
RC25239 (W1111-175) November 21, 2011
Computer Science

IBM Research Report

Evaluating the Performance of Two Disk-Offload
Architectures for Application-Caching Middleware

Avraham Leff, James T. Rayfield
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598  USA

Tom Gissel, Ben Parees
N111/B503

4205 S. Miami Blvd.
Durham, NC  27703-9141  USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



Evaluating the Performance of Two Disk-Offload Architectures for
Application-Caching Middleware

Avraham Leff, James T. Rayfield
IBM T.J. Watson Research Center

POB 704
Yorktown Heights, NY, USA
{avraham, jtray}@us.ibm.com

Tom Gissel, Ben Parees
N111/B503

4205 S Miami Blvd
Durham NC 27703-9141

{gissel, bparees}@us.ibm.com

Abstract

Main-memory caching is a well-known technique
for improving application performance. However, the
caching requirements of certain workloads exceed even
modern main-memory capacity. Disk-offload can be
an effective technique for such caching scenarios. In
this paper, we present two disk-offload caching archi-
tectures, evaluate their performance, and draw conclu-
sions as to their relative effectiveness.

1. Introduction

Caching data from slower to faster media is a
well-known technique for improving performance. In
application-caching, the caching is handled outside of
the standard database middleware path. The primary
reason for this is peformance: by giving up some of
the functionality and guarantees (acid properties [3])
provided by traditional database software, applications
may be able to achieve very significant speed improve-
ments [12].

For example, application data often does not need
to be durable, either because it is derived from durable
sources (e.g., a customer’s total balance across all their
accounts), or because the consequences of data loss are
not that severe (e.g., loss of web session data requiring
the customer to log-in again). Other performance ben-
efits may result from using a non-relational data model,
if appropriate for the application, and from giving up
the ability to execute complex dynamic queries (e.g.,
using SQL) against the data.

Finally, many non-traditional caching systems give
up strict consistency (atomicity, consistency, and isola-
tion) in order to achieve greater performance. For ex-
ample, data in a main-memory cache is not usually kept

completely consistent with the data in the back-end
database. When the application needs to read data, it
typically checks first to see if the data has recently been
cached. If it has, the cache data is used by the applica-
tion even though it may be (slightly) stale. On write,
the cache and database are updated at approximately
the same time, but since two-phase commit is usually
not used, the cache and database may temporarily re-
turn different values for the data.

Note that although the caching is handled outside
the normal database-access path, it still may be man-
aged by middleware (e.g., a servlet engine communicat-
ing with a shared cache), or directly by the application
code.

A class of middleware has been developed to sup-
port application-caching, including Memcached [7] and
WebSphere eXtreme Scale [14].

1.1. Motivation

Although it seems clear that a ram-based cache of
almost any size may be physically constructed, con-
figurations using only ram may not be the most effi-
cient. For example, a mix of ram and solid-state disk
(ssd) may provide better price/performance, smaller
floor-space, and/or lower power requirements. Simi-
larly, virtual memory was invented because a mix of
ram and disk generally provides a more cost-efffective
solution for storing process data than an all-ram con-
figuration. A cache that uses a mix of ram and disk
is even more reasonable when the data includes impor-
tant but non-critical temporary data (e.g., web session
data). In such cases, overall application performance
is improved by using a cache that supports more data
that fit in ram, even if access times are worse than
ram-only performance.

When main-memory is too small to accommo-
date the data-sets of an enterprise’s applications,
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application-caching is faced with the following chal-
lenge. In traditional database-caching, the database
will transparently offload data from main-memory to
disk, making room for incoming data using man-
agement policies such as LRU. With application-
caching, although the applications have populated the
main-memory cache “by hand”, it is unreasonable
to place the offload responsibility on the application.
Application-caching middleware must therefore be aug-
mented with disk-offload capability. The increased
availability of flash memory, especially ssd, makes a
disk-offload approach attractive because it reduces the
performance gap between the main-memory and disk
layers of the system.

At first glance, it is tempting to apply well-
known and mature database techniques to augment
application-caching with a disk-offload capability. A
closer look shows that database techniques are tightly
coupled to providing acid properties to the client.
Naive coupling of application-caching middleware to
a dbms unacceptably degrades the performance that
is the main reason for the use of application-caching.
When providing disk-offload, application-caching mid-
dleware should therefore exploit the fact that its cached
data have more relaxed requirements regarding trans-
actions and durability. That is, disk-offload is used
to increase the size of the data-sets available to such
applications, rather than providing such applications
with a “database”. Note that commercial products ex-
ist are similar to the application-caching disk-offload
work that we discuss in this paper. These include Ora-
cle Coherence [2], and Schooner NoSQL / Memcached
Appliance [10]. However, these products are designed
to provide durability and some transactional capabili-
ties. In our paper we propose alternative disk-offload
architectures for application-caching middleware (Sec-
tion 2) and evaluate their performance (Section 3). We
present some conclusions about disk-offload architec-
ture design in Section 4.

