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Abstract

Business and text analytics applications have seen rapid
growth, driven by the mining of data for various decision
making processes. Regular expression processing is an
important component of these applications, consuming as
much as 50% of their total execution time. While prior
work on accelerating regular expression processing has fo-
cused on network intrusion detection systems, business an-
alytics applications impose different requirements on regu-
lar expression processing efficiency. We present an analyti-
cal model of accelerators for regular expression processing,
which includes memory, bus-, I/O-, and network-attached
accelerators with a focus on business analytics applica-
tions. Based on this model, we advocate the use of vector-
style processing for regular expressions in business analyt-
ics applications, leveraging the SIMD hardware available
in many modern processors. In addition, we show how
SIMD hardware can be enhanced to improve regular ex-
pression processing even further. We demonstrate a realized
speedup better than 1.8 for the entire range of data sizes of
interest. In comparison, the alternative strategies deliver
only marginal improvement for large data sizes, while per-
forming much worse than the SIMD solution for small data
sizes.

1 Introduction

We are experiencing a dramatic growth in the amount
of unstructured data that our businesses produce. That data
can be free-format text (as in e-mails and documents), data
stored in variable-length descriptive formats such as XML,
images, voice, video and various other forms. Business an-
alytics applications are an enabling technology that allows
us to process and mine these data, extracting value that can
be useful for the business.

It is particularly challenging to process these unstruc-
tured data in a way that fully leverages all the parallelism
that modern processors have made available. A widely cited
Berkeley study [1] identifies the finite-state machine (FSM)

algorithms associated with text processing as the hardest
kernel to parallelize among a set of 13 representative work-
loads (the Berkeley “dwarfs”).

FSM-based workloads constitute a significant fraction of
non-numeric applications, and regular expression (regex)
matching is one of the most popular examples of FSM-
based workloads. Not only is regex matching crucial in
text analytics, but it also constitutes the core of Network In-
trusion Detection Systems (NIDS) and anti-virus scanners,
and is a heavyweight component of search-engine index-
ers, XML processors, and programming language compil-
ers and interpreters.

In this paper, we focus on the efficient processing of
unstructured text through regex matching. Our goal is to
identify the most effective way to accelerate regex process-
ing for our chosen problem domain. To this end, we pro-
vide an analytical comparison of network-attached, I/O bus-
attached, memory bus-attached, and inline-SIMD accelera-
tors in the context of text processing applications for busi-
ness analytics. Network-attached appliances are special-
ized engines that are often used to preprocess data streams,
simplifying subsequent data processing on the host. Other
forms of regex accelerators include specialized hardware
that attaches directly to either the memory bus or the I/O
bus of the host system, and inline accelerators implemented
as functional units inside the processor core.

Although specialized hardware accelerators are the
fastest regex engines, and are frequently used in network
processors for network intrusion detection, we show that
they are not the optimal solution for business analytics ap-
plications. Unlike network intrusion detection systems ap-
plications, where streaming data have to be checked at wire
speed, business analytics applications differ significantly in
the way they use regex matching. Different requirements of
applications result in different optimal solutions.

We show that SIMD processing, i.e. inline accelera-
tion using the SIMD (single-instruction, multiple-data) unit,
is the most effective approach for our problem domain.
Wide vector SIMD units are available in several modern
processors, including the IBM POWER architectures [2, 3],
the Cell Broadband Engine [4], and Intel processors that
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support streaming instruction set extensions (MMX, SSEx,
AVX).

We further explore architectural support to enhance
SIMD processing for text analytics. We identify three spe-
cific requirements for efficiently implementing inline ac-
celeration through the SIMD units. First, the processor
must provide fast data movement between the SIMD and
the fixed-point units. Second, the processor must provide
an efficient “gather” operation to collect data from different
sources in one place. Finally, the processor must have fa-
cilities to support data streaming. We discuss the rationale
of these requirements, and measure the impact of a possible
gather operation.

