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In this paper, we present a suite of innovative operatioseach models and methods, called OnTheMark (OTM); this
suite supports the effective management of human capipglgehains by addressing distinct features of human talent
which cannot be handled via traditional supply chain mamsge. OTM consists of novel solutions for: (1) statistical
forecasting of demand and human capital requirements;igRjpased stochastic human-talent capacity planning; (3)
stochastic modeling and optimization (control) of humapitzd supply evolutionary dynamics over time; (4) optimal
multiskill supply-demand matching; and (5) stochasticirojation of business decisions and investments to manage
human capital shortages and overages. The OTM suite watgdedeand deployed as an important part of the human
capital management and planning process within IBM, piagidupport for decision making to drive better business per
formance. This is achieved through important contribugionthe areas of stochastic models and optimization (chntro
and the innovative application and integration of theseef®dnd methods in human capital management applications.

Key words: human capital management and planning; demand foregasisk-based capacity planning; stochastic

supply evolution; multiskill supply-demand matching;atastic models; stochastic optimization and control.

Introduction

The services sector has grown over the last 50 years to d@n@t@nomic activity in most advanced
industrialized countries. In fact, recent Bureau of LabtatiStics data reveal that more than 75% of the
labor force in the U.S.A. is employed in the services indystith increasing projections into the future;
and that services industry output represents 70% of thEnaliastry output (in terms of U.S. dollars) Woods
(2009). A critical driver of success for any service deljverganization is its ability to manage and deploy
the skills, knowledge and competencies of its human ressur@r less formally, “having the right people,
with the right skills, in the right place, at the right tim&uccessful organizations realize that investments in
their people, including proper support for personal neediscareer goals, are a key driver behind growth,
profitability and client satisfaction. This is especialiyd for providers of information technology services
like IBM who offer a broad range of service products, eacluiieg human resources with certain skills,

in markets characterized by highly volatile and uncertdient demands. As a result, forward-thinking
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businesses are beginning to invest in human capital sugyainanethodologies as a major competitive
differentiator.

Over the past decades, organizations have achieved saifi@ins in effectiveness and efficiency by
developing advanced models of manufacturing and logistissems to optimize their supply chain opera-
tions. Although such traditional supply chain models & neeth have a rich history within the operations
research (OR) community, they cannot be directly appliecetated problems in human capital supply
chains. This is because human resources are quite digtimetthe inanimate machine parts in traditional
supply chains, and human resources must be managed in a nthanproperly addresses these distinct
features and personal needs. Human resources are moreesoimphodel than traditional supply chain
parts, and thus require new models & methods to capture gmesent these complexities. Concepts such
as hiring, retaining and acquiring new skills, fundamedntadfluence certain characteristics of the opti-
mization problems relevant to human capital managemerkingghem more difficult to model and solve,
but of critical importance to the successful managementmaugining of human capital supply chains in
practice.

A prime example of the importance of effective human capitahagement isntegrated Technology
Services (ITS), a business line within IBM Global Services. ITS is themier integrator of information
technologies in the services industry, with annual reverafeapproximately $4 billion. Through its ten
Service Product Lines, ITS delivers a range of integratioth support service products, henceforth called
service engagements (such as the design and implementation of a data warehdaos&)] IBM hardware
and software products and beyond. The ITS business hasadadwman resources, with the vast majority
of costs for most ITS service engagements consisting of huseavices as opposed to those related to
hardware and software. Unlike machine parts in traditiag@iply chains, the human resources of the ITS
supply chain are not consumed during the service delivargges as they return upon completion of an
engagement, and thus represent a long-term capital ineestim addition, human resource productivity
and efficiency are critical factors that depend upon wordkad utilization, whereas notions of productivity
and efficiency for machine parts is less sensitive to wouklaad utilization. Human resources also can
evolve in various complex ways over time, and are capableplioying more than one skill at the same time
and across multiple service delivery engagements. Sedatieery is further complicated by uncertainty
in resource staffing, simultaneous allocation of multigleaurces (as engagements require different skills),
and resource sharing (as human resources time-sharekitisiasross different engagements).

The ability to manage and plan human resources more eféégtwnd efficiently, while addressing these
fundamental differences between human capital and toaditisupply chains, is pivotal to ITS delivery of

service engagements. Looking for novel solutions to hetprape its human capital supply chain, in 2007



ITS turned to IBM Research and initiated the developmentfi@Mark (OTM), an end-to-end human
capital management & planning framework and methodolo@@ comprised of innovative OR models
& methods that address the many challenges and compleiitielved in the ITS human capital supply
chain. Specifically, we have developed capabilities todase demand for service engagements and their
resource requirements applying statistical and machiaeileg methods. We have derived new stochas-
tic modeling and optimization methods to provide a form ek+based capacity planning that determines
the resource capacity levels to maximize business perficengiven forecasted demand. We have also
developed a novel approach to estimate available humaaneesoin the future (namely, existing resources
and those obtained/retained via various business desisiod investments) and their skill composition
through the stochastic modeling and optimization/contfasupply evolution over time. We then deter-
mine an optimal matching of the future estimates of multitékiman resource obtained from our supply
evolution models & methods against the resource capaciets obtained from our risk-based capacity
planning models & methods. Finally, we optimize availahlsibess decisions and investments (e.g., hir-
ing, training, retaining) to address the resource shostagd overages estimated via this optimal multi-skill
supply-demand matching through a combination of our intieeanathematical modeling and optimization
solutions.

OTM has been deployed since 2008 and has become an essarttia fhe ITS human capital manage-
ment & planning process. OTM has helped ITS improve its mamamnt & planning of human resources and
skill composition as a basis for driving growth and profitiypiand has helped to realize a major competi-
tive differentiation in the marketplace. In fact, based ansuccessful experience through the past couple of
years with quarterly ITS executive reviews worldwide, thEMDsolution has consistently provided relative
revenue-cost benefits commensurate with 2-4% of ITS quarerenue targets over previously employed
approaches. Moreover, beyond its internal applicationhenlTS business, we have developed prototype
implementations of several OTM models & methods within IBMt&are platforms to support future IBM
solution offerings (both products and services) in the regullace. We are also collaborating with IBM
product groups on the development of pilot solutions for@alrcollection of clients that is based fully on
the OTM models & methods. The possibilities for using the Offdinework and methodology in a broader
application setting, beyond information technology seesi are numerous and actively being pursued.

This paper presents an overview of the OTM human capital gemant & planning framework and
methodology, focusing primarily on the innovative mathéoz modeling and optimization contributions
of the project. A high-level overview of the OTM solution rhetology is provided first, followed by a more
detailed discussion of each set of OR models & methods. Welwda with a summary of our successful

worldwide deployment of the integrated OTM suite within |Ti&cluding validation studies and business
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cases based on ITS data, and business impact on ITS and b&ywadghout, we shall use the teskill to
generally refer to the full extent of human resource absiticompetencies, knowledge and skills. Examples

include database architect, Java programmer and netwedkadigt.

Overview of Human Capital Management and Planning Solution

To address the distinct challenges and complexities of inurapital supply chains in general, and partic-
ularly those arising within the ITS business, we develop&odeling and optimization solutions with
the overall objective of determining the best resource ciipkevels and investment decisions over time to
maximize business performance. While various investmeaqisibns are available, in this paper we focus
on hiring, training, promotions and retention (incentingto reduce attrition) as representative decisions
available to ITS organizations. The OR solutions have beghemented as core capabilities & components
of the OTM human capital management & planning suite, whigdpsrts an end-to-end process for human
capital supply chains. OTM consists of’) (demand forecasting; (1) risk-based capacity planning; (I11)
supply evolution & optimization; (V) multi-skill shortage & overage optimization; and (/) skill shortage

& overage management. Figure 1 illustrates these primary OTM elements and tiégrielationships.

Skill Shortage & Overage Managemeny
(Combination of II, II, and 1V)

Risk-Based Capacity Planning

(Determine Skill Capacity Target)

\%

(Determine Offering Demand) (Matching Target Against Supply)

1
Supply Evolution & Optimization

(Determine Human Resource Supply)

|
Demand Forecasting i Multi-Skill Shortage & Overage
|

Figure 1  The flowchart illustrates the capabilities and inte rrelationships in the OTM suite of OR models and
methods.

Various business and organizational aspects of the ITS humapital supply chain greatly influenced

our partitioning of the OTM end-to-end solution among itestituent capabilities & components, depicted



in Figure 1 and mapped to their corresponding OR models & austin Table 1. This highlights another
important contribution of the OTM suite, namely the noveégration of this collection of OR methodolo-
gies. Moreover, the integrated OTM suite was designed tp@tinteractive sessions that allow users to
evaluate different service delivery scenarios in real timkich includes scenario analysis under various
assumptions regarding supply, demand, business/ecoromidtions, and so on. This project requirement
in turn created additional methodological challenges tmmate solutions of complex stochastic model-

ing and optimization problems in a very efficient manner tpggrt such interative sessions and scenario

analyses.

| OTM capabilities | OR models and methods |
Demand forecasting Logistic regression
Risk-based capacity planning Stochastic loss networks, stochastic optimization
Supply evolution and optimization Stochastic temporal models, stochastic optimization amdrol
Multiskill shortages and overages Mathematical programming
Skill shortage and overage managemnestochastic optimization

Table 1  The table illustrates a mapping of OTM capabilitiest 0 OR models and methods.

In addition to the use of OTM as an integrated suite, each O&aphbility is used independently by
different organizations across ITS to support variousrmgs processes associated with the ITS human
capital supply chain. Given the various perspectives afiffsrent ITS business users, the OTM capabilities
& components operate across a diverse set of managemenné&ipdphorizons with time scales ranging
from weeks and months to quarters and even years. An oveofitve primary elements comprising OTM

is presented below, and then each of these elements islgdarimore detail in the sections that follow.

Demand Forecasting

A crucial first step in OTM human resource planning is demanddasting I(in Fig. 1), which statisti-
cally characterizes the demand for each service engagament planning horizon of interest in terms
of revenue to the provider, number of service engagemetiis telivered, and human resources and skills
required to do so. Service engagements are usually dedanityein terms of revenue, duration and solution
type, without linkages to staffing templates (analogouslt® & material or bills of labor in traditional sup-
ply chains). To obtain a more accurate view of resource demaea utilize statistical and machine learning
methods to estimate the resource staffing requirementscbfssavice engagement. Statistical forecasting
technigues are also utilized to estimate the demand for saalice engagement, which is then applied
together with our staffing templates to obtain a completeattiarization of service engagement demand
and resource requirements. As an illustrative example ¢l @&mand forecasting output, we might respec-

tively have a forecast of ten, five, twelve and eight servitgagiements over the next four quarters to design



and implement data warehouses (engagement demand), egiting two database architects, four Java
programmers, a network specialist, and so on (staffing tt@g). Such demand forecasting (I) outputs

serve as input to each of risk-based capacity planningi)saupply evolution & optimization (ll1).

