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Partition Inequalities: Separation, Extensions and
Network Design

Mourad Baiou Francisco Barahoha A. Ridha Mahjoub
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Abstract

Given a graptG = (V, E') with nonnegative weights(e) for each edge
e, a partition inequality is of the fornw(6(S1, ..., Sp)) > ap + b. Here
§(51, ..., Sp) denotes the multicut defined by a partitiéy, ..., S, of V.. Par-
tition inequalities arise as valid inequalities for optaaiion problems such
as survivable network design problems, and play a centtalinosolving
these problems using cutting planes. We attempt to surveng s@riants of
these inequalities, examine different separation algaiit and discuss ex-
tensions and applications in network design and other dmnai

Keywords:Partition inequality, separation, submodular functiBspartition, network de-
sign.

1 Introduction

Let G = (V, E) be a graph with edge weighige) > 0 for all e € E. Given a partition
Si,...,Sp of the node seV’, we denote byi(Sy, ..., Sp) the set of edges with endnodes
in different sets of the partition. We ug¢S) instead ofd (S, V' \ S) and we use:(7T) to

denote) ., z(e).
Givena andb, an inequality of the type

x(é(Sl,.‘.,Sp)) >ap+b Q)
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is called apartition inequality To motivate this, notice that the system of inequalities
below defines a polyhedron whose extreme points are theenc@lvectors of spanning
trees, cf. [83, 73].

z(6(S1,...,Sp)) =p—1, forallpartitionsSs,..., S, of V,
x> 0.

As we shall see later, partition inequalities arise as val@ualities or facets for
optimization problems related tio-connectivity. In this paper we survey tiseparation
problem: Given a vector find a violated inequality (1), if there is any. The sepamatio
problem is a key ingredient for being able to use these inégpsainside a cutting plane
algorithm.

If a < 0 and there is a partition with > 2 so that (1) is violated, we can collapse two
sets, then the left hand side does not increase, and thehagidt side does not decrease.
So in this case one should only deal witk= 2 and the problem can be solved by finding
a minimum cut.

We have to treat with the case> 0, and without loss of generality we can assume
thata = 1. Then we study the problem

minimizez (6(S41, ..., Sp)) — p, (2)

where the minimization is among all partitions16f This is the subject of Section 2.

Consider first the case whén< —1. If the minimum in (2) is given by the trivial
partition (p = 1), then there is no violated inequality. If the minimum is givby a
different partition we just have to compare this value with-or the case wheh > —1,
we could have that the minimum in (2) is given by the triviaftfieon, but it could exist a
violated partition inequality wittp > 2. Thus in this case we study (2) with the constraint
“p > 2." This case is somewhat harder, and it is treated in Section 3

In some situations we might have some special set of nddes{t,,...,t.} called
terminals Then we might have the additional condition tfiashould not be included in
a setS;, i.e., at least two terminals should be in different setdefgartition. This case is
treated in Section 4.

In Section 5 we discuss extensions like the strength of aar&twihe principal se-
guence of partitions of a graph, network reinforcementkjparspanning trees, increasing
the weight of minimum spanning trees and the Potts’ modetétiSical Physics.

As we shall see, the main ingredients used are submodulatidas, polymatroids,
submodular flows and minimum cuts. We conclude with sometiootand definitions.
Given a ground sef, a set-functiory : 2° — R U {oo} is calledfully submodulaif

f(A)+ f(B) = f(ANB) + f(AUB) (3)

forall A, B C S. A pair of subsetst and B of S is said to bentersectingf none of A\ B,
B\ A, An B is empty. Then a set-functiofis calledsubmodular on intersecting pairs
if inequality (3) is required only for intersecting pairs.

Sections 6, 7 and 8 are devoted to some applications ofipartitequalities to net-
work design. In particular we consider optimization prob¢erelated to survivability in
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telecommunication networks. Partition inequalities hatiewn to be very efficient for
solving these problems using cutting plane based algosithimSection 6 we present some
valid inequalities. In Section 7 we discuss the concept efcttitical extreme points of the
2-edge connected subgraph polytope and show how the smt€aphartition inequalities
may be used to cut those extreme points. In Section 8 we disgpdications to survivable
networks when bound constraints are considered.

Throughout this paper we deal with a gragh= (V, E), we usen to denotg V| and
m to denotd E|.

2 Thecaseb < —1

Cunningham [19] studied thatack problemdefined as follows. Given a gragh= (V, E)
with edge weightsv(e) > 0, for alle € F, and a numbeh > 0; find and edge sed that
minimizes

w(A) = Me(E\ A) - 1),
wherec(E \ A) is the number of connected componentsoéfter deleting the edges in
A. One can visualizev(e) as the effort required by an attacker to destroy the edgad
) as the benefit to the attacker for each additional compomeated. This reduces to

minimizew (6(S1, ..., Sp)) — A(p — 1),

among all partitions oi”. Cunningham gave an algorithm that requires solvingnini-
mum cut problems. Later algorithms that requireninimum cut problems were given in
[75, 7, 77]. Below we present the algorithm of [7].

2.1 Theattack problem

We shall see that this problem reduces to optimizing a lifigaction over anextended
polymatroid These concepts are discussed in [45] for instance. Thislgmocan be
solved with the greedy algorithm used by Edmonds [30]. Athei#eration, finding an
inequality that becomes tight reduces to finding a minimutrirca network.

Given a graphG = (V, E) the spanning tree polytopB(G) is the convex hull of
incidence vectors of spanning trees(gfits dominant is the polyhedraR(G) = T'(G) +
RE obtained by adding the nonnegative orthant. It has beerefrov[83, 73] that”(G)
is defined by

z(6(V1, ..., Vp)) > p — 1, for every partition ofV, 4)
x> 0. (5)

Junger and Pulleyblank [57] have given an extended fornoudbr P(G) as follows.
Associate the variables with the edges and the variablgswith the nodes. The system
below defines a polyhedron whose projection onto the vagabis P(G). This will be
proved at the end of this section. The nade an arbitrary element df .



x(6(S)) +y(S) > 2,ifr¢ S,SCV, (6)
z(0(S)) +y(S) >0,ifre s, ScV, @)
x> 0. (9)

So given a vectof > 0, to check if inequalities (4) are satisfied, we can try to find a

vectory such thatz, y) satisfies (6)-(9), or prove thgtdoes not exist.

Let
_J2-=z(3(9)), ifr¢s,
f(S)_{£(5(S))7 ifres,

for ) £ .S C V. The function— f is submodular on intersecting pairs.
We are going to solve

minimizey(V)
subject to (20)
y(S) = f(5), forSC V.

Edmonds [30] showed that the greedy algorithm solves thesali program. This al-
gorithm, which we present below, produces also an optinlatiso of the dual problem.
We shall see that this gives a most violated partition inéty# there is any. The dual
problem is

maximize }_ zs f(S)

subject to

S{zslue S} =1, forallueV, (11
z2>0.

Given a vectoy satisfying (10), a se$ is calledtight if y(S) = f(S). The function
y(-) — f(-) is nonnegative and submodular on intersecting pairs. Scaid7" are tight,
andSNT # (), thenSNT andS U T are also tight.

We start withy(v;) = 2 Vi, and decrease the value of eagf;) until a set becomes
tight. We denote byF the family of tight sets with a positive dual variable. If wg to add
S to F and there is a s&f € F with SNT # (), then we replacé andT by S U T. This
is also tight.

LetV = {v1, ..., v, }, the algorithm is below.

Algorithm A
Step 0. Setjj(v;) «— 2fori=1,...,n; k — 1; F — 0.

Step 1. If v, belongs to a set itF go to Step 3, otherwise
seta — f(5) — §(5) = max {f(S) — y(5) [ vk € S},
y(vg) < y(v) + o,
F — FuU{S}.

Step 2. While there are two setS and7 in F with SNT # () do
F — (F\{S,T}Hu{TuUS}.
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Step 3. Setk «— k+ 1, if k£ < n go to Step 1, otherwise stop.

The vectory is built so it satisfies (10), the family defines a partition o¥” and
7(S) = f(S) foreveryS € F. We setzg = 1, if S € F, andzg = 0 otherwise. We have

g(V) =Y {g(S)[SeFt=> {f(9]SeFt=> {f(Szs]SCV}.