In summary we make the following contributions. First,
we present an analysis of text analytics applications. Sec-
ond, we develop an analytical model of different types of
accelerators and an exploration of tradeoffs for text analyt-
ics applications. Finally, we discuss architectural enhance-
ments to improve the performance of the in-core SIMD unit
for better inline acceleration of regular expression process-
ing in text analytics applications.

The remainder of this paper is organized as follows. Sec-
tion 2 is an overview of the characteristics of text processing
in business analytics applications. Section 3 presents a per-
formance study of the different acceleration options using
analytical models. Section 4 described an efficient imple-
mentation of FSM code using SIMD processing, while Sec-
tion 5 discusses the architectural support that we identify
as being important for efficient inline acceleration through
SIMD processing, and we evaluate its effectiveness in Sec-
tion 6. Finally, Section 7 discusses related work and Sec-
tion 8 presents our conclusions.

2 Business analytics applications

In this Section, we discuss both the extent and the way
in which regex matching is used in business analytics appli-
cations. In these applications, the most important applica-
tion of regex matching is in tokenizers. A tokenizer divides
a stream of input characters into distinct words, according
to a predefined set of regular expressions (regex). Classi-
cally known from compilers and interpreters, tokenizers are
also gaining attention as the first stage of any search en-
gine indexer. They are also components in XML processing
tools, where they consume 30% or more of the execution
time [5, 6]. In this section, we focus on a full text analyt-
ics application built using IBM’s LanguageWare technol-
ogy, deployed within the Apache Unstructured Information
Management Architecture (UIMA) framework [7].

The Apache UIMA framework is an implementation of
the UIMA specification, which defines data representations
and interfaces to enable analytics (text analytics solutions)
to inter-operate. The IBM LanguageWare product is a set

of Java libraries that provides natural language processing
features such as language identification, tokenization, rela-
tionship extraction, and semantic analysis. Internally, Lan-
guageWare relies on FSM-based algorithms and techniques
that are similar to those used in regex pattern matching, and
the focus of our acceleration efforts.

The text analyzers we study take as input unstructured
text (e.g., news articles, e-mails) and convert it to anno-
tated or structured data. Text analyzers that annotate un-
structured data are called annotators. The end goal is to
detect items of interest in the text analyzed, ranging from
simple patterns like e-mail addresses to complex relation-
ships like one company acquiring another. The annotators
we use are freely available as part of the LanguageWare
workbench [8]. We performed detailed analysis of one of
these annotators (namely the Acquisitions Annotator) by de-
ploying it within the Apache UIMA framework. We use it
to find all information related to acquisitions in a collec-
tion of news articles. We collected runtime profiles using
oprofile to measure the time spent in different parts of the
Aquisitions Annotator. Figure 1 shows the Java-level cy-
cle breakdown for the workload: the application spends ap-
proximately 50% of its time in the FSM code that we are
aiming to accelerate.
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Figure 1. Cycle breakdown for the Acquisi-
tions Annotator in the Languageware work-
bench. Approximately 50% of the time is
spent in FSM processing.

An important factor in the performance of regular ex-
pression processing is the size of the input data. In to-
day’s world, there are different sources of unstructured text,
which are candidates for analysis. Table 1 shows three pop-
ular sources, the range for typical message sizes in column
two, and the average size in column three. We computed
the average sizes as follows. For Twitter, we use statistics
for the top 200 Twitter users [9]. For e-mails, we use over
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Source Typical size range Average size
(bytes) (bytes)

Twitter posting 10–140 92
E-mail message 100–10,000 2,456
Web page 10,000–100,000 58,608

Table 1. Message sizes for different popular
sources of unstructured data.

200,000 e-mails from the publicly available Enron e-mail
dataset [10]. Finally, for webpages, we use webpages from
one Wikipedia dataset [11]. The news articles we used with
the Acquisitions Annotator fall in the range covered by e-
mails and web pages. Although, in some cases, multiple
messages can be combined in a larger batch, true on-line
processing requires that each message must be processed as
it is generated (or received).