Risk-Based Capacity Planning
The next component in OTM human capital management & planoamcerns the need to determine the
capacity levels for resource skills that best satisfy thmaled for these skills while also maximizing busi-
ness performance over time. This capability is often geadyi referred to as capacity planning. Given the
distinct features of human resources, the capacity plgnmguirements of human capital supply chains
created a need for new stochastic modeling and optimizatitrions to determine the skill capacity targets
that maximize business performance given forecasted défoasservice engagements. In traditional sup-
ply chains, product demand is often converted into machemegemand through bill of materials as direct
input to supply-demand matching. However, in human capupply chains, it is critical to first analyze the
financial implications and risks associated with the digtfeatures of human resource skill capacity levels,
including longer term costs and complex dynamics, as afmmaf service engagement demand.

To address these challenges, we developed a risk-basedltgagpanning solution of OTMI( in Fig. 1)
that models the dynamics, tradeoffs and uncertaintiecaged with allocating human resources and then
solves a stochastic optimization problem based on this htogeaximize business performance. The risk-
based capacity planning models consist of multi-classhststic loss networks with simultaneous resource
allocation, where: losses model the risks of lost demand éssociated revenue) due to insufficient human
resources at the time of engagement delivery; the team ofiress is required to jointly deliver the service
engagement; and the multiple classes represent differpes of service engagements and resource skills.
Business performance is a function of the revenues for gerimgagement delivery, discounted by proba-
bilities associated with engagements at risk of being &owd, the costs for maintaining skill capacity levels.
Then we solve the corresponding risk-based stochastimagatiion problem, with our stochastic loss net-
work as constraints, to determine the skill capacity tartjeat maximizes expected business performance.

The OTM risk-based capacity planning methodology addesseerevenue-cost dynamics and tradeoffs
between the risks of having insufficient resources with appate skills to deliver an engagement when
needed and the risks of having too many underutilized ressuiboth resulting in reduced profit to the
business. These revenue-cost dynamics and tradeoffs eaalated and optimized from various perspec-
tives by using our risk-based capacity planning in diffésgays. This includes evaluating and determining
the ideal resource capacity targets to maximize busine$srpmnce (independent of existing supply) as
well as evaluating and determining the optimal resourcaci@plevels and business investment decisions

to achieve these levels in order to maximize business padoce (subject to existing supply constraints).



Our risk-based methodology operates over each intervabkgdlanning horizon that consists of stochastic
behaviors invariant in distribution to shifts in time. As ilastrative example of OTM risk-based capacity
planning output, expected profit might be maximized ovente quarter with 200 database architects and
500 Java programmers, whereas expected revenue might ize over the quarter under a 12% gross
profit margin constraint with 250 database architects aldJé®a programmers. The outputs of risk-based
capacity planning (Il) over each time interval, which irsducorresponding skill capacity levels, serve as

input to each of supply evolution & optimization (lll) and ititskill shortage & overage optimization (V).

Supply Evolution & Optimization
In parallel, another fundamental OTM component concerasitbdeling and analysis of human resources
who are expected to be available in the future, taking intmant hiring and attrition as well as adjustments
in human resource skill composition, and the optimizatibraaditional investment decisions to control
the dynamics of the future evolution of such resource caigacand skill compositions. The dynamics
of resources are limited in traditional supply chains, dreldvailable decisions are typically restricted to
ordering additional resources. Human capital supply chdiowever, are often categorized by significant
and complex time-varying dynamics on the supply side, witmyrhuman resources acquiring skills, gain-
ing efficiencies and changing roles, some resources leavidgiew resources being added. This all results
in substantial changes in the characteristics and skillpmmition of human resources over a given plan-
ning horizon. The significant flexibility and evolutionaryrtamics of human resources created the need for
new stochastic temporal models of supply evolution dynaniibese time-varying evolutionary dynamics
also created opportunities and challenges for optimimaticadjust the future resource characteristics and
skill composition through various investment decisionghsas training, promotions, other internal char-
acteristic/skill transitions, and incentives to redudeitain, in addition to the standard hiring (ordering)
options.

To address these challenges, we developed a supply evolitioptimization solution of OTM I
in Fig. 1) that first models these evolutionary dynamics of humanuess to estimate future human
resource skill composition; and then solves a stochastimigation (control) problem based on these mod-
els to maximize business performance over time. The supgiutton models consist of discrete-time,
time-varying, multidimensional stochastic processessehsiates capture the number of human resources
with each combination of skills. The supply evolution optiation/control incorporates these discrete-time
human resource evolution processes together with decisidables consisting of hiring, training, pro-
motion and retention as well as the corresponding lead tiimesach such action. Then we solve this
multi-period stochastic optimization/control problentditermine the set of discrete-time actions that adjust

future resource characteristics and skill composition &ximize expected business performance over time.



As illustrative examples of OTM supply evolution & optimtian output: a quarterly evolution of the
human capital supply chain without intervention might segfgshortages in both database architects and
Java programmers that result in lost revenue over the nextjferters; whereas expected profit might be
maximized over these next few quarters by hiring two databashitects and four Java programmers while
incentivizing ten Java programmers to not retire. Suchrass investment decisions over planning hori-
zons comprised of stochastic behaviors that vary in digiob over time, together with the corresponding
resource capacity levels and skill composition over thamilag horizon, serve as input to each of risk-based

capacity planning (1) and multi-skill shortage & overagatimization (V).

Multi-Skill Shortage & Overage Optimization

The next component in OTM human capital management & planoamcerns the analysis of skill short-
ages and overages as part of matching the multi-skill sugpiige demand. In a traditional supply chain,
where each resource provides a single type of function, hbetages and overages for skills would then
be determined as direct results of demand and supply giesnt@n the other hand, the ability of human
resources to perform multiple types of functions, and toalat¢he same time within one or more engage-
ments on which they are deployed, necessitates advanaed fifrmatching the multi-skill supply to the
demand.

To address these challenges, we developed an OTM multisbkittage & overage optimization solution
(IV in Fig. 1) that models the multiple skills of human resources oveheaierval of the planning hori-
zon involving time-invariant stochastic behaviors; pa®es a detailed analysis and optimization in which
the expectation of such multi-skill resources are matcbeskill capacity targets to minimize a weighted
sum of the skill shortages and overages; and then expeobethghs or overages for each individual skill
are computed under this optimal matching. We formulate giergzation problem for each interval of the
planning horizon as a linear program and solve this optitiingoroblem over the multiple intervals com-
prising the entire planning horizon as a dynamic programsiyporting separate weights for the shortage
and overage of each skill, various business policies aratifieis can be incorporated in this optimization
problem.

As an illustrative example of multi-skill shortage & oveeagptimization output, among a set of ten
human resources with both database architect and Javaaprowgr skills in the next quarter and fourteen
such human resources in the quarter after next, six (ninghtie optimally matched to deploy database
architect skills with the remaining four (five) optimally heaed to deploy Java programmer skills in the
next quarter (quarter after next). These multi-skill saget & overage optimization (V) outputs, including
the optimal matchings of multi-skill supply resources tdlstapacity targets and the corresponding skill
shortages and overages across time intervals of both tiwaiant and time-varying stochastic behaviors,

serve as input to each of risk-based capacity planningif)sapply evolution & optimization (lIl).



Skill Shortage & Overage Management

The final component of the OTM suite concerns the modelingoartichization of business investment deci-
sions (e.g., hiring, training and retention) to manage timtages and overages across all skills. To this
end, we developed an approach for skill shortage & overagegement that combines our solutions for
risk-based capacity planning, supply evolution & optintiga, and skill shortage & overage optimization
through an iterative procedur¥ ¢omprising the dashed box in Fig. 1). Specifically, our risk-based capac-
ity planning models & optimizationl{ in Fig. 1) are used to determine the resource capacity levels that
maximize performance. This is complemented by our suppiution & optimization (Il in Fig. 1) that
optimizes the evolutionary dynamics of future resourceacdyp levels and skill compositions together with
longer term investment decisions. Our multi-skill shoe&goverage optimizationV in Fig. 1) then deter-
mines the matching of multi-skill human resources agaikifitapacity targets to maximize performance.

The final resource planning solutiox {n Fig. 1) is then obtained through a method of iteration among
these three OTM optimization components by exploitingrthr@eractions, dependencies and various time
scales until efficiently converging to a fixed-point equilim (steady state). This combination of OTM
components within an iterative methodology (V) providegad investment decisions that manage skill
shortages and overages to maximize business performasea.ilustrative example of OTM skill shortage
& overage management output, to manage an overage of oreadatarchitect and a shortage of six Java
programmers, among others, over the next few quarters,ghtniie best to retrain one of the database
architects, hire four Java programmers and incentivizeJawa programmers from retiring.

The dynamics and uncertainties of such decision makinginvithman capital supply chains occur at
different time scales, as is also reflected in the detailsoh®f the components comprising the OTM inte-
grated suite of OR models & methods. Specifically, our riakda capacity planning models & optimization
operate on stationary intervals (typically on the ordermicanth or quarter) of the planning horizon; our sup-
ply evolution models & optimization operate across theremton-stationary planning horizon (typically on
the order of a few quarters, a year or more); and our multi-skortage & overage models & optimization
operate across both stationary and non-stationary tineeviais. Here, the notion of non-stationarity refers
to stochastic behaviors that vary in distribution over tinvbereas stationarity refers to stochastic behav-
iors that are invariant in distribution to shifts in time o\ sufficiently long time interval. We generally
consider planning horizons that include different formsigfhamics and uncertainties, as well as different
forms of business investment decisions. These planningdre represent non-stationary time intervals
that are comprised of multiple stationary subintervalsesgtthe different forms of complex dynamics and

uncertainties change from one stationary subintervaléatxt according to a general stochastic process.
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Demand Forecasting Models
An important first step is the forecasting of service engag@rdemand over future periods which is com-
prised of demand from three sources:@agoing engagements — those already being delivered; @gpor-
tunities — potential deals at different stages in the sales pipedind;(c)expected deals — various types of
deals expected based on market research and experiencatlmancrete enough for entry into the sales
pipeline. Service engagements typically require a cabbeatf different skills, where the staffing templates
that link engagement types and expected revenue to skilirEgents in human capital supply chains are
considerably more complex than the corresponding bills atiemial/labor in traditional supply chains.
Statistical forecasting techniques are applied to thestatelivery information to compute probabilistic
characterizations of the completion ofigoing engagements in future periods and the roll-off dates for
deployed resources. Fpipeline opportunities, we develop statistical models based on logistic regrassio
techniques to predict the probability of each pipeline desihg won (i.e., a service delivery contract is
signed) based on attributes such as lapse time and recemmeav in the pipeline, client information,
deal size, and so on. These win probabilities are then uspobtmbilistically characterize the number of
engagements of each type from the pipeline over future gerigNote that our approach exploits logistic
regression as a preferred method in statistics for estigddinary outcomes and has no connection with
the 2009 INFORMS Franz Edelman Award Finalist work by IBMwiance et al., which uses quantile
estimation of a single variable that couples revenue angvdghability, not the win probability in isolation.
This is because quantile estimation is more suited for @siing piecewise linear functions.) Fexpected
deals, the quarterly revenue targets and typical deal sizes ard tes probabilistically characterize the
number of engagements of each type that are expected to medsig order to make up the difference
between revenue targets and expected revenues from orgyggagements and pipeline opportunities.
Given the lack of direct linkage between service engageshgoportunities and required resources, we
develop models to estimate the staffing requirements fdn gee of engagement. Following the statisti-
cal clustering methodology in Hu et al. (2007), we generabes of similarly staffed engagements using
historical information on service engagement delivergcitciusters for each type of engagement are vali-
dated and refined through discussions with subject matferex To address the evolution of these staffing
templates and the need for some degree of customizationisavelevelop an automated methodology for
generation and adjustment of staffing templates by expipitie semi-supervised clustering and machine
learning framework studied in Hu et al. (2008a,b). The tasgildynamic taxonomy of staffing templates
provides critical input to ensure accurate forecastingsburce requirements from all three major engage-

ment demand sources.
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Risk-Based Capacity Planning