This proves thaf andz are optimal solutions.

If the value of the optimum is O thefx, j) satisfies (6), (7), (8). In this case we can
pick any partition ofl” into Vi, ..., V},, add the inequalities in (6), (7) associated with the
sets{V;}, and—y(V) > 0. We obtain a partition inequality. This shows thiasatisfies all
the partition inequalities.

Now assume that the value of the optimum is greater than 0.z lbet a 0-1 vector
that satisfies the equations of (11), the fantily= {S|zs = 1} = {51,...,S,} gives a
partition of the se¥” and

D f(8)zs =2(p—1) =2 (5(S1, -, S)),
SO 1
5 S F(S)zs=(p—1)— 2(5(S1, ., Sp)).

If zZ is an optimum of (11), then it gives a most violated partitioequality. Because
of this we have a solution of the separation problem not oy = —1, but also for any
b<—1.

This procedure shows that (11) has an optimal integer swoiuthis is known as the
total dual integralityof (10). It also shows that satisfies (4)-(5) if and only if there is
a vectory such that(z, y) satisfies (6)-(9), so projecting the variable@ (6)-(9), gives
(4)-(5).

2.2 Findingtight sets

It remains to show how to compute the numbein Step 1. Construct a directed graph
D = (N, A),whereN =V U{s,t} and

A={(i,7),(,i) [ij € EYU{(s,0), (i, 1) |[i € V}.
Define

n(i) = g(i), fori e Vi #£r,
n(r) =g(r) +2,

define capacities

c(s,i) = —n(i), c(i,t) =0, if n(i) <0, i £ v, i €V,
c(i,t) =n(i), c(s,i) =0, if n(E) >0, i v, i €V,
c(s,v) = 00, c(vg,t) = n(vg),

c(i,j) = c(4,4) = z(i, j), forij € E



Lemmal Suppose thafs} U T induces a cut separating from ¢ that has capacity\.

Then
{Hz{n(u) In(v) <0} —2, ifreT

I +2OTN =9\ £ S n(w) | n(v) < 0} itr ¢ T.

Proof. Suppose that € T'. Then
A= {-n()i ¢ T,n(i) <0} +2(3(T)) + > _{n(i)li € T,n(i) > 0},

and
A+ 3" {n(@) | n(v) <0} —2=
> {n(i)li € Tyn(i) < 0} +2(5(T)) + > _{n(@)li € T,n(i) >0} —2 =
y(T) +z(6(T)).
The case ¢ T is analogous. a
Therefore if is the minimum capacity of a cut separatinérom ¢, then the valuer
2- 8- {n()[n() <0}

Suppose now that we have solved problem (10), and that we add aertex to the
graph. We are going to show that resolving (10) takes justroimecut calculation. This
will be used in the next section.

is

Lemma 2 After solving problen{10), if we add a new vertex, it will take one minimum
cut calculation to resolvél0).

Proof. Suppose thag is the solution of (10), for the grapl = (V, E). Suppose that we

add the vertexw. Define

y(v) =y(v) — 2(wv),

forall v € V, andy(w) = 2. Itis easy to see that satisfies the inequalities of (10),

and every set that was tight before will remain tight. Thuesdhly component that can be

modified by the greedy algorithm igw), this takes one minimum cut problem. o
This Lemma shows that we can solve (10) adding the nodes ormdy Then at

iterationi one has to solve a minimum cut problem with 2 nodes.

Lemma 3 If the setS in Step 1 is of maximum cardinality, then Step 2 is not needed.

Proof. If S is of maximum cardinality then it is a maximal tight set, armuncrossing is
needed. ]

The preflow-push algorithm of [44] produces a minimum cutlsat the source side
has maximum cardinality, so it produces the set needed inni&3. One should also
notice that because of this noncrossing property, eacl sigthin 7 can be shrunk to a
single node and the minimum cut problem is solved in a smallaph. The algorithm
given in [77] has similar properties.

This concludes the treatment of the case wheh —1. We have seen that it reduces
to n minimum cut problems.



3 Thecaseb > —1
As we mentioned in the Introduction, the case when —1 will be treated as
minimizex(5(S1, ..., Sp)) — p, (12)

with p > 2. We follow the approach presented in [5].
This is equivalent to minimize

9(8) = 2(5(S)) — 1 + min {x(55(T1, o Th)) — k} (13)

where() # S C V and{T;} is a partition ofS. Notice that{T;} could be the trivial
partition, i.e.,k = 1. In this section we usés (77, ..., T;) to denote the set of edges with
endnodes in different sef§. The resulting partition i§S, 71, ..., Ty }.

First we have to see thatis submodular. Consider

f(5) = x(6(5)) -2,

for S C V. The functionf is submodular. The functioff : 2V — R U {co} given by

£'(A) =min{) " f(4;) : {A;} is a partition ofA, () # A; Vi}

for A C V, A # 0, f/(0) = 0, is called theDilworth truncationof f. Notice that
f'(A) < f(A)for® # A C V. The following holds.

Theorem 4 [63]. The Dilworth truncation of a submodular function orténsecting pairs
is fully submodular.

We have that )

9(5) = 5 (2(3(9) =2+ 7(9))

thereforeg is submodular.

Queyranne [78] gave an algorithm to minimize a symmetricvsoadular functionh
that takesO(n?) evaluations of the function. Symmetric means thg€) = h(S) for all
S C V. Sinceg is not symmetric, we defing’(S) = f/(S) + f'(S) and look for the
minimum of ¢’(S), for @ # S C V . ltis clear thaty’ is symmetric, and submodular
because it is the sum of submodular functions.

3.1 Queyranne'salgorithm

An algorithm to minimize a symmetric submodular functibivas given in [78], it gen-
eralizes the minimum cut algorithm of Nagamochi and Ibafé®] as simplified by Stoer
and Wagner [82] and Frank [37]. The algorithm is below, we $iseu to denoteS U {u}.

Algorithm B
Step 0. Start withWW, = 0,4 = 0.



Step 1. Forallu ¢ W; setk(u) = h(W; +u) — h(u). Letk(u;+1) = min{k(u)}.

Step 2. SetW;,1 «— W; +wu;11, Seti — i+ 1. If ¢ = n stop, otherwise go to Step
1.

In [78] it was proved that
h(uy,) = min{h(S) | S separates,, andu,,_1 }.

The next step is to identify,, andu,,—1, apply Algorithm B, and continue until we are left
with two elements.

If we apply this algorithm with a submodular functiénthat is not symmetric, we
obtain the minimum of.(S) + k(S), cf. [78]. In our case we just have to use the function
f' defined above.

Each application of Algorithm B require3(n?) evaluations of.. Since Algorithm B
is usedn — 1 times, we need(n?) evaluations of.. In our case, one evaluation of the
function f” with the algorithm of Section 2 tak&$(n) min-cut problems, thus the straight-
forward implementation of this method requi@gn*) min-cut problems. However each
evaluation in Step 1 is of the typ€(W; + «) where f'(W;) is already known. We have
seen at the end of Section 2 that this takes only one min-d¢ctilesion. Thus the entire
algorithm require$)(n3) min-cut problems.

4 Partition inequalitieswith terminals

Given a set of terminal® = {¢,...,t}, we need partitions so that the set of terminals
intersects at least two sets of the partition. In [59] it wiasven that this reduces to min-
imizing a submodular function, later in [11] a reduction tdmodular flows was given.
We present the latter approach here.

We fix two terminals and look for partitions separating th&uppose each edges £
has a weightz(e) > 0. Let us consider two terminalg andt, of T', t; # t.. We are
going to solve

minimizez(6(Vi,...,V,)) —p

with the constraint that; € V; andt, € V5 say. This can be reduced to a submodular flow
problem as described below.
For a node subsét’ C V, W # 0, let

[ ES(W) -2+ M if t;y € W,
fLr(Ww) = { z(5(W)) — 2 ift, €W,

and (W) =2+ M if |44
T — 24+ | tg S 5

fa(W) = { Z(5(W)) — 2 if t2 & W.

where)M is a big value. Andf; () = f2(0) = 0.

Lemma5 Both functionsf; and f, are submodular on intersecting pairs.