In addition to text analytics and NIDSs, regex are widely
used by text editors and tools like grep. Modern program-
ming languages also provide APIs, built on regex matching
engines, to simplify text processing. For example, many
Java web applications use the java.util.regex pack-
age, both in client- and server-side code, to manipulate text-
based content. Our analysis of two such Java enterprise ap-
plications, namely IBM Lotus Connections Blogs and Do-
gear, revealed that respectively 16% and 5% of the applica-
tion’s time is spent in the java.util.regex package.

3 Approaches to acceleration

In this Section, we present a simple analytical model of
the different alternatives for accelerating regex processing
to weigh the benefits and tradeoffs associated with each.
We identify the following broad types of accelerators: in-
line SIMD, memory bus-attached, I/O bus-attached, and
network-attached. We characterize each type of accelerator
by their maximum processing rate and by their activation
overhead.

Let Bbase be the rate at which the base (unaccelerated)
processor can perform regex matching. That is, the base
processor can process b data bits in Tbase(b) = b/Bbase sec-
onds. Let Bacc denote the peak processing rate (in bits per
second) of a regex accelerator. Accessing an accelera-
tor in a system, however, incurs an overhead that increases
the processing time and consequently reduces the effective
bandwidth. If we denote the overhead incurred to start and
finish the processing in the accelerator with toh, the total
time to process b bits in an accelerated system is given by
Tacc(b) = b/Bacc + toh.

Accelerator type Overhead Bandwidth
(cycles) (Gbit/s)

In-line SIMD 50 2
Memory bus 1,000 5
I/O bus 10,000 20
Network 50,000 50

Table 2. Typical overhead (assuming a 4 GHz
clock rate) and bandwidth for the various
types of accelerators.

Table 2 summarizes the characteristics (maximum rate
and overhead), based on specifications of existing and up-
coming systems, for each of the accelerator types. Cascaval
et al [12] provide a more detailed description and taxon-
omy for different types of accelerators. We use the rate
of 2 Gbit/s for inline SIMD acceleration, as demonstrated
in [13]. Before the inline acceleration can begin, the data
must be brought into the register file used by the acceler-
ator. In the assumed implementation, the inline SIMD ac-
celerator does not directly use the general purpose registers.
Furthermore, the load/store unit in the general purpose core
cannot use the vector register as the address register. There-
fore, loading and storing incurs a penalty in terms for de-
pendent scalar instructions. This results in an overhead of
around 50 processor clock cycles.

A memory bus-attached accelerator is more loosely cou-
pled compared to the inline accelerator. The instructions for
a memory bus attached accelerator are typically not part of
the general purpose processor’s instruction set architecture.
Instead, scalar instructions from the program are executed
on the processor to setup the control information required
by the memory bus-attached accelerator to process the in-
put data. Overall, startup and finish overheads for accessing
the memory bus-attached accelerator are around one thou-
sand processor clock cycles [12]. Because of their special-
ized nature, memory bus-attached accelerators do achieve
much higher processing rate than a general purpose core, as
indicated by the 5 Gbit/s processing rate in Table 2.

I/O bus-attached accelerators are invoked through the
operating system and require I/O operations. They can
be implemented as entire ASICs or collections of ASICs,
as the Cavium Networks and Raza Microelectronics sys-
tems [14, 15], and achieve processing rates of up to 20
Gbit/s. Invoking these accelerators typically imposes an
overhead of approximately 10 thousand processor cycles.

Finally, network-attached accelerators are connected to
the system requiring acceleration via a network interface
supporting one or more networking protocols. Typically,
these accelerators have a higher peak bandwidth (up to 50
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Gbit/s) with a bigger mechanical and electrical footprint
than the accelerator types described above. The benefits of
network-attached accelerators are that these accelerators are
not tied to a specific system, and that they can be shared
among multiple systems. The disadvantage of network-
attached accelerators is the high overhead, of around 50,000
clock cycles, required to go through operating system and
networking software.