The estimates of demand and resource requirements for eaghesengagement from the demand fore-
casting models are provided as input to our risk-based dggaanning solution. Our goal is to determine
the skill capacity levels that best satisfy demand whilerasising the complex trade-offs among revenue,
cost, and associated risks. To highlight some of the diffiesiinvolved, consider a scenario demand fore-
cast for 10 service engagements over the next quarter. Tieskid capacity levels to deliver this set of
engagements depend on the degree of overlap among thepmrdirsg service delivery time processes. At
one extreme, if the delivery of all engagements overlaps) &0 times the required staffing levels of one
engagementis required; at the other extreme, if the dglivkethese engagements is disjoint, then only the
staffing levels of one engagement are required. Becaused#ityris typically somewhere between these
extremes, a model of these complex dynamics and stochadtaviors is needed to appropriately deter-
mine the skill capacity levels that maximize business parémce subject to service engagement demand
forecasts.

We therefore model the capacity planning problem as a sstichass network in which the risk of losing
service engagement demand (and associated revenue) diseifficient capacity in one or more required
skills at the time the service engagement must be delivenepresented by the stationary loss probabilities
of the stochastic network. Here, the stochastic procességling service engagement “arrivals” are used
to represent the time epochs at which these different seerigagements must be delivered. We note that
the loss of service engagement demand due to insufficieotiress with required skills was a critically
important issue at the start of the OTM project and this, ttoggewith the cost-revenue tradeoff of having too
many underutilized resources or too few required skillsatly influenced our choice to use a stochastic loss
network to model and optimize the capacity planning probl€he overall planning horizon (on the order
of several quarters) consists of a sequence of coarse snlzl#, each on the order of a month or quarter
and involving a stationary loss network under a fixed set ofpeters that changes from one subinterval
to the next according to a general stochastic modulationga® We then formulate and solve a capacity
planning optimization problem to determine the skill rem@capacity levels for our stochastic loss network
that maximize business performance over the planning twriz

Our derivations and theoretical results for the risk-bassghcity planning models are based in part on
the slice methods developed in Jung et al. (2008) when ctedrio the case of Poisson arrival processes
(which model the service delivery epochs from the demantgreswe exploit some of these preliminary
results in this project for the management of human capitpply chains in practice. In addition to the
innovative application of these aspects of the slice metlaggart of our risk-based capacity planning mod-

els under Poisson arrivals, we also extend these risk-tmgEtity planning model results and methods as
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part of this project to support more general arrival proess$his together with our new results and meth-
ods for stochastic risk-based optimization supports ticeirate modeling of the uncertainty and dynamics
that characterize human capital supply chains as stochHas$ networks and our optimization of business
performance tradeoffs in the capacity planning of the IT&d&n capital supply chain. Furthermore, our

risk-based capacity planning models and optimization theen calibrated and validated against available
ITS data over time. All of these results (and additional tssuresented below) provide theoretical support
for our approach, which has proven quite effective acrosgut range of model parameters and instances

from ITS human capital supply chain data and business cageasrfof this project.

Stochastic Risk-Based Models

We model each stationary period of the capacity planninglpro as a stochastic loss network consisting
of a set of skillsZ and a set of service engagemefitsvhere the delivery of service engagements involves
collections of skill capacities. In particular, the delyef engagement € K requiresA; , > 0 units of
capacity from resources with skille Z, where each skill hasC; > 0 units of capacity overall. Instances
of engagement (demand) need to be delivered according to an independmetiasttic process. Such a
delivery opportunity is (at risk of being) lost if the avdila capacity for any skilt is less than4; ,, and
otherwise the engagement is delivered by reserving capagit for each skilli throughout the duration
of the service delivery. The engagement delivery durafioes are independent and identically distributed
random variables following a general distribution withtumiean (without loss of generality). Engagement
delivery epochs and duration times are mutually indepetaden

Let us define

E; := the stationary blocking event probability for skill
L, := the stationary loss risk probability for engagemient
ny; := the number of active typg-service delivery engagements in the network in equilibr{steady state)

n = (ny,...,n|) € Z'f‘, the active service delivery engagements vector in equuilifor

wherei € 7, k € I, andZ, denotes the set of non-negative integers. Heraepresents the probability

in equilibrium (steady state) that service delivery algvancounter insufficient capacity for skill(and
therefore create a risk of losses of the corresponding eamgagt demands, i.e., blocking events at the skill
level create a risk of corresponding loss events at the thaigagement demands), wheréagepresents

the probability in equilibrium that service delivery aalg (at the times these service engagements need to
be delivered) find insufficient capacity for one or more ski#quired for engagemeht(and therefore the

corresponding engagement demands are at risk of being lost)
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Recall that

A; . := the amount of capacity from resources with skilequired to deliver engagement

C; := the amount of overall capacity from resources with skill

whereA := [4, ;] andC := (C;). Note that theth column of matrixA corresponds to the skill capacity
staffing template for service engagemérftom our demand forecasting models. Then, by definition, we
have

ned8C) ={nezZl: An<C}.

When the engagement arrivals are properly modeled as Pqgissoesses with rates, (i.e., the time
epochs when typé-service engagements need to be delivered as part of satjsfgmand follow a Poisson
point process with rate;), k € K, then the above model is equivalent to the famBusng |oss model
which has been studied for over a century since the semindd efcErlang Erlang (1917). In this model
instance, it is well known that the stationary distributieof n is unique and exhibits a product form given
by

‘]Cl Nne ‘]Cl Nk

m(n) = G(C)*H%, Ge)= > H:fk!.

k=1 %" neS(C) k=1

Hence, the stationary loss risk probability for typengagements can be expressed as
L,=1-G(C)'G(C - Aey),

wheree,, is the unit vector whosk-th element is one and all others are zero. The loss risk pilifyasector
L :=(L,,..., L) plays an important role in our stochastic model and optitioneas a measure of the
service engagements at risk of being lost, together witin g#stimated lost revenue.

However, due to the computational complexity of calculatine normalizing constard(C), which is
known to bef P-complete (a higher complexity class than NP-completehéndize of the network Louth
et al. (1994), an Erlang fixed-point approximation has beeg lused as a more efficient alternative to the
exact Erlang loss formula. The Erlang fixed-point approxiomais based on approximating the blocking
event probabilities of the individual skill€;;, by a set of fixed-point equations, and then approximatieg th
loss risk probabilities for typé-service engagements,,, in terms of these skill blocking event probabili-
ties. Specifically,

1| IK| 1|

Ly ~ 1= (1= E)"*, pi = (1—E)™> Auw [J(1— Eo), (1)
k=1

i=1 i/ =1
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pC ¢ pn -1

n=0
where the last expression is the (exact) Erlang formulaHerlbss probability of an isolated skill with
capacityC' under arrival ratep. We refer the interested reader to Kelly (1991) for adddiatetails on the
Erlang fixed-point approximation.

Even though the Erlang fixed-point approximation resolesgrohibitive computational costs of the
exact formula for the problem sizes of interest in this OTMject, it is also well known that the Erlang
fixed-point approximation can provide relatively poor esttes for the engagement loss risk probabilities
L, in various model instances, which we certainly found to lzedfise when applied to our human capital
supply chain demand forecasts. To address this set of olgalie we first observe that by definition the
moden* of the stationary distributiorr(-) corresponds to a solution of the optimization problem

K|
max > nplogy, —logni!  subjectto  neS(C). (3)

k=1

Next we define a natural continuous relaxation of the stadeep € S(C) and subsets of this relaxation
S(C) = {xeRM:Ax<C} and  S,,(C) = S(C)N{x:z, =1},

respectively, for which we first obtain the following optiration problem corresponding to (3):

IK|
max Zxk logyy, —logT(xy + 1) subjectto  x € S(C), 4)
k=1

wherex = (z;,) is the corresponding continuous relaxatiornodndI’(-) denotes the gamma function.

Then, for each service engageméntve derive the following convex relaxation for (4) by expiog
Stirling’s approximation (i.eog'(z), + 1) = 2y, log z, — z1, + O(log xy)), ignoring theO(log ;) term
and restricting to each slice definedhy= ¢, for ¢ € {n;, :n€ S(C)}:

|K]
max Zazkloguk +$k—$k10g$k SUbjeCttO Xegg’k(C).
* k=1

We solve this optimization problem to obtain the modé€/, k) of the distribution for each slice; = ¢,
which is used to obtain our approximation Bf[n, = ¢| as a function of* (¢, k) for each slicen; = ¢.
Namely,Pr[n, = {] ~ exp(q(x*(¢, k))) whereq(x) = >, x;logv, + x), — x) log ). This then yields an
approximation forL,, in terms of[E[n,] by exploiting the derived relationship, = 1 — E[n;]/v, and the
definitionE[n,] =, , ¢ Prn, = £]. Specifically, upon restricting the rangeto the polytope, we have

E[n ] ~ ZEEGXP(Q(X*(& k)))
TS ep(a(x (G k)
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To reduce the computational complexity of this approachab of the Erlang fixed-point approximation, we
also develop a 3-point slice method where the above conlaxation is solved fof = 0, for the maximum
value of and for the modex* of the overall distribution, and thex*(¢, k) is approximated for all other
values of? by interpolation between successive pairs of the 3 computates.

It has been shown in Jung et al. (2008) that the above sofuicmasymptotically exact in the following
limiting regime. Consider a scaled version of the stochdeis network defined by the scaled capacities
C(N)=NC = (NC4,...,NCz) and the scaled arrival rate§N) = Nv = (Nvy,...,Nvg)), where
N €{1,2,...} is the system scaling parameter. Then the loss risk pratiedfrom the above slice methods
converge to the exact loss risk probabilities as the scalargmeterV tends to infinity.