Proof. We only prove the result for the functiofy, the proof being similar forf,. We
must show that
fi(A) + fi(B) = fi(AN B) + fi(AU B) (14)

for all intersecting pairsi, B C V. Let A,B C VsuchthatAN B # 0, A\ B # () and
B\ A # (. We first notice that, since the vectoiis nonnegative, we have

Z(6(A)) + 2(8(B)) > T(5(AN B)) + Z(5(AU B)). (15)

Moreover, the node; belongs as many times td andB as toA N B and A U B. Thus,
from (15), we can deduce the inequality (14). m|

Let us associate a variabldu) to every nodex € V. From Lemma 5 and [31], it
follows that the system

y(
y(

is totally dual integral. Therefore, the dual of the folloagilinear program

W) < f1(W) forall W C V,
W) < fo(W) foral W CV,

maximizey (V') (16)
subject to

y(W) < (W) forall W C V, (17)
y(W) < fo(W) forall W CV, (18)

has an optimal solution that is integer valued. The dual yamogof (16)-(18) is the follow-
ing:

minimize Y~ A(W)agy + > fo(W)ady (19)
WCvV wWCvV
subject to
Z 1 2
ay+ Y. oy =1 forallu eV, (20)
WCViueWw WCViueW
at >0, (21)
o >0. (22)

Lemma6 An integer optimal solution to the linear program (19)-(2&fines a partition
of V which minimizes
z(0(Vi,...,Vp)) —p (23)

with the property that the nodes and¢, appear in different sets of the partition.

Proof. First of all, we know that the system (17)-(18) is totally tumegral, and then the
linear program (19)-(22) has an integer optimal solutioet s denote bya', &#?) such a
solution. Since the right-hand sides of the equations (B9laand the dual variables are
nonnegative(a!, a?) is clearly 0-1 valued.



Therefore, from the equations (20), any nadef V' belongs exactly to one subset
W of V with &jj, + a3, = 1. Thus the familyZ = {W : W C V, and either;, =
lLora3, =1} = {Wy,...,W,} defines a partition of’.

Furthermore, because of the objective function (19), theesty andt, belong to two
different sets of the partition. In fact, this is the only manto avoid having big valug/
in the objective function (19). The partitidii/, ..., W, } gives

S hWagy + D (W)as, =22(6(Wh, ..., W,)) — 2,

wWCvV wWCV

and therefore, minimizes (23) with the constraint that theest, andt¢, should appear in
two different sets of the partition. ]

This procedure has been described for two specific termipaadi, of T, now we
can fixt; € T and try allt; € T\ {¢t;}. These submodular flow problems can be solved
with the algorithm of Fujishige and Zhang [40], a detaileda#tion of this is in [11].
One application of this requirg3(n®) minimum cut problems, so to treat all terminals we
needO(n*) minimum cut problems.

5 Extensions

Here we present several extensions of the problem studi8ddtion 2.

5.1 Thestrength of a network

Consider a grapltz = (V, E), it has been proved in [83] and [73] that the maximum
number of disjoint spanning treesnis

\6(51,...,Sp)|J,

azmln{ p—]_

(24)
where the minimum in (24) is taken among all partitidits, . .., S, } of V with p > 2.
The number has been proposed as a measure of the invulnerability ofasorietn [49].

In general suppose that each edgeas astrengths(e) > 0. The strengthof this

network is
8(6(51, ey Sp))
p—1
where the minimum in (25) is taken among all partitidiss, . .., S, } of V with p > 2.
Algorithms for computingr (G, s) have been given in [19], [50], [41] and [15]. In this
last reference it is shown that it can be computed in the saym@totic complexity as
applications of the minimum cut algorithm of [44]; this isde@ on the parametric mini-

mum cut algorithm of [43]. Now we describe this approach. @ato apply Dinkelbach’s
method [29] as follows.

(G, s) = min (25)

Algorithm C
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Step 0. Pick any partition{.Sy,...,S;} of V,1 > 2. Seth = s(6(51,...,5))/(I—
1).

Step 1. Solve
minimizes(§(T1,...,T,)) — A(p — 1)

Step 2. If the minimum above is zero, stop. Otherwise{é&t, ..., U, } be a solu-
tion. Set\ = 5(6(Uy,...,U,))/(r — 1), and go to Step 1.

Cunningham [19] showed that the value Step 2 decreases at every iteration, so this
algorithm takes at mogl/| — 2 iterations. The minimization in Step 1 can be done by
solving (10), where the right hand side of (6) should2bénstead of2. Since the value of
)\ decreases at every iteration, an optimal solution of (1@asible for the next value of
A

Now consider the minimum cut problem that one has to solveefmh node as in
Subsection 2.2. For the souree capacitiesc(s, i) do not decrease from one iteration
to the next. For the sink capacities:(i,t) do not increase. The capacities of all other
arcs remain the same. These properties permit the use ofathenptric minimum cut
algorithm of Gallo et al. [43]. For every nodene has to solve a sequence of minimum cut
problems, (one for each value ®f. This sequence can be solved with the same asymptotic
complexity as one application of the preflow-push algorithifd4]. Since we have such
a sequence for each node, the complexity of this procedudéié). Notice that one has
to keep the data for each sequence, so the storage requiédsis).

5.2 Principal sequence of partitions of a graph

Let us denote byP(\) the following parametric problem. For a graph= (V, E') with
edge weightsv(e) > 0 for eache € E, and a parametey > 0, solve

minimizew(6(S1, ..., Sp)) — Ap, (26)

where the minimization is over all partitions bf

IfII = {S4,..., Sp}is apartition oft/, the setsS; are called thélocksof the partition.
We have a partial order=” on the set of partitions, wherd; > II, if and only if each
block of IT, is contained in a block dff; .

The set of partitions that are either maximal or minimal mgti solutions ofP(\) for
at least one\ can be arranged in a decreasing sequédhgce. ., II,. called theprincipal
sequence of partitionsf the graphGG. Each successive paii;, I, in the sequence
consists of the maximal and minimal optimal partition fomso(unique) value ok. The
resulting increasing sequence)d is called the sequence of critical values of the principal
sequence of partitions @. Notice that the first partition consists of just the nodeise
and the last partition consists of all singletons.

Several algorithms have been proposed for this, see [547/5,076, 62]. Here we
discuss the approach of Kolmogorov [62].

Define

FAS) = w(5(8)) — 2,

11



for  # S C V. The functionf is submodular for intersecting pairs. Then the linear
program below can be solved with the greedy algorithm [30].

maximizey (V)
y(S) < fA(S), forall S, 0 #SCV.

As in Section 2, the dual solution gives a partition that esl{26). At each iteration of the
greedy algorithm one has to increase the valug(of for some node). The amount that
one can increase is obtained by solving a minimum cut prob&orthe greedy algorithm
requires solving: minimum cut problems.

Kolmogorov [62] showed how to modify this approach so that can use the para-
metric minimum cut algorithm of Gallo et al [43], and sol¥&\) for all A > 0, in the
same asymptotic complexity asapplications of the preflow-push algorithm of [44].

One can useP(\) and Lagrangian relaxation to derive a lower bound for Ahsut
problem, see [9], [79]. Also approximation algorithms lthea P(\), for the k-cut prob-
lem and mink-overlap have been given in [72].

The minimum critical value also gives the strength of a nekwof. [39]. To see this,
notice that one can apply Algorithm C from Subsection 5.ingighe solutions ofP(\).
Then one can see that the value\afiven by Algorithm C is exactly the smallest critical
value.

For applications of these concepts to Electrical Netwodotl see [55, 71].

5.3 Network reinforcement

Now suppose that there is a per-unit cogt) of increasing the strength of each edge
and a numbet. Thereinforcement problemonsists of finding a minimum cost way to
increase edge strengths so that the resulting network teamth at least,. An algorithm
for this was given in [19], it requires solvirgym minimum cut problems. Later an algo-
rithm was given in [41] that requires iterations, each of them consisting of three steps.
The first step uses the parametric network flow algorithm Hftfile second step requires
an adaptation of the Hao-Orlin minimum cut algorithm [ShE third step uses the original
Hao-Orlin algorithm. The algorithm of [41] requiréX(m) space.