In the remainder of this section, we present an analytical
model that allows understanding the trade-offs associated
with each type of accelerator, in comparison to the baseline
scalar regex code. Using the bandwidth and overhead con-
cepts introduced above, the speedup SRE(b) from using the
accelerator to process b bits is given by

SRE(b) =
Tbase(b)
Tacc(b)

=
b/Bbase

b/Bacc + toh
=

Bacc/Bbase

1 + tohBacc/b
(1)

Equation (1) provides several insights. First, as toh in-
creases, the speedup SRE(b) decreases. Therefore, system
designers should lower the overhead for starting and finish-
ing the acceleration process. If care is not taken to reduce
this overhead, the acceleration might not provide significant
speedup.

Second, as b increases, SRE(b) tends to the ideal speedup
of Bacc/Bbase. Therefore, it is important that the accelera-
tion process is initiated for as large values of b as possible.
Making b large can be difficult in some applications.

Third, as Bacc tends to infinity, SRE(b) approaches
b

tohBbase
. Thus, the value of Bacc does not solely determine

the performance of the system with an accelerator. The pa-
rameters toh and b are just as important. If the designer has
the freedom to vary b and toh, the ratio b

toh
must be much

greater than Bbase.
While applications such as network intrusion detection

process regex expressions for the vast majority of the ap-
plication time, business analytics applications require regex
processing only a fraction of the time. Let fRE be the frac-
tion of time that an application spends on regex matching
when running on a base processor. Then, the end-to-end
speedup observed by the applications is given by:

Se2e(b) =
1

(1− fRE) + fRE
SRE(b)

, (2)

We use Equation 2 to generate speedup numbers for each
type of accelerator. The parameter fRE is set to 0.5, repre-
sentative of the typical business text analytics applications
we examined in Section 2. From our in-house experiments
we observe that regex processing, when performed on a
(unaccelerated) general purpose processor with general pur-
pose libraries such as PCRE (Perl-Compatible Regular Ex-
pressions) achieves a throughput of 80 Mbps. We therefore
adopt that value as Bbase. The values for parameters Bacc
and toh depend on the type of accelerator.
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Figure 2. End-to-end application speedup
(scalar code = 1) as a function of message
size for different types of accelerators.

Results of the speedup model for various regex acceler-
ation options are shown in Figure 2. The figure has five
curves, one curve for the baseline general purpose proces-
sor without acceleration, and four curves for each of the four
types of accelerators. The x-axis shows the data size that is
processed with every call to the regex accelerator. The y-
axis has the speedup achieved for each type of accelerator.
For each type of accelerator seven data points are computed
with Equation 2. Lines going through the seven points illus-
trate the speedup trend as the data size varies. The x-axis is
annotated with the range of data sizes provided by each of
the three aforementioned common data sources discussed in
Section 2.

Results show that for text analytics applications, the end-
to-end application speedup saturates at 2×. This is because
about only 50% of the time is the application is doing regex
processing.

For low values of b, around the data size for text mes-
sages on Twitter, inline SIMD provides a much higher
speedup than the alternatives. This is because for low
values of b the acceleration overhead dominates speedup.
Memory-attached, I/O-attached and network-attached ac-
celerators are bottlenecked by their much larger overhead.
This observation is consistent with first insight provided by
equation 2. Therefore, for processing Twitter data the inline
SIMD acceleration provides the most benefit.

For larger data sizes, beyond the data size for web-pages,
all curves cluster together. The curve for inline-SIMD sat-
urates at speedup of 1.92×. The curve for memory bus-
attached accelerator saturates at 1.97×. The curves for I/O
attached accelerator and network-attached accelerator sat-
urate at 2×. All these accelerators achieve more or less
the same speedup for large data. Clearly, the accelerators
with the highest bandwidth attain highest speedup for large
data sizes. Large data speedup increases by 8% going from
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inline-SIMD to network-attached accelerator.
However, this 8% increase in speedup is achieved at

a significant increase in size and power, as the network-
attached accelerator is a complete separate system. The
memory bus- and I/O bus-attached accelerators also incur in
increased size (and power consumption) for marginal gains
in performance with large data. Considering, the speedup
advantage of inline-SIMD for small data and the ability of
inline-SIMD to get within 8% of the speedup upper bound
for large data, inline-SIMD is the optimal choice for our
purpose of speeding up text analytics.