2. Disk Offload

Disk-offload systems can be characterized in terms
of several important architecture decisions:

• Fixed versus Variable Sized Pool Elements:
Whether to internally manage main-memory as
a pool of fixed-sized or variable-sized elements.
(Traditionally, fixed-sized elements have been
termed buffers or frames. Variable-sized elements
are called “slabs” [13, 1].) If, for example, buffers
are sized at 4K each, then a 13K data element will
be partitioned into four buffers. In contrast, if the

system manages a pool of variable-sized elements,
the 13K data element will be managed as a sin-
gle unit. The variable-sized elements may range in
complexity from a set of byte arrays or a set of ob-
jects. Cache replacement algorithms such as LRU
or Clock-Pro [5] are examples of pool-management
issues whose implementation varies depending on
whether the system uses fixed-sized or variable-
sized pool elements.

• Fixed versus Variable Disk Addressing:
Whether data are stored on disk in fixed-sized
pages or in variable-sized chunks.

• Aggressive versus Lazy Disk Mapping:
Whether or not to defer the work needed to map
main-memory data to disk until absolutely nec-
essary (i.e., when the data must be offloaded to
disk).

In this paper, we consider these issues by contrast-
ing two disk-offload architectures: a synchronous archi-
tecture versus a spill-over architecture. These terms
relate to how and when the system does the mapping
from main-memory to disk. In the synchronous design,
even if movement between main-memory and disk does
not maintain acid properties, main-memory and disk
versions of the data are kept as synchronous as possible.
This design resembles a traditional database design
albeit with relaxed consistency requirements that are
more suited to the application-caching usage scenarios
(Section 1). This design does agressive disk mapping
because the data are viewed as ultimately residing on
disk even if it currently resides in main-memory. Since
this design is more disk-centric than spill-over , we in-
cluded the use of fixed-sized pool elements to manage
main-memory and the use of fixed disk addressing in
this architecture.

In the spill-over design, data are primarily viewed
as residing in main-memory; data are spilled-over to
disk only as main-memory is filled with other data.
This design decouples the main-memory and disk ver-
sions of data to a greater extent than the synchronous
design; this is possible only because application-
caching doesn’t provide traditional durability guaran-
tees. Since this design is less disk-centric than syn-
chronous, we included the use of variable-sized pool
elements to manage main-memory and the use of vari-
able disk addressing in this architecture.

2.1. The synchronous Architecture

Figure 1 shows the synchronous architecture studied
in this paper. It is based on an Aries-like design [8],
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Figure 1. The synchronous Architecture

except that our synchronous design is simpler because
(as discussed in Section 1) it does not require logging,
transactions, or durability.

The architecture divides the ssd into fixed-sized
pages, of which a certain percentage may be cached in
main-memory. This is done by configuring the frame-
pool layer (termed a buffer-pool in [3] (Chapter 13.4))
to hold a specified number of frame control-blocks in
main-memory. A frame control-block instance repre-
sent a single (fixed-size) disk page. When clients need
to read data from a specific disk page, the frame-pool
reads that data into a frame control-block, using a LRU
Clock algorithm to page another frame control-block to
disk if no room remains in main-memory. Conversely,
when a disk client has modified the data, the frame-
pool is responsible for writing the changed data to
disk. A cleaner daemon is used to periodically write
such dirty frame control-blocks to disk. (It is this
behavior that makes the architecture “synchronous”.).
The space-manager interacts with the frame-pool
layer to allocate pages on disk so that new data can
be stored, and to free previously allocated disk pages
when data are deleted.

Application-caching clients interact with the disk-

offload component via the blob-manager api. This
presents a c/r/u/d interface for byte arrays (“blobs”).
A blob is stored on or more pages (if the blob size
exceeds the system’s page size); one or more blobs are
stored on a single page (if the blob sizes are less than
a single page).

From the perspective of achieving good perfor-
mance, the most important issues with implementing
the synchronous architecture were:

1. Determining the optimal page-size. In this ar-
chitecture, all pages have a fixed-size, yet client
work-loads may have blob sizes that differ from
the system’s page size. We found that the optimal
page size is one that matches the average blob
size; given that the latter may not be known in
advance, this implies a weakness in this architec-
ture.