In [10] an algorithm was given that has the same asymptotitpbexity asn applica-
tions of the minimum cut algorithm of [44]. This set of minimwcut problems has to be
kept in memory simultaneously, so the space requirgd(ism). This algorithm has the
same asymptotic complexity as the one of [41] although itisecdifferent.

Now we describe the basics of this approach. Consider atlsligtiferent question,
suppose that each edgéas a nonnegative per-unit ce&e) and a nonnegative integer
capacityu(e), that gives the maximum number of copies allowed of eddeor a nonneg-
ative numbelk, consider the problem of choosing a minimum cost spannibgrsgph of
strengthk. This can be modeled as the linear program below.

min dzx 27)
subject to

z(6(S1,...,5p)) = k(p — 1), for all partitions{Sy,...,S,} of V,  (28)
0 <z(e) <ule). (29)
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We can reduce the reinforcement problem to this problem loyvalg parallel edges and
giving the cost zero to the already existing edges. For tise gghenu(e) = 1 for all
e € E, anO(mlogm + k*n?) algorithm has been given in [80].

As seen in Section 2, this is equivalent to the linear program

minzd(e)x(e)

2k if S, ScV,
z(0(5)) +y(9) Z{ 0 if:iS, scv,
y(V) =0,
—T Z —u,
xz > 0.

A combinatorial algorithm was given in [10]. Its complexiiy dominated by the

complexity ofn applications of the preflow-push algorithm of [44]. Relatethforcement
questions have been studied in [76].

5.4 Packing spanningtrees

We have seen that the minimum in (24) gives the maximum numbedisjoint spanning
treesin a graph. There are several algorithms to solvelfpihey do not give a maximum
set of disjoint spanning trees. Given a gragh= (V, E), with edge capacities(¢) > 0
for all e € F, consider the following problem:

maximize Z{)\T : T'is a spanning trée
subject to

Y {Ar i eeT}<ule), foralle € E,
A > 0, integral.

This gives a maximum integral packing of spanning trees. Wlgoatorial algorithm

for this was given in [8], it require®(n?) minimum cut problems. Another combinatorial
algorithm was given in [42], its complexity 8(n3m log(n?/m)).

5.5

Increasing the weight of minimum spanning trees

We deal with a grapli: = (V, E) where each edge € E has an original weight? and
we can assign te a new weightw, > w’. Thecostof giving the weightw, is c.(w.).
The functionc, () is nondecreasing, convex, piecewise linear arf@?) = 0. We study
the following problem: Given a valug > 0 find a minimum cost set of weights so that the
weight of a minimum spanning tree ls

Frederickson and Solis-Oba [38] gave an algorithm for treeaghenc, () is linear

and nondecreasing, later a different derivation of thegjoathm and a slight extension to
deal with convex piecewise linear costs, was given in [4].aine this approach below.
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For every edge we have a convex nondecreasing piecewise linear cost fumatithe
weightw,. This is easy to model using linear programming as followssuine that for
every edge there aren,. possible slopeg., ..., d" of c.(-). For the valueo the cost
ce(w) can be obtained as the optimal value of

minz ¥ zk (30)
k
Z xf + wg =w (31)
k
0<azF<uF 1<k<m,. (32)
We assume that? < d&*1, for k =1,...,m. — 1. The valueu! is the size of the

interval for which the slopé? is valid. The solutiorx of this linear program is as follows:

there is an indeX,. > 1 such that (33)

h =k for1 <k <k,—1, (34)

ufe > zhe =@ —w? — Z uk >0, (35)
1<k<ke—1

b =0, fork. +1 <k < me.. (36)

Thus the problem can be modeled as

min dx (37)

> we > A, for each tred’ (38)

ecT

we =w? + Y «¥, for each edge (39)
k=1

0<z<u. (40)

A combinatorial algorithm for solving this parametric lareprogram was given in
[4]. It uses as subroutines the strength problem, packiagripg trees and network rein-
forcement. The complexity of producing the primal solutasO(mn> >~ m.), and the
complexity of obtaining the dual solutions@mn® " m..).

5.6 Potts model in Statistical Physics

Here we describe an application presented in [2, 77]. We wi#tt a brief description of
Potts’ model from Statistical Physics, for a more completatment see [84]. Aattice of
spinsis a graph where each nodéas an associated varialle Eacho; can take values
inZ, = {0,...,q — 1}. Edgesij are calledbonds and they have an associated weight
K;; > 0. Each configuratioar = (o4, ..., 0,) has an energy

E(O’) = Z Kij(so-igj .
ij
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Here the sum runs over all bonds, aid,; takes the valug if o; = o;, and0 otherwise.
The partition function is

7 = Zexp(E(U)),

where the sum runs over all possible values @f Z; . The partition function encodes the
statistical properties of a system in thermodynamic elopiilim.

Using the transformatioexp(K;;) — 1 = ¢®, and after some algebraic manipulation
the partition function can be written as

7 = Z eI T e i | (41)
F

Here the sum runs over all subsdftsof bonds, and:(F) is the number of connected
components of’, counting isolated nodes as components. As pointed outin {#heng
tends to infinity the sum in (41) convergesi’", where

fr=max{c(F) + ) i}, (42)

ijEF

andN is the number of optimal solutions of (42). Itis easy to se¢ fimding the maximum

in (42) is equivalent to finding the minimum in (2). The valdeéhe maximum in (42) gives
the order of magnitude of the partition function, and if theights;; are arbitrary reals,
then the numbe#V is likely to be one, and one can have a good approximation ef th
partition function value.

6 Survivable networks

Satisfying a suitable degree of survivability has beconmeafithe most important issues in
the design of telecommunication networks. Survivable netemust fulfill some connec-
tivity requirement that ensure connections between périseonetwork, that is networks
that are still functional after the failure of certain linkSomputing network topologies that
provide a sufficient degree of survivability has become tladhmbjective when designing
telecommunication networks.

As fiber-optic technology provides high transmission cégaelecommunication net-
works tend to be sparse, and in consequence, the failureinfjie gor more) link (node)
of the network might be of heavy consequences if the netwoes chot provide alternative
routing paths. This leads to the problem of designing mimmraost telecommunication
network with high reliability level, namely with sufficienbuting paths between each pair
of nodes.

More precisely, consider an undirected graph= (V, E) such that with each node
u € V is associated a nonnegative integéu), called itsconnectivity typethat repre-
sents its importance of communication from and to it. Theeeslgrvivability (resp. node-
survivability) conditions are then stated as the requirgméthe existence of at least

r(s,t) = min{r(s),r(t)} (43)
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edge-disjoint (resp. node-disjoint) paths in the subgi@p® for any pair of nodes, t

V. Given edge costg(e) € R4, e € E, theedge (node) survivable network design prob-
lemis to determine a minimum cost subgraphtb$atisfying the edge (node-) survivability
conditions. This model, introduced by Grétschel and Mond®],[has received consid-
erable attention in the past. Moreover, partition inedigaiarise as valid inequalities for
many variants of this model.

Expressing the survivability requirements using the cotingy types allows to model
a wide variety of well-known combinatorial optimizationgimtems which have been in-
tensely studied for several decades. For instance, if theemivity type vectonr =
(r(u),u € V) is uniform, sayr(u) = k for all u € V wherek is a positive integer,
then the edge (node-) survivable network design problerotisimg but thek-edge (node)
connected subgraph problernother variant whose underlying topology is of great in-
terest in telecommunications is when the connectivity sypee 1 and 2. Here the nodes
are of two types: ordinary nodes which should be linked tditred network and important
nodes with high degree of survivability. As we will see lat@any classes of partition in-
equalities are valid for these problems. Moreover they plegntral role in their resolution.

In the rest of this paper we will mostly deal with the edge iwmrof the survivable
network design problem. So we will usually omit the "edgeéfix and simply consider
survivable network design problem instead (SNDP for sh@tyen a graptG = (V, E)
andW C V, we letW = V' \ W. For a nonempty node subdét C V, the set of edges
having exactly one endnode I is called acut or a cutsetand is denoted by (V).
Moreover, ifs € W andt ¢ W, thend(W) is called anst-cut For all our notations,
we don't use the subscrig whenever the graplr can be deduced from the context.
For FF C E, we denote by (F) the set of nodes which are spanned by the edges in
F. ForWw C V, we denote byE(W) the set of edges with both endnodeslify and
by G(W) = (W, E(W)) the subgraph induced bBy. Given a polytope” C R", the
dominantof P is the polyhedron given by + R} .