The effect of limited performance advantage of using
faster accelerator for only part of the application is a direct
effect of the Amdahl’s law. The maximum improvement of
the overall application performance is limited by the size of
the application that accelerator can improve. As described
in Section 2, we measure that the annotator spends 50% of
its execution time in the FSM code. This effect is even more
pronounced for Java enterprise applications where the FSM
code accounts for only 5% to 15% of the overall execution
time. For Java enterprise applications, usage of regex accel-
erators would increase the overall system performance by
only 5% or 17%, respectively.

4 Regex matching with SIMD operations

We now take a closer look at accelerating regular expres-
sion processing using the SIMD unit. Recent contributions
focusing on the network intrusion detection problems have
shown multiple approaches to do this [16, 17, 18, 19, 20].
This section shows how this applies specifically to code
based on FSMs.

FSM codes used in the vast majority of matching en-
gines perform a transition for each symbol of the input
stream. Regex matching is an inherently sequential task,
and the code is difficult to parallelize, especially in such a
way to expose data-level parallelism and exploit SIMD in-
structions.

One iteration of a FSM typically uses the current input
character and its current state to compute its next state. It
then produces the corresponding output, updates its current
state, and advances the input. In the implementation model
we consider, the input character is loaded from the input
stream, while the next state is loaded from a transition ta-
ble. Finally, output data is stored to the output stream. Tra-
ditional code performs these tasks with variables stored in
scalar registers and manipulated by scalar operations. (This
scenario is deliberately simplistic for explanation purposes.
Realistic regexp engines may have multiple input pointers,
a more complex state and more elaborate semantic actions.)

While a scalar instruction processes single operands at a
time, a SIMD instruction processes multiple operands at a
time, provided that they are organized in vector registers.

Therefore, the designer can adopt an organization where
multiple FSM run at the same time by virtue of SIMD in-
structions. The FSMs operate on distinct input streams,
produce distinct output and have their individual state vari-
ables, but they might share the same state-transition table.
In this organization, multiple instances of FSM variables
(e.g., the current states) are kept in one vector register, and
a single block of shared instructions (SIMD whenever pos-
sible) performs the above tasks for all the FSMs at the same
time.

The reorganization of scalar FSM code into SIMD
code often involves a radical redesign, because the now-
conjoined FSMs must share the same control flow. In order
to fuse the code of multiple FSMs into a single, branchless,
SIMD-enabled block of code, designers use a combination
of predicated instructions, selection instructions and spec-
ulative writing. Speculative writing is a technique where,
instead of using a branch to select code that either generates
output or not depending on a condition, the programmer
employs branchless code that selects a destination pointer
on the basis of the condition, and then stores to that pointer.
When the condition is false, the store deliberately writes
data into a discarded location.

Provided that enough independent streams are available
for parallel processing, there is no limit to the SIMD width
from which this approach can benefit: the wider, the bet-
ter. The performance achieved, though, depends on multi-
ple factors like the fraction of scalar instructions that have
a SIMD version (not all do), the need and cost of moving
data from general purpose to vector registers, cache effects,
and various others.

We consider as an example the software tokenizer pre-
sented in [13]. It runs on the Cell processor [4], a multi-core
processor containing one 64-bit PowerPC family Power
Processing Element (PPE), and 8 Synergistic Processing
Elements (SPEs) [21]. On the SPEs, with 128-bit SIMD
registers, the approach runs four 32-bit lanes in parallel,
each implementing one FSM. The implementation achieves
a throughput of 1.01–1.78 Gbit/s per SPE, of 1.01–1.78
Gbyte/s per Cell chip, as the scaling is linear with the num-
ber of SPEs.