In addition, as part of this OTM project, we have developedieate solutions for stochastic loss networks
under general renewal arrival processes with ratesnd (interarrival) variances; (i.e., the time epochs
when typek service engagements need to be delivered as part of sagjgfgimand follow a renewal point
process with parameterg ando?). Specifically, we derive a Gaussian fixed-point approxiambased
on the corresponding underlying multidimensional Gauspiacess in which the loss probabilitiég for

type+ engagements are given by (1) together with

E; = G(p;;0;,C5),  G(p,o,C) = 1_N<C_p>7 ©

g

where the last expression is the one-dimensional Gaussiaa$s for an isolated skill with capac@yunder
interarrivals with meap~—' and variance?, and\/(-) is the standard normal distribution function. We have
established asymptotic exactness of our Gaussian fixed-geproximation under the above large network
scaling. This asymptotic exactness follows from an insapicthe central limit theorem for conditional
random variables resulting from the capacities and arrgtds growing together. We have also proven
strict dominance of the sliced-based methods in terms afracy over previous Erlang approximations
by deriving and comparing large deviations results for tkace Erlang formula, the Erlang fixed-point
approximation and our slice based methods. Throughoufl&ideployment over the past couple of years,

we have found our risk-based capacity planning models td giecurate solutions.

Stochastic Risk-Based Optimization

Although stochastic loss networks model the dynamics amaptexities of risk-based capacity planning,
our objective is to determine the skill capacity levels thmgtximize business performance over the plan-
ning horizon. Specifically, we formulate and solve a stotib@spacity planning optimization problem to
determine the skill resource capacity levels (namely, tpacity vectoiC*) for a stochastic loss network
(with capacity requirement matriA, arrival rate vectow := (v4,...,v) and, in the case of general

renewal arrivals, interarrival variance vectot= (o, ..., 0|x|)) that maximize business performance over
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a long-run planning horizon. We shall assume that the lenggach subinterval is sufficiently long for
the multidimensional stochastic process modeling theressork to reach stationarity, where the multiple
time scales involved in human capital supply chains probiolén theoretical and practical support for our
stationary stochastic approach. Focusing on a singl@stalj subinterval, in order to simplify the presen-
tation, our objective function is based on rewards (revepgained for delivering engagements that can be
serviced at the time of their required delivery epoch (atjiand on penalties (costs) incurred as the result

of deploying resource skill capacity levels. More pregiselr objective function is given by

IK| 17|

max Zuk (1—Ly)vy — Zvici, (6)
k=1 i=1

whereuy, is the base revenue rate for service engagemeamidv, is the base cost rate for skilllesource
capacity. The constraints of this optimization problenitde our foregoing approximations for the loss
risk probabilitiesL,, for each engagement of the stochastic loss network. Camstict the formL,, < 54,

for 5, € (0,1], can also be included in our formulation to guarantee a eeserviceability level or mar-
ket share. We also considered in this project related opéititin formulations which include maximizing
revenue or minimizing cost subject to constraints on thegprofit margin or on cost/revenue targets.

The above formulation yields a nonlinear program and ountsmi exploits its properties based on our
results for the underlying stochastic loss network with&itPoisson or general renewal arrival processes.
This includes our establishing that, for a stochastic lagsark under the preceding large system scaling
by parametelV, the solution of the above stochastic optimization probtamverges asymptotically, in
the limit as N tends to infinity, to the optimal solution under the exacslpsobabilities. In practice, our
experience has found the sizes of the risk-based capaeitmiplg optimization to be sufficiently large so
as to obtain accurate solutions.

Another set of properties we exploit includes determinimggaon of capacitie€ that ensures the arrival
rate vectow (and the interarrival variance vecter, when arrivals come from a general renewal process)
will be served with loss risk probabilities of at mdst This region characterizes fundamental properties
between the skill supply capacity and engagement demaséplabability vectors that can be exploited to
efficiently search the feasible region in our stochasti@cép planning optimization problem. In particular,
we establish that, for a loss network scaled by param®tethere exists a constan{N) such that for
any given feasible loss risk probabilitiés (V) and any small positive numbek 1, the capacity vectors
C(N) that achieve these loss risk probabilities fall within tiegion defined by the following system of

polynomial equations and inequalities, for each skahd engagemeit

IZ|
log(1— Lg(N) = §(N)N /2% < =3 " Ay 4 Ey(N), (7)

=1
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K] |Z|
p(N) =Y (WA T (=B, ®)
p(N)(1— B(N)) < C(N) < pu(N)(12 B(N)) + 1/E(N). ©)

These polynomial equations and inequalities can be showwnltbwith respect to our loss risk probability
approximations under both Poisson and general renewahbpriocesses.

The above polynomial equations and inequalities charactigrthe feasible region of our risk-based
capacity planning optimization problem are instrumentasignificantly improving the efficiency of its
solution. Specifically, by incorporating the polynomial@tions and inequalities (7) — (9) into our opti-
mization problem, adding the corresponding constraint,oand exploiting the methodologies developed
in Lasserre (2001), we obtain a near-optimal solution witlypomial computational complexity and prob-
abilistic accuracy guarantees. To this end, we convert aymbilynomial optimization problem into a pos-
itive semidefinite program that can approximate this oation problem as closely as desired. We first
combine the polynomial equations and inequalities (7) W@ cost and revenue functions bfandC,
along with the introduction of Lagrangian multipliers. Th&e formulate the problem as a polynomial opti-
mization problem over a compact gktefined by these polynomial equations and inequalitiesyevtie
objective functiorng(z) is anm-degree multivariate polynomial having representation g,z such that
x* =z ... 2% forms the basis of the space of thedegree polynomials witlyy,, ) the coefficient vector
of g(z) and), o; < m. We then exploit the theoretical results established irskae (2001) to compute
solutions of our capacity planning optimization problenthygrovable probabilistic accuracy guarantees in
polynomial time.

The preceding formulation considers only the costs of deptpresource capacity levels without address-
ing the costs of adjusting capacity levels and skill comgimsithrough business decisions and investments.
This approach was taken both to elucidate the expositiorbanduse the first-phase of risk-based capac-
ity planning as part of our end-to-end solution is used tewheine the ideal skill resource capacity levels
from a business/financial perspective. Our formulation soidtion, however, is quite general and easily
extends to incorporate the costs of decisions/investnfentsalizing resource capacity levels. We then use
this in combination with the supply evolution & optimizati@and skill shortage & overage optimization
components of OTM to determine the optimal skill resourgeacity levels and to optimally address skill
shortages and overages. Additional details along thess éire discussed in subsequent sections.

Finally, we note that the previous study in Bhadra et al. @YGfnsiders the structural properties of a
multi-period stochastic loss network model under Poissowveds whose solution is obtained via the Erlang
fixed-point approximation. The resulting properties do generally apply to our multi-period stochastic
loss network model under renewal arrival processes nor tcsolution of the stochastic network using

either slice method.
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Simple Illustrative Example
To illustrate the complexities of risk-based capacity piag and the benefits of our approach, we briefly
present a stochastic loss network example consisting e tbkillsS;, S,, S3 serving two service engage-
ment typesl;, T7;. While the capacity folS, is shared by both engagements, the capacitysfoand.S;
independently suppofff; andT;;, respectively, wherd’; (T;;) consume one unit af; (S3) andS,. The
arrival epochs for when engagements of typand I/ need to be delivered follow independent Poisson
processes with rat&$) and10, respectively. LeC;, C,, C3 denote the capacity &, Ss, Ss, respectively.
Generally speaking, the higher the capacities, the loweildhs risk probabilities. However, resource
sharing among the service engagemeAftsif this example) can create complex interactions among the
resource capacities. In this specific example, which shgts dn the complex dynamics in the general
problem, we observe that the simple operation of increasieghared skill capacity by one unit can result
in dramatically different loss risk probabilities for a givdemand depending on the different parameter

regions in which the system operates. Figure 2 displaysdhesponding results for this simple example.

Loss Risk Probabilities & Expected Profit as function of EM Capacity Loss Risk Probabilities & Expected Profit as function of JP Capacity
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Figure 2 The graphs show an example of risk-based capacity planning.

In Case 1, we fixC; = 10 andC; = 10, and increas€’; from 16 to 26. We observe that, while both
loss risk probabilities decrease monotonically, the rafetecrease for the two engagement types are quite
different. We further see that for the same engagementtigpeate can vary quite significantly for different
values ofC;. In Case 2, the capacify, = 20 andC; = 10 are fixed, and’; varies from9 to 19. The example
indicates that increasing one unit ©f can have a very different impact on the loss risk probabditf

different engagement demands. Specifically, increasiegumit of C; results in a decrease in the loss risk
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probability of T, but increases the loss risk probabilityf;. Intuitively, this is because under the current
parameter settings, is a bottleneck foff’;, i.e., when a typd-engagementis lost, it is more likely due to a
lack of S, capacity. By increasing, capacity, we allow more typé-engagements to be accepted. But this,
in turn, results in more of the common resoufsebeing utilized byT;, and hence the loss risk probability
of T7; will increase. Furthermore, these complexities signifilyaimpact the question of optimal capacity
levels, as can be observed from the expected profit curvdmtarcases in Figure 2.

More generally, in larger and more realistic instances ofisld-based capacity planning model of human
capital supply chains, it is not possible to distinguish degrees of sharing among the skills, given the
complex interactions and dependencies among the sernia@ements and their skill requirements. Thus,
the effects of changing skill supply capacity on engagerdentand loss risk probabilities is often very
complicated, which is further complicated in turn by the gbex dynamics and interactions underlying the
optimization of capacity levels, and hence both requireaaded OR models & methods.

Finally, we consider a representative application of bsised capacity planning using ITS data. Figure 3
plots expected profits, revenues, and costs on the y-axifuagion of risk tolerance constraints along the
x-axis. The leftmost set of results represents the soldtiahmaximizes expected profit. The risk tolerance
constraints become more tight as we move to the right alomg-xis, where the rightmost set of results
represent when most of the demand being satisfied. We obarvalthough expected revenues increase
as more demand is satisfied, expected costs also increaserahtb do so at a faster rate. This applica-
tion illustrates how executives can use risk-based cappkinning to determine the best way to operate
their business with respect to expected revenues, costqrafits, revenue loss-risk tolerances, and other

business and economic concerns.

Supply Evolution and Dynamics

The management of future resource and skill capacity lemeds a long-run planning horizon is another
fundamental aspect of human capital supply chains. Our igo@ understand the evolution of human-
talent levels over time and determine the best actions tasathiese evolutionary dynamics. To highlight
some difficulties involved, consider a common scenario énrtlilitary in which a long period is required
for one to reach the highest ranks (e.g., General). Steps lmeusken at all levels of this human capital
supply chain (e.g., recruiting, training, experience, pramotions) to ensure that enough talent is avail-
able at all levels, with lower-level ranks feeding highevdl ranks over time. A model of these complex
dynamics and stochastic behaviors is needed to determpre@fate talent levels that maximize expected
performance over time, subject to supply, demand, and aagtional constraints. This challenge involves

stochastic modeling and analysis of the evolutionary dyioamnd flexibility of human capital, including
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Risk  (optimal profit) (all risks < 20%) (all risks < 10%) (all risks < 5%) (all risks < 0.5%)
Capacity 247 251 266 292 346

Figure 3 The graph shows an example business application of risk-bad capacity planning.

future internal transitions (e.g., promotions, certificat and training) and future external transitions (e.g.,
hiring, attrition, and acquisitions). The time scale ofdh@ynamics is typically on the order of days, weeks,
or months, whereas the overall planning horizon is ofterherorder of months, quarters, or years.