6.1 Valid inequalities

In this subsection we shall present some families of vakdjiralities for the SNDP. Through-
out we consider a grapii = (V, F) and a connectivity type vecterc {0,1,2}V.

Forall W C V.0 # W # V, con(W) = min{r(W),r(V \ W)} wherer(W) =
max{r(u) : u € W}. From Menger’s theorem [68], it follows that the SNDP is eqlént
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to the following integer linear program

minimize Z cle)z(e)

c€E
subject to
z(e) >0 foralle € E, (44)
z(e) <1 foralle € E, (45)
z(6(W)) > con(W) forall W CV,0 #W #V, (46)
z(e) € {0,1} foralle € E. 47)

Inequalities (44) and (45) are call&ivial inequalitiesand inequalities (46) are calledit
inequalities

It is not hard to see that the following inequalities, intnodd by Grotschel et al. [48](see
also [81]), are valid for the node version of the problem

z(dc\u(W)) > cong\u(W) — U], forallU CV,0 AU #V, |U| < cong\v(W),
(48)

and foralliw C V' \ U.

Inequalities (48) are callenbde cut inequalitiesBy adding these inequalities to the above
integer linear program and using again Menger’s theorer) y&8 obtain an integer linear
programming formulation for the node-SNDP.

Let us note that the cut and node cut inequalities can be aipkin polynomial time us-
ing network flows. In what follows further valid inequalisiéenduced by partitions of the
underlying graph are given.

Multicut inequalities

Let {V4,...,V,} be a partition oft. If con(V;) = 1fori =1...,p, the graph ob-
tained from any solution to the SNDP by contracting everygsaphG(V;),i = 1,...,p,
must then be connected. Therefore, the following inequaivalid for the SNDP.

z(6(V1,..., V) >p—1 for all partition{V4,...,V,} suchthat  (49)
con(V;) =1, fori=1,...,p.

Inequalities of type (49) are calledulticut inequalities In [46], Grotschel and Monma
(see also [48, 81]) showed that inequalities (49), togettitr the trivial inequalities (44)
and (45), suffice to describe the survivable network desgtppe whenr(:) = 1 for
all i € V. Moreover, as mentioned before, the dominant of the spgrnée polytope is
defined by (49) and the nonegativity constraints [83, 73]sTirequalities have been used
inside an algorithm for théletwork Loading Problerin [7].

For general connectivity vecterc Z" having at least one nodec V with r(u) = 0,
Grotschel et al. [47] showed that the separation probleninfgualities (49) is NP-hard.
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Furthermore, ifr(u) > 1 for all w € V, as mentioned by Kerivin and Mahjoub [59],
inequalities (49) can then be separated in polynomial timeplying Cunningham or
Barahona algorithms on the graph obtained fr6rby contracting the set of nodés €
Voir(u) > 1}

Partition inequalities

In [48], Grotschel et al. introduced a class of valid inediesd for SNDP(, r), called
partition inequalities, that generalizes the cut inedigali(46). These inequalities are as
follows. Let{Vi,...,V,}, p > 3, be a partition ofi” such thatl < con(V;) < 2 for

t =1,...,p. Denotel, = {i : con(V;) = 2, i = 1,...,p}. Thepartition inequality
induced by{V1,...,V,} is given by

p—l |f12=®,

50
P otherwise. (50)

2(6(Vi, ..., V,)) > {

Obviously, if all connectivity types are equal to 2, a paotitinequality (50) is implied by
the cut constraints(5(V;)) > 2. (We remark that considering the case whete 2 gives
a cut inequality (46).)

The separation problem for the partition inequalities (80NP-hard in general [47]
(Recall that we are considering herec {0,1,2}"). As mentioned above, Grotschel et
al. [47] showed that, even in the restricted case wheze{0, 1}, the separation problem
remains NP-hard. If € {1,2}", Kerivin and Mahjoub [59] proved that the separation
problem associated with

2GVie V) 2p L £, (51)

where{V1,...,V,} is a partition ofl/, reduces to minimizing a submodular function and
therefore can be solved in polynomial time. As mentioneaizefBarahona and Kerivin
[11] devised a pure combinatorial algorithm, based on ther&dular intersection prob-
lem, for separating inequalities (51).

F-partition inequalities

Suppose the connectivity type vectolis such that-(u) = 2 for all w € V. A class
of valid inequalities for the survivable network designytope in this case was introduced
by Mahjoub [64] as follows. Consider a partitidii;,...,V,} of V and letF’ C §(V4)
with |F'| odd. By adding the inequalities

x(6(V;)) > 2 fori=2,...,p,
—z(e) > —1 fore € F,
z(e) >0 fore € 6(V1) \ F,

we obtain
2z(A) > 2(p—1) — |F|,
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whereA = §(V4,...,V,) \ F. Dividing by 2 and rounding up the right-hand side lead to

|F
>p—|—].
2(8) > p— [ ] (52)
Inequalities (52) are called-partition inequalities Note that if|F'| is even, the corre-
sponding inequality (52) is then implied by inequalitiedX4(45) and (46). It is straight-
forward that inequalities (52) remain valid for SNDP whea {0, 1,2}V andcon(V;) = 2
fori=1,....,p.

The partition and'-partition inequalities are special cases of more genéaiakes of
inequalities given by Grotschel et al. [48] for SNDP (se® §#l]). Furthermore, Kerivin
et al. [61] considered a subclassBfpartition inequalities, called generalized odd-wheel
inequalities, to give sufficient conditions for inequaldi(52) to be facet-defining. They
also introduced an extension of inequalities (52) to the edisere the inducing partition
{W,...,V,}issuchthaton(V;) € {1,2} fori=1,...,p.

The separation problem for tiié-partition inequalities is still an open question. How-
ever, if the setd/; of partitions are singletons, the correspondifigpartition inequalities
are then blossom inequalities fasmatching which can be separated in polynomial time
with the algorithm of Padberg and Rao [74]. Moreover, whendtige subset is fixed, as
pointed out by Baiou et al. [5], the separation problem feqimlities (52) can be solved
in polynomial time. In fact, one can delete the set of edfjdsom G and consider the
resulting graphG’ = (V’, E’), say. AnF-partition inG can be written inG’ as

26 (Va,.. ., V) > p— {@] (53)
whereV; contains exactly one endnode of each edgé ofrhere are!¥| possibilities to
assign nodes of' to V;. For each one we can contract the nodeg'ah ; and solve
the separation problem for inequalities (53). As Cunnimgalgorithm and Barahona'’s
algorithm provide a most violated multicut inequality,hiftre is any, this can then be done
in polynomial time. As it is shown in [61]F'-partition inequalities play a central role for
solving SNDP in the low connectivity case, within the franoekvof a cutting plane algo-
rithm.

Consider the inequalities of type
x(6(Vh,...,Vp)) > ap+b. (54)

where{V1,...,V,} is a partition ofl” anda andb are two fixed scalars. These inequalities
have been the subject of a large part of the first part of thempajnd consider now the
k-edge connected network problem, that is, the SNDP whetg = k for all v € V.
Grotschel et al. [48] introduced the following inequalitie

)

2(5(Vi,..., V) > [2

(55)
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where{V1,...,V,} is a partition ofV’. Inequalities (55) are clearly redundant with respect
to the cutinequalities (46) Kp is even. In order to have an approximate separation routine,
instead of separating inequalities (55), one can sepdrat@¢qualities

which are nothing but inequalities (54) where-= g andb = 0.

Let Z C V be a node set withZ| = ¢t < k — 1 and{V4,...,V,} a partition of
V'\ Z. For thek-node connected network problem, Grétschel and Monma f6jduced
thenode partition inequalitiesvhich are as follows

p—1 ifk—t=1,
LU((SG\Z(Vl,,Vp))Z { "p(k_t)—‘ P (56)
72 = 2.

Grotschel and Monma [46] also gave necessary and sufficterttittons for inequalities
(56) to be facet-defining. Ik —t = 1, inequalities (56) are then multicut inequalities,
and therefore can be separated in polynomial timé. H+¢ is positive and even, they are
nothing but inequalities (54) and their separation is alslynqomially solvable. As we
mentioned for inequalities (55), one can use Baiou, Baralod Mahjoub’s algorithm for
separating inequalities (54) in order to approximate tipassgion problem for inequalities
(56) wherek — t is positive and odd.