Although this work focuses on one architecture (in the
experimental section) and one specific regex application, it
showcases principles and techniques how to use SIMD for
accelerating the FSM code. This approach is portable to
other architectures and broader application domains.

5 Architectural support

In this section, we focus on those architectural features
that benefit parallel FSM-based algorithms like the one we
described in Section 4.
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The difficulty in efficient processing of regex comes
from their data-dependent memory access patterns. Unlike
many HPC applications, where the same calculation is per-
formed independently on a large data amount which are ar-
ranged in arrays, a regex processing application changes its
flow depending on the current input. In an FSM, the cur-
rent values of state and input are used to compute memory
addresses for operations in the transition table.

Unlike HPC applications, text processing applications do
not use separate groups of registers to hold data value, data
addresses, and control flow information. Instead, data val-
ues are used for both address calculation and for control
flow. This problem exhibits a similar memory access pat-
tern as a pointer chasing kernel, and it is similarly difficult
to optimize.

For the specific case of the regex computation discussed
above, there are two memory lookup operations using ad-
dressed contained in vector registers. First, the current in-
put pointers (for the four parallel streams) are used to load
the next input characters. Second, the input characters and
the current state pointers are used to load the proper entries
from the state transition table. Each of the four streams has
its own pointers (for input and state) and they are different
for each of the four FSMsbeing processed. Therefore, one
cannot just use a simple vector load to retrieve the data in
parallel.

In order for an architecture to provide a good degree
of performance to applications that access data-dependent
computed locations, at least one (and ideally all) of the
following features must be efficiently supported: (1) sup-
port for data gather/scatter functionality; (2) data transfer
from vector registers (used in the parallel data calculation)
to general-purpose registers (used for address generation);
(3) support for streaming data. These three tasks are de-
scribed below.

Feature (1) fetches data from different addresses and
packs them into a single vector register. (This is the gather,
the scatter is the reverse operation.) For the case of a 128-
bit SIMD unit with 32-bit elements, it requires four loads
from four different addresses, calculated as offsets from a
base address. One option, adopted by many existing vector
architectures such as PowerPC’s VMX, is to code this oper-
ation explicitly as four vector loads followed by three per-
mutes. We note that these instructions can be implemented
efficiently in modern RISC processors. Another option is
for architectures to include gather/scatter instructions (such
as in Larrabee [22]) which can replace the sequence previ-
ously discussed with a single instruction. However, imple-
menting these instructions in hardware is complex and re-
quires multiple cycles to complete, since the same number
of loads still has to be issued, and data have to be received
and packed accordingly in a single register. The limiting
factors in implementing scatter/gather operations efficiently

include (i) the bandwidth to the memory system, (ii) the
number of loads which can be simultaneously issued to the
memory, and (iii) the number of data elements which can be
returned to the processor in parallel.

Feature (2) is another way to accomplish the operations
above. In parallel FSM-based algorithms, the address of the
next state of the FSM is computed from the current value of
elements in a vector register. The values in the vector reg-
ister are frequently used as offsets from a base address. To
calculate the next address, values have to be copied from the
vector registers to general purpose registers (GPRs). RISC
architectures do not support such direct transfers between
registers, and require explicit load/store instructions. In re-
cent x86 processors, several SSE4.2 instructions perform
these transfers requiring additional cycles to execute. On
the Cell, these transfers are not needed at all because the
Cell has a unified GPR/vector register file. For the class of
algorithms we consider, the support for moving data effi-
ciently from vector registers to GPRs is very beneficial.