To capture the various sources of uncertainty in these caxgpply dynamics, we model the future
temporal evolution of human resources and skill compasdi®a discrete-time multidimensional stochastic
process in which the dynamics and uncertainties vary oneg.tFor this purpose, we leverage data on cur-
rent supply, historical data and information on human resmdynamics and business/economic conditions,
as well as input from subject matter experts. In additionrabpbilistically estimating future resource and
skill capacity levels, the dynamic evolution over time ofhfan resource characteristics and skill composi-
tion can be influenced in desired directions through varlmgness investments/policies and in response
to uncertain and changing business/economic conditioesthéfefore formulate and solve a multi-period
stochastic optimization (control) problem based on oumpgupvolution model to determine the future
evolution of human resources and skill composition throagailable investment decisions in order to
maximize business performance over time. Such availaléstment decisions in each period include hir-
ing, training, promotions, other internal characteristdl transitions, and incentivizing to reduce attrition
together with the lead times associated with each of thegmac

To model and optimize the human capital supply chain evaatiy dynamics at temporal granularities
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dictated by business operations, we use a multiperiodeatis¢ime stochastic process defined over a plan-
ning horizon comprised df" + 1 periods. Although our OTM approach is completely genetad, time

granularity most often used is monthly and quarterly period

Stochastic Evolution Models

Our stochastic supply evolution models are based on agimggeeople into human capital groups accord-
ing to attributes of interest. Examples include all talemd akills relevant to the business, and other factors
such as levels of competency, productivity, proficiency eertification. Because each person comprising
the supply side is capable of attaining and employing a ctidle of attributes, our supply evolution models
are more precisely based on aggregating people into hunmtalcgroups according to various combi-
nations of attributes. Within each period of the planningizan, individuals make dynamic transitions
between these human capital groups. Such dynamic tramsitiolude both internal and external transitions
that lead to a complex stochastic network topology, bothiwieach period and from one period to the next
across the planning horizon.

Consider a model comprised of five human capital groups: @raromers, Java programmers, SQL
programmers, programmers proficient in C and Java, and gmogers proficient in Java and SQL. Now
consider the evolution of individuals among these humatitalagroups over a single period. People are
hired into each group or attritted out of each group withaiarprobabilities, such as the probability that
some number of C programmers are hired (attritted) withendiarrent period. Similarly, probabilities are
associated with internal transitions among human capitalfgs, such as the probability with which some
number of C programmers become equally proficient in Javgraroming. The corresponding sets of prob-
abilities depend upon the period in which the dynamic ttéorss occur and the number of C programmers at
the start of this period. We exploit properties of this coaxptetwork topology to obtain scalable solutions
for our stochastic supply evolution models; one exampl@@ase matrix methods, given that transitions
tend to be localized.

Our stochastic supply evolution models consist of a digetiete, multidimensional stochastic process
that records the number of people in each human capital gidoyy consider a portion of this stochastic
process corresponding to the population of a single humpitatgroup (e.g., Java programmers). At the
start of the planning horizon, we will know with certaintyatithe organization has a specific number of Java
programmers, thus yielding a single state for each humaitatgpoup at time0. At the next period, the
state space of the stochastic process then needs to allalfoissible populations within the human capital
group of Java programmers, governed by the correspondingf $eansition probabilities. For example,
assuming a current count of Java programmers at @intiee number of Java programmers will increase or

decrease to a specific number of Java programmers atfltinvith a corresponding set of probabilities for
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hires and internal transitions into this human capital grand for attrition and internal transitions out from
this human capital group. Upon considering this portiomefdtochastic process for all possible populations
and expanding this view to the entire stochastic processacthe large number of human capital groups,
we clearly have a prohibitive curse of dimensionality pevblas the state space blows up.

To address this curse of dimensionality, we consider a dposition of the discrete-time stochastic
process that records the expected number of people in eatdrhcapital group. This renders a single state
for each human capital group and an analogous set of priiEgthat governs transitions from one state
to another within each period and across periods that ceefhie planning horizon. More formally, recall
thatZ denotes the set of skills labeled byBecause each resource comprising the supply is capable of

employing a subset of different skills, let us define
J := the family of subsets of the set of skillsthat are possessed by human resources

in which case the types of resources comprising the suppisistof elements qf/, labeled by;. Note that

these resource typgscan include factors such as productivity and efficiencylkewdow we define

y;(t) := the expected number of resources of ty timet,
h;(t) := the expected number of hires of typever the time intervalt,t + 1),

a;(t) := the expected amount of attrition of typever the time intervalt,t + 1),

wherey (t) := (yi(t),...,y.7/(t)), h(t) :== (hi(t),...,h 7 (t)) anda(t) := (ai(t),...,a,7(t)) represent
the corresponding human capital state, hiring and attritectors, respectively, fgre 7 andt =0, ..., T.
The complex dynamics of evolving human capital supply chesources and skills over time need to be

properly captured in our stochastic temporal models of huraaource evolution. To this end, we define

p;.;(t) := the stationary probability that a typgehuman resource transitions to become a typeaman

resource over the time intervilt + 1), whered ", , p; j+(t) <1.

In other wordsp; ;(t) represents the probability of transitions from state state;’ over the interval
[t,t+1). When typej attrition is strictly positive ¢, (¢) > 0), the above inequality is strick( . , p; () <

1) andl — Zj,ejpjd»/ (t) represents the stationary probability that a typesource leaves the human capital
supply chain through attrition. The corresponding humapitabhevolution one-step transition probability
matrix is given byP (¢) = [p, ; (t)],.7e 7. Note that by making the transition probability matriced amdel
vectors functions of the time interval our stochastic models support time-varying behaviorsapious

forms (including seasonal effects) for the evolution of lamneapital supply chain dynamics.
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A wide variety of approaches to set the parameters of ouhasiic temporal models were investigated
as part of this project. Based on a considerable amount tdrlual data and information, we found that
an approach which extracts the base model parameters, suttesstep transition probabilities, from this

historical human capital supply chain data and informagimvided accurate predictions. In particular, let
N j(t) := the number of transitions from stateo statej’ over the time intervalt, ¢ + 1),

forall j, ;' € J. Then the elements dP(¢) can be calculated as

N ()

) a;(t)
P (t) = i Nia(t) +a;(t)’

T TN +a(t)

Other model parameters can be calculated from historidalidéormation in an analogous manner. Our

ensuringthat  1—> " p; (1)

j'eg

experience with this approach for predicting future resewand skill capacity levels has been in excellent
agreement with realized capacity levels over time durirggést couple of years.

It is important to note that, in a few cases, we needed totbfigldljust our use of the data in the above
approach to maintain a high degree of accuracy in the huns@uree capacity estimates. This was essen-
tially due to two causes: events that were not represeantafiactual business trends (e.g., one-time acqui-
sition events) or a lack of statistical confidence in the nendd samples from the data for some states. In
the case of one-time events, we worked with subject matjgerex to filter out the impact of these events
from the data so thaV/; ;/(¢) properly represented the number of transitions with retspeature business
trends. An analogous approach was taken for other eventsipht bias the statistics to deviate from actual
business trends, including the use of business rules torfaat, as a representative example, errors result-
ing from human data entry mistakes. In the case of small sagipts, we leverage standard statistical tests
on eachV; ;(¢) to first verify a sufficiently large sample to guarantee amesinargin of error. Whenever
this statistical test fails, we aggregate similar skillia combined typg to obtain\; ; (t) whose sample
size is within the desired margin of error and then, uponiaglthe resulting stochastic temporal model,
we probabilistically distribute the estimated human resewwapacities for typg into its constituent skills
j.

Recall thath,(¢) represents the expected flow of human resources intogsthie to hiring oveft, ¢+ 1)
and thaty; (¢) represents the expected number of resources in gtdtéhe beginning of this time interval.

Then the net dynamics for human resources of typger each time intervat, ¢ + 1) are given by

Z y;(t)p; ;(t) : the transitions into statgfrom other human resource types over the time interval
J'#i
y;(t) ij,j, (t) : the transitions to other human resource types from gtater the time interval

§'#i



24

y;(t)(1— mef (t)) : the outflow of human resources from stgtéue to attrition over the time interval
jl

More precisely, fot =0,1,...,7 — 1, we have

yi(t+1) = y;(t) + hy(t) + Z Yy (O)py 5 (t) —y;(t) Z P (1) —y;(H) (1 — Z pji (1),

JET ' #i JET G #i yerg

= () + Yy (B)pyr (1),

j'eg

or in matrix form (using column vector notation)
y(t+1) =h(t)+P(t)y(t). (10)

Upon iterating this equation for evesy=1, ..., T, it follows that

() =3 ( 11 P(t')) h(t) + (HP@)) ¥(0).

t=0 t/=t+1
from which we obtain the terminal human capital supply clstitte vector

T-1 T-1 T—-1

y(T) =) ( 11 P(t’)> h(t) + <H P(t)> y(0).

t=0 \t'=t+1 t=0
Stochastic Evolution Optimization
Although discrete-time, multidimensional stochasticqaeses model the dynamics and complexities of
human capital evolution, our goal is to determine the inmesit decisions and policies that influence human
capital supply chain dynamics in desired directions overglanning horizon. The driving objective is
to maximize expected profit across all periods, where rexemepend upon demand and costs include
maintaining and achieving the skill capacity levels, ngtimat maximizing expected revenue or minimizing
expected cost subject to constraints on gross profit margin eost and revenue targets is included within
our solution framework and methodology.

To this end, we associate costs and rewards with each stater stochastic supply evolution models.
Namely, the costs and rewards for each state are capturethetsohals of the number of people in the
state and the amount of time they spend in the state. For dgathp per-period costs for C programmers
at a specific experience and proficiency level include theesponding salary and benefits (e.g., medical,
pension) as a function of the state population, with the@yais per-period rewards including revenues
driven through service delivery as a function of the popafatind demand for this state. Cost and reward
functions are also associated with transitions betwedasstevhere the costs and rewards for transitioning
from one state to another is a function of the states invaretithe number of people making the transition.

For example, the per-period costs and rewards for a set ofo@raammers becoming equally proficient
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in Java programming include training costs and relatedicedelivery revenues. Our stochastic supply
evolution optimization models associate lead times for avsilable actions taken with respect to each
state transition (e.g., hiring). These lead times captueedelays between the time the action is initiated
(e.g., hiring starts) and the time the result of the actioadtially realized (e.g., new employee comes
on board). Note that adjusting transition probabilitiesamen states within the corresponding stochastic
decision process represents investments, policies, dimthasuch as training and promotion.