6.2 Polyhedral consequences

We now shall discuss some polyhedral consequences of tltkiratjualities introduced
above. But first let us define three classes of graphs we ang goiconsider hereafter
and in this section. Aomeomorplof K, (i.e., the complete graph on four nodes) is a
graph obtained fronik’, when its edges are subdivided into paths by inserting nevesod
of degree two. A graph is calleskries-parallelif it contains no homeomorph dt, as a
subgraph. A graph is callesluterplanarif it can be drawn in the plane as one cycle with
noncrossing chords. We note that outerplanar graphs avesaiges-parallel. A graph is
said to be adalin graphif it consists of a cycle and a tree without nodes of degree @ssh
pending nodes are precisely the nodes of the cycle.

In [64], Mahjoub showed that whe is series-parallel ang(u) = 2 forallu € V
(that is the 2-edge connected subgraph problem), the pamegng polytope is given by
the trivial inequalities (44) and (45), and the cut inedtiedi (46). This linear description
was generalized to the case where {0,2}" by Baiou and Mahjoub [6] as well as to
the case where € {0,k}V andk is even by Didi Biha and Mahjoub [27]. Kerivin and
Mahjoub [60] extended those results to the more generalvehsee the connectivity types
are all even. For connectivity type vectersuch that(u) = 2 forallw € V, Barahona and
Mahjoub [12] studied the 2-edge and 2-node connected spbgralytopes in the graphs
that can be decomposed by 3-edge cutset8-éfige cutsds a cut that consists of exactly

20



three edges.) They showed that if a grapldecomposes int6:; and G5 by a 3-edge
cutset, the system describing the polytope is then the wfibonth systems describing the
polytopes associated witd; andG>. As a consequence, they obtained that inequalities
(52) together with the trivial and cut inequalities complgtdescribe the 2-edge connected
subgraph polytope on Halin graphs for this case of connigctiype vectors. They also
presented similar results for the node version. Some extes®f this work to the case
wherer € {0,2}V were studied in [67].

In some practical situations, one may need to use more tralirebetween two given
nodes of a survivable network. This case can be seen as atietaf the survivable
network problem, and is usually easier to handle. P¢&7,r) be thedominantof the
survivable network design polytope.

In [16], Chopra studied®(G, r) whenr(u) = k for all w € V andG is an outerplanar
graph. For this case with odd, he showed that the following inequalities are validtfar
polyhedronP (G, r)

z(6(Va,...,Vp)) > %Wp -1 for all partitions{V4,...,V,} of V. (57)
Moreover, he proved the following.

Theorem 7 [16] If G = (V, E) is outerplanar,r(u) = k for all u € V with k£ odd, the
polyhedronP (G, r) is then given by the nonnegativity inequaliti@gl) and inequalities
(57).

The polyhedronP(G,r) was previously studied by Cornuéjols et al. [18]. They
showed that on series-parallel graphs andrfar) = 2 for all w € V, the polyhedron
P(G,r) is completely described by the nonnegativity inequalif#es and the cut inequal-
ities (46). In [3], Baiou showed that this result also holds i€ {0,2}V. In the more
general class of series-parallel graphs, Didi Biha and blahj28] (see also Didi Biha
[25]) proved that inequalities (57) remain valid for thevduable network design problem
wherer(u) = k for all w € V with k odd, and called these inequaliti8®-partition in-
equalities(SP stands for Series-Parellel). They also showed thauaigigs (57) together
with the nonnegativity inequalities (44) completely déserthe polyhedrorP(G, ) in
that case. As a consequence, they obtained that Theorem Halbs on series-parallel
graphs, as conjectured by Chopra [16]. This conjecture Wss@oved independently
by Chopra and Stoer [17]. We remark that inequalities (5&)aparticular case of the
partition inequalities (54). Therefore, a direct conseupaeof the result of Baiou et al. [5],
inequalities (57) can be separated in polynomial time. As ghown in [14, 24], SP-
partition inequalities (57) have shown to be very utile folvgrg the SNDP with high
survivability requirements. (We remind that those inedigsl are valid for the SNDP only
if the graph induced by the partition is series-parallelifliBiha et al. [26] showed that,
in a subclass of series-parallel graphs containing all therplanar graphs, the survivable
network polytope is completely described by the trivialgnelities (44) and (45), the cut
inequalities (46) and the partition inequalities (50) wien {1,2}V.
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7 Critical extreme points

It is well known that the linear relaxation of a combinatb@atimization problem usu-
ally provides near optimal solution. In order to improvestisblution, one has to add
valid inequalities which are violated by fractional sotuts. Many of these solutions may
be extreme points of the linear relaxation and thereforatatterizing the extreme points,
among the ones of the linear relaxation, which may be segzhnapolynomial time, would
be of great interest for solving the whole optimization peob. This question was first
studied by Fonlupt and Mahjoub [32] for the 2-edge conneottvork polytope. They
introduced the concept of critical extreme points of thedinrelaxation of the 2-edge con-
nected subgraph polytope. In this section, we discuss tdseme points.

Consider a graplr = (V, E)). We denote byP(G) the polytope given by the trivial
inequalities (44) and (45) and the following cut inequatiti

z(O(W))>2  foral W CV, W #0. (58)

We observe that the polytog@(G) is the linear relaxation of the 2-edge connected net-
work polytope.

LetZ be a noninteger extreme point B{G). LetZ’ be a solution obtained by replac-
ing some (but at least one) noninteger componenistyf0 or 1 (and keeping all the other
components of unchanged). Iff’ is a point of P(G), thenz’ can be written as a strict
convex combination of extreme points B{G). If 7 is such an extreme point, thenis
said to bedominatedby Z, and we writez > 7. Note that an extreme point &f(G) may
dominate more than one extreme point®(iG). Notice also that, if dominategj, that is,

T > 7, we then have

{ecE|0<gle) <1} C{ec EF|0<T(e) < 1}
{e€ E|Z(e) =0} C {e€ FE|7(e) =0}, and
{e€e E|Z(e) =1} C{e€ E|7y(e) =1}.

The relation>- defines a partial ordering on the extreme points?gtz). The minimal
elements of this ordering (i.e., the extreme poinfer which there is no extreme poipt
such that: > y) correspond to the integer extreme points4f7). The minimal extreme
points of P(G) are called extreme points ¢ink 0. An extreme point: of P(G) is said

to be ofrank k for a fixedk, if = only dominates extreme points of rank less or equal than
k — 1 and if it dominates at least one extreme point of r&nk 1. We notice that iz is

an extreme point oP(G) of rank1 and if we replace one fractional componentrdsy 1,
keeping unchanged the other components, we obtain a feasibitz’ of P(G) which can

be written as a convex combination of integer extreme pa@ht8(G). We also observe
that the extreme points df(G) may have rank at mosv|.

Fonlupt and Mahjoub [32] introduced the following reduatigperations with respect
to a solutionz of P(G).

22



01: Delete an edge with Z(e) = 0.
f>: Contract an edge having one of its endnodes of degree 2.

f3: Contract a node subsBt such thatG(W) is 2-edge connected amde) = 1 for
alle e E(W).

Starting from a grapl& and a point of P(G), let G’ be a reduced graph amdbe a point
of P(G"), both obtained by applying operatiofis 6-, 05. It is not hard to see thatis an
extreme point of?(G) if and only if Z’ is an extreme point aP(G’). Moreover we have

Lemma 8 [32] T is an extreme point dP(G) of rank 1 if and only ift’ is an extreme point
of P(G’) of rank 1.

An extreme point ofP(G) is said to becritical [32] if it is of rank 1 and if none of
the operation®, 05, 63 can be applied for it. By Lemma 8, the characterization of the
extreme points of rank thus reduces to those of the critical extreme point® (). In
[32], Mahjoub and Fonlupt gave the following necessary o for a fractional extreme
point of P(G) to be critical.