2. Efficiently allocating space for new or updated
data. In this architecture, the size of the largest
free space in each page is stored in a BPLPage
(Blob Page List Page). The algorithm used was
a linear search through BPLPage entries until a
large enough space was found. This necessitated



a potentially lengthy search, especially in the case
where the BPLPages were mostly full. It would be
difficult to come up with a more efficient algorithm
than linear search, because the requests for stor-
age are all different sizes, and the space remaining
on each (fixed-size) page is random.

2.2. The spill-over Architecture

Figure 2 shows the spill-over architecture studied in
this paper. This architecture was designed specifically
to perform well in situations where the application’s
data-set “mostly” fits in main-memory, but “some”
disk-offload is required hold the entire data-set. From
that perspective, it is natural to do lazy disk mapping
because there is a relatively low probability of actually
paging data to disk.

Application-caching clients interact with the disk-
offload component via the placement-manager and
storage-entry apis. All cache items – even if
their values are stored on disk – have their keys
and other meta-data stored in main-memory. When
the placement-manager inserts an object into the
cache, it returns a storage-entry to the client. This
is a proxy to either a cache entry (while the object is
resident in main-memory) or to a Slab instance (while
the object is resident on disk). In contrast to the syn-
chronous architecture, the placement-manager will
not write a storage-entry’s data to disk until the
assigned main-memory has been exhausted. The spill-
over architecture is “lazy” because only at that point
are storage-entry instances spill-over to disk.

3. Performance Evaluation

In this section we compare the effectiveness of the
two disk-offload architectures. We implemented the
synchronous and spill-over architectures in Java rather
than C to ease interoperability of the disk-offload com-
ponent with an orb-based server environment.

3.1. Benchmark Methodology

Our benchmark methodology is to measure the
throughput (operations per second) that results when
the cpu of the server running the caching service is ap-
proximately 100% utilized. This is done by injecting
an application-caching style work-load from multiple
clients. The work-loads used were not network or disk
constrained.

In order to control for (1) the effect of using Java
as the implementation language, and (2) the impact

of non-cache components in application-caching mid-
dleware, we used jmemcached [6] (v0.9.1) to provide
a base-line of main-memory performance. jmemcached
“is a Java implementation of the daemon (server) side
of the memcached protocol”. We compare the perfor-
mance of the vanilla jmemcached with versions that
differs only in that they:

• replace the use of the CacheImpl class with a sub-
class that delegates the c/u/d operations to the
disk-offload component.

• replace the use of the LocalCacheElement class
whose elements are stored in the Concur-
rentLinkedHashMap with a subclass that delegates
the getData() implementation to the disk-offload
component.

All other portions of the middleware (e.g., the com-
plete Memcached protocol support and the use of JBoss
Netty [9] for non-blocking, scalable network I/O) use
the same code as the vanilla jmemcached .

Performance scenarios are characterized by the:

• Average size of the data being cached; in our tests
this varies from 1 KiB to 16 KiB. Our experi-
ments showed that (for our system under test (Sec-
tion 3.2) data-sizes larger than 16 KiB caused the
network to be saturated. The size of the Data
values are generated using an exponential distri-
bution with a parameter equal to the specified av-
erage data size.

• A fixed amount of main-memory allocated to the
caching component; we set this to 500 MiB in our
experiments.

• A PWrite value that specifies the ratio of “write”
to “read” operations; in our experiments, we use
the values of 0.2 (i.e., 80% of the operations on the
cached data were reads rather than writes).

• The size of the data-set accessed by the benchmark
during a given experiment. A uniform probability
distribution is used to select which datum is ac-
cessed during a given operation.

We specify the data-set size in terms of a weight-
ing factor of the amount of main-memory allocated
to the caching component. Since 500MiB are al-
located to main-memory, a factor of 0.8 means
that all of the accessed data can fit into main-
memory so that no data needs to be offloaded to
disk. When the factor is set to 12.0, the data-set
occupies 6GiB, and more than 90% of the data
must be offloaded to disk.
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Figure 2. The spill-over Architecture

The work-load driver uses the spymemcached
client [11] to drive invocations of the Memcached’s
client api on the server. First, the driver creates (i.e.,
caches) a data-set with the specified number of ele-
ments, whose elements have the average specified size.
Then, the driver invokes a sequence of read and write
operations that are mapped to the retrieve and up-
date api. After warming up the system for 30 minutes,
we report the maximum number of such operations per
second measured over 30 minutes.