Then, in addition to skill composition trajectory, our stastic optimization models characterize the
evolution of expected cost, revenue, and related financgtios of the human capital supply chain over

time as functionals of the discrete-time stochastic precgpecifically, let us define

¢;(t) := the expected cost (e.g., salaries, benefits) of human me=oaf typej at timet,

c(t) :== (ci(t),...,c (1)), the human capital supply chain cost vector at time

wherej € 7 andt =0,...,T, and denote byK (¢) the expected total cumulative costs of all human
resources over the time interviil, t), ¢t = 1,2,...,T. We then havek (T) = 3. [c(t) - y(t)], where

c(t) y(t)] =ci(t)yi(t) + ...+ ¢7(t)y,7 () under appropriate independence assumptions. The expected
cumulative revenues are obtained in an analogous manneewhe expected revenue for each pertod

is a function ofy(¢), subject to the componentwise demand constraints. Exppectéit over the planning
horizon is computed as a function of these revenue and cdstejéncluding factors such as productivity
and efficiency levels that depend upon human capital typekload, and utilization.

We therefore have also developed solutions for a correspgratiochastic optimization problem based
on our stochastic temporal models to determine the besti#wolof the human capital supply chain over
time in order to maximize business performance. To this eedgewrite the system dynamics equation (10)
into the following discrete-time linear dynamical system:

P ()
y(t+1) = y(t)+B(t)u(t), where B(t) = [B(t)1, -L], ut)=| h() |. (11

Here, then x n? matrixB(t) captures the sparsity patterns of from the one-step trangitobability matrix
P(t), and then? x 1 vectorP™“™(t) is the vector of decision variables for transitions betwseites. We
refer toy(t) (u(t)) as the state (decision) vectors of the dynamical systeimatit Our goal is to choose
the decision vectora(0),...,u(7 — 1) that maximize business performance over the planning tiofiz
We consider a general objective function of the forf_, [c(t + 1) - y(t + 1) 4+ d(t) - u(t)], wherec(t)

andd(¢) are respectively the state and decision costs at tiBecause this objective is linear in the state
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and decision vectors for the model instances herein, welitarie the minimization problem as a linear

program with decision variable vectarand weight vectow given by

y(1) c(1)
|y | e
u(0) |’ d(0)

_u(T:— )| _d(T:— )]

Our business objective is to maximize expected profit stilbgetorecasted demand for resource skills
over the planning horizon. We also considered in this ptofated optimization formulations that include
maximizing revenue or minimizing cost subject to constsaom the gross profit margin or on cost/revenue
targets. Hence, the vecteft) corresponds to the negative profit contributed by each resaf type;
present in the system at timedenoted by-7;(¢). It is important to note that these profit functions include
factors such as productivity and efficiency levels that deljpgoon resource type, workload and utilization.

The linear program has two different forms of constraint® on the state vectors due to system dynamics
and another on the control vectors due to physical condidesa We assume the initial state vecido),
weight vectorw and set of demand forecast vectdesm(¢) to be given. The system dynamics constraints

dictate that equation (11) holds, for each 0,...,7T — 1, which we compactly write as

Mz = y(0)
where
I, 0... 0 0 -B(0) 0 . 0 v(0)
I,I,...0 0 0 -B(l).. O i 0
M=1. .. . . : S : ’ y(0) = .
0 0..-I,I, 0 0 ..-B(T-1) 0

For each resource type, the total internal flow of resourésmthe system should be balanced, i.e., sum to

zero. More precisely, for each timend appropriately defined matr}(t), the vector(¢) should satisfy

Q(O) e 0n><(n2+2n) U.(O)

0n>< (n242n) B 0n><(n2+2n)

Q(t)u(t) =07y, rewritten as :
0n><(77,2+2n) Q(T_l) u(T_ 1)

= 0nT><17

o)l

or in standard form
[OnTXnT Q] z=0,7x1-

To simplify the presentation, let us initially suppose tii@ resource staffing levels at timare limited to

not exceed the demand forecdsim(¢). We then have some inequality constraints that arise froysipal
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considerations, which clearly requize> 0. The total outflow of resources of tygealso has to be less than
the current number of typgresources, which we express by an inequality of the fRn< v(0).

We now have the complete specification of our linear progsahich can be expressed as

min W-Z
subjectto Mz=y(0); [0 Q] z=0; z>0;
dem(1)
RZ S 5’(0)7 [InT 0nT><(n2+2n)T} z S
dem(T)

The output of this linear program provides an optimal veetdirom which we can cull the relevant infor-
mation regarding optimal state and decision vecioid), ...,y*(7') andu*(1),...,u*(T), respectively.

Turning now to our general formulation, various additioo@ahstraints can be incorporated by appending
or modifying the inequality constraints of the linear pragr. This includes using historical data on attrition
to lower bound the outflow from a resource type. An importamtayalization used in this project is to allow
the retention of surplus human capital resources in themigdition state space. Initially, to elucidate the
exposition, our stated objective drove staffing levels toaipmaximizing optimal point which is upper
bounded by the demand forecast. However, given the costaftihg decisions (e.g., hiring and training),
the time-varying system dynamics over the planning horauhthe nature of statistical demand forecasts, it
is often preferable to retain resources in excess of demstimdates. Without provisions for the retention of
surplus human capital, the optimal decision for a scenaitltot@mporary dips in demand lasting one quarter
might very well be to allow attrition during that quarter gmb rehire resources of the same type in the very
next quarter. This is clearly an undesirable solution frasthla cost and human resource perspective.

In our general optimization formulation supporting humapital retention, we introduce an additional
variable,s;(t), for the surplus of resource-tyge Hence, the state vectgi(t) is comprised of two parts:
the utilized portion of human resourcgét) — s(t) and the surplus portios(t). Then the preceding for-
mulation of the linear program is modified, first by expanding decision variable to include the sur-
plus vectorss(1),...,s(T). The weight vector will correspondingly be appended with venue vectors
rev(l),...,rev(T), whererev(t) is the vector of expected revenues earned by the differsatiree types
in periodt¢. Finally, instead of capping the total number of resourde=agh type by the demand forecast,

we only upper bound the number of utilized resources, naggly— s(t) < dem(t),t=1,...,T.

lllustrative Examples
To illustrate the complexities of supply evolution and ap#ation and the benefits of our approach, con-
sider a simple application scenario starting with the elmtuof a single skill. Using historical data, we

predict a significant increase in attrition in November aret&@mber because of baby-boomer retirements.
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Furthermore, the demand forecast for this skill is reldgigeeady for the subsequent months (see the black
curve in Figure 4). This suggests that there will be a sigaificshortage in this skill relative to demand
under these retirement predictions. To mitigate this maoblwe investigate the possibility of incentivizing
some of this attrition to postpone retirement until enougbge with this skill can be brought on board.
We model the behavioral responses of baby-boomer retiseasancave function of increasing incentives
where the higher the incentives, the larger the fractioreofate who are willing to postpone retirement, with
diminishing returns. For this representative scenariosapply evolution optimization solution determines

the set of investments to maximize profit relative to foréedslemand (see the red curve in Figure 4).
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Figure 4 The graph shows an example of supply evolution and optimizéin.

In contrast, many organizations would never realize thenyeg shortage because of future retirements
under this scenario until it is too late; thus, they will lasmsiderable revenue while trying to catch up over
the hiring lead time, as the green curve in Figure 4 shows e8drat more enlightened organizations might
realize this upcoming shortage in advance. However, thédyhwé enough people to fill this shortage as
they believe to be the case in September without understgtidgat transitions into this skill will naturally
occur over the next few months; thus, they will hire too matop (few) people and create a future skill

overage (shortage) problem (see the blue curve in Figure 4).

Skill Shortage & Overage Models and Optimization

We have now obtained the skill capacity targets on the demmiedfrom our risk-based capacity planning
optimization and the multi-skill human resources on thepdupide from our supply evolution & optimiza-
tion. We next take these targets and expected resourceguasimd determine the optimal matching of the
latter to the former. The overall planning horizon (on theéesrof a year) consists of a sequence of coarse

subintervals, each on the order of a month or quarter andvimgpa shortage & overage model under a
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fixed set of parameters that changes from one subintera¢todxt according to a general stochastic mod-
ulation process. We then formulate and solve across thaserstry periods the skill shortage & overage
optimization problem to determine the matching of skill aeipy targets and multi-skill human resources
that minimizes a weighted sum of the expected shortages wrages for each period. Any existing or
pre-determined assignments of skill resource capaciie$e incorporated as constraints in the shortage &
overage optimization problem and then our solution optiymaktches the remaining multi-skill resources
to the remaining demand, both over the entire planning bariZhe solution of our shortage & overage
optimization also computes the skill shortages and overagder the optimal supply-demand matching.
We capture the fundamental aspects of this optimizatiohlpro for each stationary period using a linear
programming formulation. Recall thatdenotes the set of skills, labeled hyand that7 denotes the family

of subsets of the set of skills possessed by human resources, labelefl biext we define

7; := the capacity target for skifle 7,

A; := the expected number of available human resources withsskibetj € 7,
S; := the expected shortage for skilE Z,

O, := the expected overage for skile Z,

M, ; := the amount of human resources capable of employing skiiestiilihat are matched to employ skill

Then our objective is to determine the matchidgs ; of multi-skill human resourced; to skill capacity
targets7; that minimize a weighted sum of the skill shortaggsnd overage®;, i € Z, j € J. We cannot
allow the matching of human resources to employ a skill they o not possess, and therefore we enforce
the constraint\, ; = 0 for all 7 € Z which are not an element of the subget 7, with M, ; > 0 otherwise.
All human resources need to be matched, thus implﬁﬁﬂ1 M, ;= A, forall j € 7. The shortages and
overages must satisfy a balance equation in which the sukillbfratchings and expected shortage equate
with the sum of corresponding skill targets and expectedames or more precisely

Y M+ 8 = T+ 0, Viel.

JET

Our use of weights for each skill shortageand overag&); in the objective function helps to facili-

tate skill priorities and importance factors when matchimglti-skill human resources to the skill capacity
targets. For example, it might be desirable to push the @btimatching toward “hot” skills (to reduce
shortages of such skills), all else being equal, and sitpitarpush the optimal matching away from “com-
modity” skills (to reduce overages of such skills). In aduft it can be desirable to include preferences
among the subsets of skills in multi-skill supply-demandehing. To this end, we introduce an additional

family of variablesz; ; that represent the remaining amount of human resourcebleapieemploying skill
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subsetj € J that are not matched to employ skilke 7. This causes the above set of matching constraints
to becomezﬁ‘1 M+ 2, =A;,Vje J. We also need to enforce the constraiy; = 0 for all i € 7

that are not an element of the subget 7, with Z, ; > 0 otherwise. Then, whenever subges preferred
over subsey’ for skill 7, we addM Z, ; + Z, ;» in the objective function wheré/ is a large real number
according to the bigi method for solving linear programs; see, e.g., Bertsimdslaitsiklis (1997). More
precisely, our shortage & overage optimization with prefees for each stationary subinterval consist of
solving the linear program

IZ|
Y=

03,3
subject to the foregoing constraints, whergandw? are weights for the expected shortages and overages
associated with skill € Z, respectively. Of course, setting; ; equal to0 for all 7, j yields our shortage
& overage model and optimization without preferences (bith weights). The solution to our overall
multi-skill shortage & overage optimization problem acasultiple stationary subintervals under a general

stochastic modulation process is then obtained by solviegorresponding dynamic program.

