended this to thecase
whereL = 3 andk arbitrary.

In addition, since the separation problem for thest-cut andL-path cut inequalities can
be solved in polynomial time whenL ≤ 3, it follows that the HCNDP whenL ≤ 3, k = 2
and only one pair of terminals is considered can be solved in polynomial time using a cut-
ting plane algorithm. As pointed out in [53], the formulation given above (for the HCNDP
whenL ≤ 3, k = 2 and only one pair of terminal is considered) is no longer valid for
the problem ifL ≥ 4. However forL ≤ 3, one can see that this formulation can be eas-
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ily extended to the HCNDP with arbitrary number of pairs of terminals. Huygens et al.
[52] studied this variant with multiple pairs of terminals of the HCNDP whenk = 2 and
L = 3. They gave several classes of partitions inequalities valid for the associated poly-
tope. They also derived separation routines, and developeda Branch-and-Cut algorithm
based on these inequalities. Diarrassouba [24] studied themore general case whenL = 2
andk arbitrary. He gave different formulations of the problem, based on a transformation
of the initial undirected graph into directed graphs. He also investigated the assciated poly-
tope and identified classes of valid inequalities. Using this he devised cutting planes based
algorithms for the problem.
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