Theorem 9 [32] LetG = (V, E)) be a 2-edge connected graph and fractional extreme
point of P(G). If Z is a critical extreme point oP(G), then the following hold.
(i) V=vIuViwithvinv? =49,
E = FE'UE?with E' N E? = (),
(V1 E')is an odd cycle,
(VU V2, E?)is a forest whose set of pending node§/isand such that all the
nodes inV! have degree 3,
(i) z(e) =3 fore e E,
Z(e) = 1 forall e € E2, and
(iiiy z(6(W)) > 2forall cut§(W) such thafW| > 2 and |W| > 2.

Remark 2.1 By (ii) and (iii) of Theorem 9, ifG supports a critical extreme point, théh
is 3-edge connected, and(S)| > 4 for every cutd(S) such thatS| > 2 and|S| > 2.

Theorem 9 has some interesting algorithmic and polyhednasé@quences. We first
note that operation, 05, 63 can be performed in polynomial time and in any order. Con-
sider now a graplir = (V, E) and a critical extreme point. From Theorem 9, it follows
that there exists an odd cycte of G such thatz(e) = 3 for e € C andz(e) = 1 for
e € £\ C. MoreoverE \ C induces a forest whose pending nodes are precisely the nodes
of V(C). So the inequality

S a(e) > L'; L (59)
ecC
which is valid for the 2-edge connected network problem,iidated byz. Actually, a

constraint (59) is arF'-partition inequality (52) wheré" is the set of leaves of the forest.
Thus, by the remark above we have the following.
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Theorem 10 [32] Critical extreme points can be separated from the 2-edgenecied
network polytope in polynomial time.

Kerivin et al. [61] showed that an inequality (59) is a spkcase of a more general
class of facet-defining inequalities for the 2-edge corewtctetwork polytope. Conse-
qguently, by Theorem 10, critical extreme points may be spdrbyF-partition facets.

The concept of critical extreme points has also been stuajelllahjoub and Nocq
[66] for the 2-node connected network polytope. The follagvinequalities

(0o (W)) > 1 forallv e VW c V \ {v}, W # 0. (60)

are valid for the 2-node connected network polytope. We mesthat these inequalities
are a special case of the node patrtition inequalities (56)66], Mahjoub and Nocq stud-
ied the polytope&)(G) given by inequalities (44), (45), (58) and (60). This pohgas the
linear relaxation of the 2-node connected network polytdpeey extended the concept of
extreme points of rank 1 and critical extreme points to tHgtppe Q(G). They also gave
necessary and sufficient conditions for an extreme poii(@¥) to be critical.

We now look at the case wheres {1,2}". As pointed out in [61] (see also [58]), the
F-partition inequalities (52) can straighforwardly be exted to the case € {1,2}" as
follows .

w(A)>p—1- L"%"J (61)
wherep; = [{i | con(V;) =1, i = 2,...,p}|. We remark here thaf'| is not necessarily
odd. In fact, inequalities (61) are dominated by the cut aivéht inequalities if and only
if p; and|F| have the same parity.

Let R(G,r) be the polytope described by the trivial inequalities (44Yl 45), the
cut inequalities (46) and the partition inequalities (50he interest in considering the
partition inequalities (50) foR(G, r) is because they can be separated in polynomial time
in the caser € {1,2}" as proved in [59]. Given a solutian of R(G, r), the following
operations, described in [61] and given with respec,textend in a straightforward way
the operatiors, introduced above, to the case where {1,2}V.

#1: Contract an edgev such thatt(uv) = 1, r(u) = 1 andz(d(u)) < 2.
05: Contract an edgev such that(u) = 2, 6(u) = {uv, vw} andr(w) = 2.

Note that these reduction operations can also be realizedlymomial time. We also no-
tice that operatiors, previously given for the case wheréu) = 2 for all uw € V, can be
extended to the (1,2)-survivable network problem by cceraid) node setdl’ C V' with
r(u)=2forallu e W.

With a graph obtained froré by contracting an edge = uv € E, we associate the

connectivity type vector. € {1,2}VI=! such that.(w) = con({u,v}) andr.(u) =
r(u) if w € V '\ {u,v}, wherew is the node that arises from the contractioreofLet
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G’ = (V', E') be a graph obtained by repeated applications of operafigrés, s, 0/,
0. Denote by’ € {1,2}V" the connectivity type vector corresponding to the graph
and byz’ the restriction oft on E’. Kerivin et al. [61] showed that if is an extreme point
of R(G,r), thenz' is also an extreme point @(G’, r’). Moreover they proved that these
operations keep trace of the validity and the violation efithequalities of type (46), (50)
or (61) in the grapltz’ with respect to the connectivity type vectdr Thus for looking for

a violated inequality of type (46), (50) or (61) @ with respect ta-, one can compute a
violated one inG’ with respect ta’. MoreoverG’ can be relatively small.

Operationd, 6, 03, 6, 65) have been used by Kerivin et al. [61] in a preprocessing
phase of a cutting plane algorithm for the (1,2)-survivatéwork design problem (re-
spectively the 2-node connected network problem), and Bawe/n to be very effective
for solving these problems.

8 Survivability with length constraints

In general, survivability requirement is not sufficient taegantee a cost effective routing.
Indeed, the alternative routing paths may be too long am the costly to be suitable. In
consequence, further technical constraints have to bedaddparticular one can impose
a limit on the length of the rerouting paths. In order to lithie rerouting, one thus must
have at least two edges (node)-disjoint paths with bounslegth between each pair origin-
destination, so that if one of the paths fails, the traffic bayrerouted (in a minimum
time) on the second one. In many practical situations, thgtkeof the routing path is
considered as the number of links (also called hops) in tlie, pad then we talk about
hop-constrained pathn this section, we shall discuss valid partition ineqidi for some
variants of the constrained survivable network design lerob.

8.1 Survivability with bounded rings

In [35], Fortz et al. considered the problem of designing aimum cost 2-node connected
network such that each edge belongs to a cycle of a boundgthlerhis problem can be
presented as follows: Given a gragh= (V, E) such that each edgec E has a cost(e)
and a lengthi(e), and a positive integel, the problem consists of finding a minimum cost
2-node connected subgraplV, F') such that each edge &f belongs to a cycle of length
less or equal thai. In [34], Fortz and Labbé provided classes of valid inedigdiand
discussed the associated separation problems. In partibely introduced the inequalities

2(6(Vh,...,V,)) > 2M(p, L) (62)

whereM (p,L) = n+ min{(%}, [£251}. They approximaté\/ (p, L) with a(p — 1)

wherea = —2 . They showed empirical evidence that this is a good appraxim
h ﬁ;;(LLI)Th howed empirical evidence that this i d i

T

tion. They also reported computational results obtainel avcutting plane algorithm. For
a complete survey of this problem, see Fortz [33].

In [36], Fortz et al. studied the edge version of the abovélera, the2-edge con-
nected subgraph with bounded rings problem (2ECSBRgy considered the case where
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the length of each edge is 1. So the problem here is to find amini cost2-edge con-
nected subgraph such that each edge belongs to a cycle wittoreothanZ edges. Fortz
et al. [36] introduced a class of valid inequalities, andnaghis, they gave an integer
programming formulation for the problem in the space of thsigh variables. In what
follows we describe these inequalities.

LetG = (V,E) beagraphand > 3. If 7 = {Vp,...,V,} is a partition ofl/, then
we letC, = U} Vi, Vita) U [Vo, Vp] @and Ty = 6(Vp, ..., V,) \ Cx. Suppose now that
the partitionr is such thap > L and lete € [V}, V,]. Consider the inequality

z(T2) > x. (63)

where
T7 =Tr U([Vo, Vp] \ {e}). (64)

Fortz et al. [36] showed that inequalities (63) are valid tfee polytope associated with
the 2ECSBR. Inequalities (63) are calleycle inequalities Moreover they proved that
trivial, cut and cycle inequalities together with the im@gy constraints yiels an integer
programming formulation for the 2ECSBR. Moreover, by addime constraints

t(0g—o(W))>1, WcCV\{vhveV,

we obtain a formulation for the-node connected subgraph with bounded rings problem
(when the lengths are equal to 1).

Itis not hard to see that the separation problem for inetjesl{63) associated with an
edgee = st reduces to finding a minimum weight edge subset that intersdicst-paths
of length< L — 1. Fortz et al. [36] (see also [65]) showed that, whHek 4, this problem
reduces to a max-flow problem in an appropriate directedgaap hence can be solved in
polynomial time. As a consequence, they obtained a polyaltimie separation algorithm
for inequalities (63) wherl. < 4. In what follows we present their algorithm.