Skill Shortage & Overage Management

Once all expected skill shortages and overages have beemie¢d by solving the multi-period version
of the linear program (12), we lastly consider the set of hess$ investment decisions to manage these
expected shortages and overages. Our approach is basedmbiaation of each of the optimization capa-
bilities of OTM, namely risk-based capacity planning, symyolution & optimization, and skill shortage

& overage optimization. More specifically, an initial firgshase application through our end-to-end solution
process results in: (a) risk-based capacity planning gdingithe ideal resource capacity targets based on
business/economic considerations and the dynamics ofuiimai capacity supply chain within each quar-
ter; (b) supply evolution & optimization providing the estited human resource capacities and required
investments across future quarters to realize these d¢gpenels; and (c) multi-skill shortage & overage
optimization providing the optimal matching of expecteditirgkill human resources to skill capacity tar-
gets.

Note that the intra-quarter dynamics are captured by eathrine of our risk-based optimization and
the inter-quarter dynamics are directly captured by oupblupvolution & optimization, while both the
intra-quarter and inter-quarter dynamics are respegtabtured by single- and multiple-period instances
of our shortage & overage optimization. This partitionirighee overall OTM solution is based on various
business and organizational aspects of the ITS human tapply chain. Given these dependencies and

interrelationships among the different problems and smigt we develop a subsequent-phase iterative



31

procedure that combines all three optimization componéintst, the costs of hiring, training and retaining
are additionally incorporated into the risk-based cagagidnning optimization. Then its skill capacity

output and the skill composition output of the supply eviolui& optimization are optimally matched via

the skill shortage & overage optimization. This skill matghoutput is then fed in turn to both the risk-

based capacity planning optimization and the supply emoil& optimization for updates on the business
investment decisions to act upon. The entire process is riqggated until convergence to equilibrium
(steady state).

The general formulation of our risk-based capacity plagroptimization incorporates the full set of
resource capacity costs which include the costs of adgi$tinman resource capacity levels as well as the
costs of maintaining the desired levels of resource capdwithis general formulation, the objective (6) is
augmented to include the costs for hiring additional caggmssessing skill, training existing capacity
to acquire skilli, and retaining existing capacity with skill where existing capacity takes into account
estimation of attrition and internal transitions from oupply evolution & optimization. The capacity vector
C used in the objective function and in the stationary lossvagk is also augmented to reflect the sum of
existing and retained capacity for skilland new capacity for skill based on hiring and training. More

precisely, the objective for our general risk-based capatanning formulation is given by

IK| 17| 17| Iz 1zl

max Zuk(l—Lk)Vk — ZviCi — ZUZHCZH - ZviTCiT — ZviRCZ-R,
r=1 =1 =1 =1 =1

whereC; = CF+CH +CT +CF, v is the cost rate for hiring skiflcapacityp; is the cost rate for training
skill ¢ capacity,v/® is the cost rate for retaining skillcapacity, and”¥, C¥, C andC} is the amount

of capacity existing, hired, trained and retained for skilespectively. In addition to maximizing profits,
our risk-based capacity planning optimization can be ug@daximize revenue or minimize cost subject to
constraints on the gross profit margin or on cost/revengetsyas previously noted. The constraints of the
optimization problem can also include a budget for hiringtsptraining costs, and retaining costs, either
jointly or separately, which has proven especially usefydractice where various business investments are

managed by different organizations each having their ovalgbt

OTM Business Benefits

The OTM integrated suite of OR models & methods has been imgéed and successfully deployed
around the world to support the management & planning of T'® Human capital supply chain. In this
section we discuss various aspects of the business bemgfiitzed through the deployment of OTM over
the past couple of years. We first summarize the vast setioftiin studies over this period which demon-
strates excellent agreement between the OR models & metidBEM and real-world ITS business out-

comes. We then present a representative collection of éssitases based on recent ITS data that highlight
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the significant benefits of our OTM solution methodology opegvious approaches used by ITS, which
includes business cases where the final end-to-end OTMa@ojuvides £200% improvement in expected

profit. We conclude with reviews of the OTM impact on the ITSimess over the past couple of years,
which consistently show relative quarterly financial bessefommensurate with 2-4% of the ITS quarterly
revenue targets, as well as efforts to support future IBMtsmh offerings (both products and services) in

the marketplace.

Validation Studies
Our successful experience with the worldwide deploymenhefOTM suite to manage and plan the ITS
human capital supply chain includes a detailed analysie@faccuracy of each capability & component
comprising the OTM solution methodology over the past ceugflyears. A feedback loop was instituted
from the start to validate OTM predictions and results asfadictual business outcomes and available data
from ITS. In addition, quarterly reviews have been conddictea regular basis with ITS executives to track
and evaluate the accuracy of the OTM end-to-end solutiooh Salidation of our OR models & methods
throughout the OTM deployment has consistently demorestratcellent agreement between the outputs of
OTM modeling and optimization solutions and the correspammfusiness outcomes realized in practice.
Specifically, we have observed a typical accuracy range €586 for our pipeline revenue forecasts,
which represents an error reduction of more than 100% ovec&sts computed using the win probabilities
estimated by sales representatives. The accuracy of thallgsource demand in terms of total hours has
been observed to be generally higher than 90% relative taenyarevenue targets. Our experience demon-
strates that the loss risk probability estimates predibiethe OTM risk-based capacity planning models
have been within a few percentage points of ITS data on redEvengagement losses. In other words, we
found that the business was in fact suffering engagemesg$ahat matched the predictions from our risk-
based capacity planning capability. We have observed thgracy of the OTM supply evolution modeling
capability to consistently be within a few percentage pointestimating the skill resource composition of
organizations on the order of thousands or larger over pigrtrorizons of up to one year. The accuracy of
such estimates for smaller organizations on the order odifags were consistently found to be within 12%

of the real-world evolution of skill resource compositioreo planning horizons of up to one year.

Business Cases

The OTM suite supports the ITS end-to-end human capital gemant & planning process through both
the individual and collective real-world application o§ ilnnovative OR solution methodologies. This
includes service engagement delivery, resource capdaitynimg, service engagement portfolio manage-

ment, sales-delivery interlock, and higher level stratqg@anning. These business processes and related
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resource investment decisions are now based on the insightinformation obtained via the advanced
analysis and decision support capabilities of the OTM s@iece its original deployment in 2008, OTM
has helped ITS in making profitable and effective businesssibms at different time scales. To highlight
the benefits and successful use of OTM capabilities withig, Iih this subsection we briefly present a
few business cases based on recent ITS data to which theiga®®M capabilities have been applied.
These include representative comparisons that demon#t@benefits of our models & methods over the

approaches used by ITS prior to the deployment of OTM.

Risk-Based Capacity PlanningThe OTM risk-based capacity planning capability, desigaga deci-
sion making aid for delivery executives, supports the tedaanalysis and optimization of the complex
financial/business risks and tradeoffs associated wifierdifit service delivery models and strategies, as
well as the investigation of different policies and investits ofHuman Resources (HR) organizations to
drive revenues while maintaining acceptable levels ofscast risks. This includes the stochastic analy-
sis and optimization of business investments and capaifilgs that best balance the tradeoffs between
the costs of maintaining and achieving resource capaacigldeand the revenues of satisfying and grow-
ing service engagement demand. In practice, risk-baseatitgplanning can be applied in three different
ways, thereby providing business users with the greatsigffihand flexibility in determining the most effi-
cient and effective manner in which to manage and operatelthsiness. First, one can fix revenue targets
in some way and then determine the optimal skill capacitglethat minimize cost while achieving the
desired revenue targets (or gross profit margins). Secarelcan fix capacity costs and then determine
the optimal skill capacity levels that maximize revenuelerachieving desired cost targets (or gross profit
margins). The final application is to determine the optinll sapacity levels that maximize profit (as
originally described).

As a representative business case of the benefits obtaireggbbying this OTM capability within the ITS
capacity planning process, for a quarterly plannind & skill types and216 service engagement types,
we observe that the optimal OTM risk-based capacity planeaiution provides significant improvements
over the deterministic solution approach previously usetil$ based on linear projections of the demand
at the skill level (as described in more detail in subsegseations). Specifically, in the cost-minimizing
application, since both solutions guarantee the same wevergets, the aggregate loss risk probability
across all engagement types will also reach roughly the dameds. In stark contrast, the portfolios of
skill capacity levels under the two solutions are quiteatiéht, with risk-based optimization providing a
superior portfolio through lower loss risk probabilities £Engagements with relatively high profit margins
and lower capacity levels for engagements with relatively profit margins. While the individual loss risk

probabilities for different engagement types obtainedeuride two approaches vary by more thHaé% in
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this business case, the risk-based optimization yield$ugiso with a42% reduction in expected capacity
costs. In the revenue-maximizing application, risk-basjgtiimization tends to increase the capacity levels
for those skills that are critical to engagements with reddy high profit margins or relatively high usage
across a wide range of engagement types (with relatively gwofit margins). Hence, the optimal risk-
based solution renders reductions in both the aggregateikis probability level across all engagement
types and the individual loss risk probabilities of mostagpgment types. The aggregate loss risk probability
is 5% under risk-based optimization, as compare@3&% under the previous linear projection approach.
This in turn yields a35% increase in expected revenue. In the profit-maximizing iagpbn, risk-based
optimization determines the ideal balance of the traddiffaeen engagement revenues and capacity costs.
We observe that this instance of risk-based optimizatiaviges al00% increase in expected profit over
that obtained under the previous ITS approach. While ok+lyésed solution yields lower expected revenue
for this business case, it also renders significantly lovagacity levels than the previous linear projection
approach, both for individual skill capacity levels andlie aggregate. These cost reductions in turn yield

a significant increase in expected profit.

Supply Evolution and Dynamics The supply evolution & optimization capability providescikon
making support for HR organizations, allowing users to yrahistorical human capital trends and dynam-
ics, perform predictive modeling of future human capitahdsics, model future scenarios to understand
the effect of different investments/policies on human tpiends/dynamics, and optimize strategic deci-
sions relative to business goals. We next describe resoftgparing the estimated evolution of human
capital from OTM capabilities with that provided by previoll'S approaches. Specifically, we consider
the staffing levels predicted by two different forms of OTMpply evolution & optimization: (a) supply
evolution models (SEM) using historical transition inf@tion; and (b) supply evolution & optimization
(SEO) using the costs of investments together with SEM aretésted demand. The staffing levels from
these two OTM capabilities are then compared against thesonding approaches previously used by
ITS: (a) linear projections of growth and shrinkage in resetskills based on historical hiring and attrition
trends for each skill in previous quarters; (b) myopic gekcthat adjust skill capacity levels to address a
certain fraction of the skill shortages and overages reddti forecasted demand.