3.2. System Under Test

The system-under-test consists of two clients con-
nected to a server via two full-duplex, 1GB Ethernet
networks. The server is an Intel X5550, running at
2.66 GHz, with one core and one thread. (Given the
network and client characteristics, we had to turn off
seven of the eight cores in order to saturate the server.)

The server contains a 160GB ssd PCIe Adapter [4].
The reported performance features of the ssd are:

• High performance – 230 times better IOPS. That
means, for example, 97,014 IOPS at 4K block ran-
dom reads versus 420 IOPS for a 15K RPM 146GB
disk drive.

• Low latency of 50 µ-seconds – 1% of the latency
of a 15K RPM 146GB disk drive.

• 600 MB/sec random writes sustained.

3.3. Results and Analysis

Figure 3 and Figure 4 show the performance of
our implementations of the synchronous and spill-over
disk-offload architectures. The x-axis shows a range
of data-set sizes, starting with 0.8 of the available
main-memory, and increasing till 12.0 times the avail-
able main-memory. The y-axis shows the throughput
achieved by a given disk-offload architecture, expressed
in terms of operations per second. Figure 3 shows the
performance for data-values that average 1KiB; Fig-
ure 4 for data-values that average 16KiB. Each Figure
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also shows the base-line performance of jmemcached ,
representing the performance of a main-memory-only
application-caching middleware. Because our imple-
mentations of synchronous and spill-over are embed-
ded inside the jmemcached middleware, their per-
formance cannot do better jmemcached for the “in-
memory” (0.8) case. jmemcached cannot do disk-
offload and, when its main-memory capacity is ex-
hausted, simply throws out cache data to make room
for incoming data.

First, note that for the in-memory case, spill-over
performs about as well as jmemcached : its performance
is 98% of jmemcached for the 1KiB scenario, and 97%
of jmemcached for the 16KiB scenario. In contrast,
synchronous’s performance is 58% and 38%, respec-
tively, for the in-memory case. In other words, spill-
over shows that enhancing application-caching mid-
dleware with disk-offload capability imposes negligible
overhead for environments where this capability is not
needed. Note that synchronous could have used the
same methodogy: offloading to disk only when memory
is (nearly) full. This most likely would have resulted in
a graph that started at 97% or 98% of jmemcached , and
declined to the synchronous results as main-memory
utilization increased to large values.

Second, note how much better spill-over performs
than synchronous for disk-offload scenarios. In fact,
the performance of spill-over increases relative to syn-
chronous as the disk-offload factor increases. This is
most likely due to the Slab allocator response-time be-
ing roughly constant, as opposed to the linear search
required by synchronous.

On the 1KiB scenario (Figure 3), the relative per-
formance of spill-over versus synchronous peaks at a
disk-offload factor of 7.5 (3.23x). The reason is per-
haps because, as the disk-offload factor increases, more
offload operations are necessary, and so the advantages
of spill-over over synchronous become less significant.

4. Conclusions

This paper shows that the spill-over disk-offload ar-
chitecture can provide performance that imposes al-
most no penalty on existing main-memory application
caching middleware for the in-memory scenario. It also
shows that the spill-over architecture is superior to
the synchronous architecture for disk-offload scenar-
ios. There are two reasons for this. First, synchronous
is unnecessarily aggressive in moving data from main-
memory to disk, periodically moving “dirty” data to
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disk so as to keep main-memory and disk synchronous.
In contrast, spill-over postpones this expensive opera-
tion until the system actually needs main-memory so
that other data must be evicted to disk. Second, spill-
over is more efficient than synchronous in the way it
manages space allocation on disk, using constant-time
operations rather tha linear search of the disk freelist.
This is because spill-over allocates fixed-size blocks on
disk, rather than variable-size blocks like synchronous.

Having designed and implemented these alternative
disk-offload architectures, it seems obvious in hind-
sight that spill-over will perform better than syn-
chronous. However, it is important to note that spill-
over achieves this performance by being a special-
purpose middleware, suitable only for an environment
for which a cold-restart is an adequate recovery strat-
egy. Our original design (synchronous) could be ex-
tended to implement Durability. As soon as these re-
quirements change – e.g., because data are too impor-
tant to be corrupted; because of atomic (transactions),
or atomicity requirements; or because a cold-restart
takes too much time – some degree of synchronicity
becomes important. Furthermore, spill-over relies on
storing all the keys in ram. While this architecture
could be modified to fetch the keys from ssd if nec-

essary, it would result in slower performance for spill-
over .

On the one hand, this would be more difficult with a
spill-over design. On the other hand, synchronous does
not go all the way towards implementing Durability.
For synchronous to go farther towards durability would
make it even slower.
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