First it can be easily shown ( see Fortz et al. [36]) that theasstion problem for in-
equalities (63) can be solved in polynomial time far & 1 solutionz.

Now suppose that the solution contains fractional valuesd_ = (V, E) be a graph and
s, t two nodes ofi’. Given a positive integeB, define an(s, ¢t)-B-path cutto be any edge
setC of E that intersects everst-path of G with at mostB edges. Given a weight vector
w € R, the minimum(s, t)-B-path cut problem (BPCP) is to find ds, t)-B-path cut
of minimum weight. Fortz et al. [36] showed that the separatiroblem for inequalities
(63) reduces to solving BPCP for every edge: st € F andB = L — 1 with respect to
the weight vectof:.

Observe that ifB = 2, finding a minimum(s, ¢t)-2-path cut reduces to finding a min-

imum cut separating andt in the graph induced by, ¢ and the nodes adjacent to bath
andt.

26



Figure 1: Construction of!

For B = 3, they showed that the minimuis, ¢)- B-path cut problem reduces to a
maximum flow problem, and can then be solved in polynomiagtim
First, note that any node of V which is not adjacent neither tonor tot cannot belong to
an st-path of length at most and so can be deleted. So we may assumeGhdes not
contain such nodes.

Now the idea consists in constructing a directed grépk (N, A) from the original
one as follows. LetvV = V' \ {s,¢}. Let N’ be a disjoint copy ofV (where we denote
the copy ofu € N thatis inN’ by '), and setV = {s} U {t} U N U N’. For each edge
su € F with weightw,, make arq(s,u) € A with capacityw,,, for each edget € E
make arc(v’,t) € A with capacityw,,, and for each edgev € E with u,v ¢ {s,t},
make arcgu, v') and(v, v'), both with capacityv,,,,. For eachu € N with u # s,t make
an arc(u,u’) € A with an infinite capacity (see Figure 1 for an illustratiolote that
there is a 1-1 correspondence betweensthpaths of length< 3 in G and thest-directed
paths of lengtt8 in G.

It has been shown in [36] (see also [65]) that to e@ch)-3-path cut in G corresponds
a finite capacity cut inG separatings and¢. Moreover, both cuts have the same weight.
Which implies that one can solve the BPCP r= 3 in G by solving a maximum flow
problem inG.

In [36], Fortz et al. also extended inequalities ( 62) to 2BBSThey proved that the
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inequalities
Lp
z(0(Vo,..., Vp)) = (ﬁk (65)
are valid for 2ECSBR. To separate inequalities (65), Fdrtd.§36] developed a heuristic
based on Barahona'’s algorithm [7] for separating the pamtinequalities

Consider the following inequalities obtained from inedpieg (65) by deleting the upper
integral part from the right hand side.

Lp
L V) > .
2(6(Vos -, Vi) 2 F7 (67)
Clearly, inequalities (67) are of type (66) (it suffices to:se= %m). Moreover, if (67) is
violated, then (65) is so. However, it may that all the inditiea of type (67) are satisfied
whereas some inequalities of type (65) are violated. Inrotolestrengthen inequalities
(67), Fortz et al. [36] considered the inequalities

26 (Vo -, V) > % be (68)

with ¢ = 35~ and used the same algorithm of Barahona to separate thegpealine
ties. (Here inequalities (68) can be transformed to ingtieslof type (66) by setting
= (%)x.) As shown in [36], these algorithmic transformations hagen very
effective for solving th ECSBR.

8.2 Hop-constrained paths

The closely related and basic routihgp-constrained path problehras also seen a partic-
ular attention last years. This problem consists of findietydeen two distinguished nodes
s andt¢ a minimum cost path with no more thdnedges wherL is fixed. TheL-path
polytope denoted byLPP() is the convex hull of the incidence vectors of thiepaths
having no more that edges. Clearly, the following inequalities are valid I&?PG).

2(6(W)) > 1, forall st-cuts(W), (69)

and are calledt-cut inequalities In [20], Dahl considered the dominant of tliepath
polytope, that is the ponhedroDPPGHRf. He described a class of valid inequalities
for the problem and gave a complete description of that palybn whenl < 3. In par-
ticular, he introduced a class of valid inequalities asofe8.

Let{Vy, Vi, ..., VL41} be a partition ofi” such thats € Vg, t € V1 andV; # 0
foralli =1,..., L. LetT be the set of edges= uv whereu € V;, v € V; and|i—j| > 1.
Then the inequality

z(T) =2 1, (70)
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is valid for the L-path polyhedron. Using the same partition, this inequaién be gen-
eralized in a straightforward way as follows to the case whartge-disjoint paths are
required betweer andt

x(T) > k. (71)

Inequalities (70) and (71) are callédpath cut inequalitiegor jump inequalitieg21]).
The separation problem for these inequalities can be satvpdlynomial time, if L < 3.
In fact, it is easily seen that this problem reduces to findimginimum edge set that inter-
sects all thest-paths with no more thah edges. Sincd < 3, as it has been shown by
Fortz et al. [36], this can be done in polynomial time. Datl]][2howed that inequalities
(70) together with inequalities (69) and the nonnegativigqualities completely describe
the L-path polyhedron wheh < 3.

In [21], Dahl and Gouveia considered the directed hop-caimsd path problem. Note
that thest-cut inequalities (69) and the-path-cut inequalities (70), (71) can be easily ex-
tended to that problem. Dahl and Gouveia [21] described ssaobd valid inequalities
obtained by lifting from the directefl-path-cut inequalities and showed that these inequal-
ities together with the flow conservation constraints amdtivial inequalities characterize
the directedL-path polytope wherl, < 3. They also identified valid inequalities and ad-
dressed some polyhedral issues for the case vither.

A more general network design problem with hop-constrathes has also been inves-
tigated isthe hop-constrained network design problem (HCNDHRjis can be presented
as follows: Given a grapty = (V, E) with weights on the links, a set of pairs of terminals
and two positive integers and L, find a minimum weight subgraph such that between
each pair of terminals there are at leastdge-disjoint paths with no more thdnlinks.
This problem is NP-hard even whén= 1 andL = 2 [23].

In [53], Huygens et al. studied the HCNDP in the case wheretiseonly one pair of
terminals, say andt, k = 2 andL = 3. They gave an integer programming formulation
for the problem in this case in the space of the design vasalilThey showed that thse-
cut inequalities (inequalities (69) with right hand siz)eand theL-path inequalities (71)
(with &£ = 2) together with theé) — 1 integrality constraints formulate this problem, and
they gave an extension of this formulation to the case where2. They also discussed
the polytopeP (G, L) given by the constraints of the linear relaxation of thisriatation.

In particular, they proved tha®(G, L) is integral, if L < 3. This Theorem implies that
the associated polytope is equal®dG, L). This result has been generalized by Dahl et
al. [22] for L = 2 andk arbitrary. Recently Bendali et al. [13] extended this to ¢hse
whereL = 3 andk arbitrary.

In addition, since the separation problem for ttecut andZ-path cut inequalities can
be solved in polynomial time wheh < 3, it follows that the HCNDP whei, < 3, k = 2
and only one pair of terminals is considered can be solvedlynpmial time using a cut-
ting plane algorithm. As pointed out in [53], the formulatigiven above (for the HCNDP
whenL < 3, k = 2 and only one pair of terminal is considered) is no longerdvédir
the problem ifL > 4. However forL < 3, one can see that this formulation can be eas-
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ily extended to the HCNDP with arbitrary number of pairs aieals. Huygens et al.
[52] studied this variant with multiple pairs of terminalstbe HCNDP wherk = 2 and

L = 3. They gave several classes of partitions inequalitiesl\fali the associated poly-
tope. They also derived separation routines, and develagg@nch-and-Cut algorithm
based on these inequalities. Diarrassouba [24] studiechtiie general case whén= 2
andk arbitrary. He gave different formulations of the probleraséd on a transformation
of the initial undirected graph into directed graphs. He atsestigated the assciated poly-
tope and identified classes of valid inequalities. Using i@ devised cutting planes based
algorithms for the problem.
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