We consider a particular aspect of the ITS business andmpedfaarterly evolutions of the ITS resource
supply. As a representative business case, we use an ITSaelat@mprised of around 500 skills (including
different levels of competency in each area). For SEM, weutated historical hiring, attrition and transi-
tion (from one skill type to another) amounts from quartequarter and applied them to parameterize the
OTM supply evolution models for future quarters. To demmatstthe richer dynamics captured by SEM,

we contrast the predicted staffing levels for differentlskilith that achieved by the deterministic approach
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previously used by ITS based on historical hiring/attrittoends. Figure 5 presents the staffing levels for
three skills looking eight quarters out into the future fwaturrent quarter Q0) under both approaches. We
observe, on the one hand, that SEM tends to provide bettdictioins of future staffing levels by preserving

various business cycles and dynamics as is evidenced bydberate degrees of periodicity and growth

in the supply predictions. SEM is able to faithfully repraduntricate business cycles and staffing patterns
because it captures the essential features and corresggratiameters of the dynamics of the human cap-
ital supply chain. On the other hand, the previously useddpfroach based on linear projections leads
to over- and under-staffing because it ignores importanahjos such as the probabilities associated with

transitions between states of the human capital supplychefer to, e.g., skill 3in Q4 and skill 1 in Q4 in

Figure 5.
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Figure 5 The graphs compare supply evolution models and linear projetions.

Finally, for a given demand forecast over the next four qgrartwe present results that contrast the profit-

optimal staffing decisions obtained from SEO with those led by the previous ITS myopic approach
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that adjusts capacity levels up to a certain fraction 0,0.1,...,0.9, 1 of the skill shortages and overages.
The a-myopic policy exhibits an interesting concave behavioshswn in Figure 6(a). Even under the
best setting forv ~ 0.4, SEO provides an increase of close&5ts in profit. As explained below, capacity
level adjustments to address skill shortages and overagder the previous ITS approach tended to be
conservative and consist of relatively small values:ofhis instance of the business case then indicates
that SEO would provide an even larger increase in expectgit pf around80% in comparison with the
correspondingx-myopic policy. These dramatic improvements in expecteditoare related to our earlier
observations that unnecessary responses to temporarindgipmand can be counterproductive relative to
the various cost and revenue structures of the busines&xaamnple, Figure 6(b) depicts significant over-
and under-staffing under the previous ITS myopic policyerab, e.g., skillB in Q1/Q3 and skill A in

Q1/Q4, respectively. This, in turn, entails unnecessary investroosts and reduced profit.
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Figure 6 The graphs compare supply evolution optimization and are-myopic policy, « € {0,0.1,...,0.9,1}.

Skill Shortages and OveragesOTM multi-skill shortage & overage optimization provides efficient
and accurate solution for determining the best matchingufirskill supply resources against capacity tar-
gets in order to minimize skill shortages and overages, atigare are on the order of thousands of different
skills (including different competency levels) in ITS. Imetend-to-end OTM framework and methodology,
once capacity targets for each skill have been determirreghith quarter via risk-based capacity planning
optimization under forecasted demand, then multi-skiirsdge & overage analysis is performed against

current and future quarterly supply resources estimagedwpply evolution & optimization. Using ITS data
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as part of a business case, we compare the optimal solutiontfre OTM multi-skill shortage & overage
capability against results from the previously used ITSragph, where multi-skill resources are simply
partitioned into individual skills based on historical eages of their skill deployment in the prior quarter
(as described in more detail in subsequent sections). Aseptative business case wii) employees and
307 skills shows that the OTM shortage & overage optimizatiaids a25% reduction in skill shortages,

42% reduction in skill overages ar&2% reduction in the sum of skill shortages and overages.

Skill Shortage & Overage ManagementWe have seen that the ideal capacity target output from the
risk-based optimization and the resource skill output friie supply evolution & optimization are both
input to the shortage & overage optimization. The resulskij shortage and overage output is then fed
back into the risk-based capacity optimization and the uegolution & optimization. Here, the costs
of skill capacities in the risk-based optimization shouidlide not only the costs for maintaining these
resource capacity levels, but also the costs of achievieggthesource capacity levels (e.g., the costs of hir-
ing and training decisions), which involve the outputs oftbitne supply evolution & optimization and the
shortage & overage optimization. Such interactions haen lvealized in practice by an iterative method-
ology based on these three OTM capabilities, in which thésaafshiring, training and retaining are incor-
porated into the risk-based optimization, then its output the resources output from the supply evolution
& optimization are optimally matched by the shortage & ogeraptimization, whose output is in turn fed
into the supply evolution & optimization for HR investmerntdates. The process is then repeated until
equilibrium (steady state) is reached.

Applying this iterative OTM skills shortage & overage maaagent capability to the above business case,
we observe that the overall end-to-end OTM solution ideggtifhe most critical skills in which the business
needs to invest, with respect to the impact on both expeetszhues through higher capacity levels and
expected costs to realize these capacity levels. Eachideraf this process adjusts business investment
decisions to move skill capacity levels to their optimumrp@ccording to the criticality of the skill. The
final OTM solution provides @00% improvement in expected profit over that obtained via théectibn
of ITS approaches used prior to the OTM deployment as preljjawted. On the one hand, this overall
solution yields expected revenues that are Gfitybelow that obtained as part of the first-phase (idealized)
application of risk-based capacity planning optimizatiorwhich the costs to realize the corresponding
ideal resource capacity targets are ignored. On the otimel, mhen such costs are factored into the analysis,
the idealized risk-based capacity planning solution remda expected profit improvement of only7%
in comparison with the previous ITS approaches. The inereaselative expected profit improvements of

200% is the result of our iterative OTM skills shortage & overagamagement methodology.
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Business Impact

Our experience with the business impact of the worldwidéaepent of the OTM suite to manage and plan
the ITS human capital supply chain has been very succe3$felOTM suite serves as a central analytics
and information base for all organizations and businesssusghin ITS, integrating information from
multiple sources and creating reports for multiple busirfesctions. Although the final outputs of OTM
are optimal resource matchings, reports on shortages ardges, and business decision and investment
recommendations, distinct components of the integratidel save also been independently used in practice
by different ITS business users to support various additioranagement and planning activities.

To track and evaluate the business impact of the OTM solutiethodology, quarterly reviews have been
performed on a regular basis with ITS executives. Thesmasts of business impact are based on com-
parisons with the previous approaches employed by ITS ichvimear projections were used to forecast
ongoing demand and pipeline demand (based on win prohaipititits from sales representatives), first at
the level of service engagement demand and then down towbleoliendividual skill demand. The previous
ITS approach also consisted of partitioning the multitskisources among their individual skills based on
historical averages of their skill deployment in the preg@uarter as being representative of their likely
skill deployment in the next quarter; e.qg., if a person sfE&86 of their time employing skild and 40%
of their time employing skillB last quarter, then that person was split inté and0.4 of a skill A and
B resource, respectively, for the upcoming quarter. (Givendynamics of service engagement demand,
however, this was neither an accurate representationaf/|gkill deployment in the next quarter nor the
best way to deploy multi-skill resources in order to miniemghortages and overages.) Then skill shortages
and overages were directly obtained as the difference leettvee supply and demand for each skill. This
was followed by ad hoc investment decisions to hire and tesources in order to reduce a certain fraction
of the skill shortage and overage estimates. A relativelglsiraction was typically used due to perceptions
of inaccuracies in these previous ITS approaches. In aadibi its lack of OR models & methods, the pre-
vious ITS approaches resulted in a planning cycle that wasleag and resource intensive. This is in stark
contrast to the deployment of OTM which supported the ahiditrun the OR models & methods more fre-
guently and in immediate response to unexpected eventdan tr accordingly adjust and fine-tune human
capital management & planning investments and strategies.

The business impact of OTM on the effective and efficient ganzent & planning of the ITS human
capital supply chain has been significant. As part of the tqeugrreviews with ITS executives, we have
consistently found the reductions in skill shortages anerages obtained from our multi-skill shortage
& overage optimization to generally fall within the range-80% and 30-150%, respectively, in compar-

ison with the previous approach based on historical averdggrthermore, detailed analyses have been
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performed over the past few years to estimate and reviewubméss impact of OTM on the ITS human
capital supply chain. These business benefits are in cosgpewith the corresponding results that would
have been obtained under the ITS approaches used priordeph@yment of OTM. The methodology used
for this comparison consists of estimating the revenue astimpact of predicted skill shortages and over-
ages as well as of the investment decisions made to addesssghortages/overages, which was performed
under both OTM and the previous ITS approaches. Specifithige business impact computations were
based on: (a) the increased costs for human resource irmeistand the decreased profits for lower utiliza-
tion when there were skill overages; and (b) the increasstbsdor hiring and training and the decreased
revenues for insufficient human resources to fulfill the dedhahen there were skill shortages. The initial
set of business impact comparisons reviewed with executivea quarterly basis demonstrated that the
financial impact of OTM in its first year of deployment were @811 million within a single quarter in
the U.S.A. alone, in terms of cost savings and increasedueveSimilar results have been obtained as part
of the worldwide OTM deployment over the past couple of yelansng which the findings of our business
impact studies, reviewed on a quarterly basis with ITS ethees, consistently demonstrated that the quar-
terly impact of combined relative cost and revenue benefiteuthe OTM solution were commensurate
with 2-4% of ITS quarterly revenue targets over that undemttevious ITS approaches.

In addition to the impact of OTM on the ITS business, we haweliped prototype implementations
of several OTM capabilities & components within IBM softwaslatforms to support future IBM solution
engagements (both products and services) in the marketplge also have been and are continuing to
collaborate with various IBM product groups on the develephof pilot solutions for a broad set of human
capital management & planning clients, which are fully luage the core OTM models & methods.

Although this paper focused on one particular implemenatif OTM, the possibilities for using the
OTM framework and methodology in a broader applicationirsgftbeyond information technology ser-
vices, are numerous. Concepts of labor and people are tensihservices organizations, and companies
in healthcare, finance and insurance, retail or public segte asking the very same questions addressed by
the OTM models & methods. What is the outlook for our nursiragkforce 3 years from now if we keep
our current hiring, training and attrition policies? Willewhave enough insurance agents with a particular
set of skills to meet product demand? How much sales can we @ith the current salesforce? How many
financial analysts should be hired next year to deliver ongvawth objectives? As a result, the issue of
human capital management & planning is becoming one of thet important factors on the agenda of
any CEO, and the ability to manage skills and human resounces effectively and efficiently is becom-
ing the critical driver of success for most services orgatnins, especially those with a large number of

employees and diverse product, solution or project paoolAnalysts research indicates that, despite the
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majority of organizations making significant financial istents in training, development and recruitment
of their people, they spend up to an additio®#l of their total wages and salaries, on average, to manage
human capital issues, many of which could be avoided or tumi® bottom-line contributions by using
more advanced solutions for human capital management.riibgrated OTM suite is a novel first step in
this direction, and in collaboration with IBM product grayye continue to enrich our models & methods

to create a general human capital management & planninipptafor a broader client base.
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