Finally, feature (3) is motivated by data usage patterns
in these algorithms. Some of the data is streaming and not
reused. For example, the input text is accessed only once
in a streaming fashion, one character at a time. Similarly,
the output tokens are accessed only when they are gener-
ated and have no locality. On the other hand, some data has
to be accessed frequently. For example, some elements of
the state transition table (STT) which define the FSM are
accessed frequently and repeatedly. Thus, it is useful to be
able to specify parts of the address space as non-cacheable
to hold the streaming data. Data accessed from this space
(i.e., the input and output streams) will bypass the L1 level
cache, and will be loaded in registers only. In this way,
streaming data does not pollute the cache and displace STT
lines which are constantly reused. The frequently used data
can then be kept in the L1 cache. Several modern processors
support this feature by marking a cache line “transient”, i.e.,
being the first to evict out of cache.

6 Experimental results

We measured the performance of an implementation of
the regular expression processing algorithm described in
Section 4, provided by the authors of [13]. The imple-
mentation is available in both a scalar form (no SIMD in-
structions) and in a vector form explicitly coded using x86
SSE intrinsics. The measurements were performed on a 3.4
GHz Core i7 2600K (Sandy Bridge) processor. The vector
(SIMD) implementation relies on extract and insert instruc-
tions to move data between the vector and scalar (GPR) reg-
isters. We also experimented with a possible (fake) memory
gather instruction that would do the same work performed
by four sets of extract, load and insert instructions. We
measured what would happen if a 4-way (four 32-bit ele-
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ments) gather instruction were to have a certain execution
cost. First, we modeled the gather as having the cost of
three sets of extract, load and insert instructions. Then, we
modeled the cost as two of those sets. Finally, we modeled
the gather instruction as having the cost of just one vector
load. We did not try to explicitly manage the caches.

The results are summarized in Figure 3. Each bar shows
the performance (bandwidth) for each of the configurations
analyzed. The text inside the bars show the speedup relative
to the scalar version. We observe that the SIMD version al-
ready achieves better than the 2 Gbit/s we expected and an
almost perfect speedup. A very fast gather instruction (with
a cost equivalent to a single vector load) further improves
that performance by 30%, to almost 5 Gbit/s. Other bars
show intermediate configurations, in which the gather in-
struction has the same cost as 3 or 2 extract/load/insert sets
of instructions.
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Figure 3. Performance of regular expression
processing on a Core i7 (Sandy Bridge) pro-
cessor. We see a big benefit from SIMD pro-
cessing and further improvement from a pos-
sible gather instruction.

We summarize the impact of inline-SIMD acceleration
for the Acquisition Annotator of Section 2 in Figure 4.
The SIMD acceleration greatly reduces the time spent in
the FSM component, making it negligible compared to the
other components. The end-to-end speedup is close to two
for the annotator.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Scalar Inline-SIMD

N
o
r
m
a
li
z
e
d
 C
y
c
le
s

languageWare-FSM UIMA Other

Figure 4. Cycle breakdown for the Acquisi-
tions Annotator, before and after the use of
inline-SIMD acceleration. We note that the
acceleration makes the FSM component neg-
ligible and produces an end-to-end speedup
of almost two.

7 Related work

There is extensive literature on efficient approaches
to pattern matching, both against exact dictionaries and
against regular expressions. Examples include Bloom fil-
ters [23], the Aho-Corasick [24] algorithm, specialized state
machines [25], and content-addressable memories (CAMs).

Specialized hardware like FPGAs have been proposed
to match exact patterns with Bloom filters [26, 27, 28],
CAMs [29, 30], or Aho-Corasick FSMs [31, 32, 33], and
to match regexs with direct hardware synthesis [32, 34] or
FSMs [35]. For example, the parallel regex matching solu-
tion proposed by Lee et al. [34] delivers a throughput of
550 Mbyte/s but supports only 25 rules, while Suresh et
al. [28] match exact patterns with a Bloom filter-based so-
lution capable of delivering 2.25 Gbyte/s with 80-144 pat-
terns. Commercial ASIC-based solutions [14, 15] claim
higher throughput and, in one case [14], a rule set limited
only by the amount of available main memory.

Solutions based on commodity hardware support larger
dictionaries and rule sets, but their performance can be
low [36]. Even recent works [37, 38] on lexical scanner
generation for general-purpose processors do not attempt to
exploit parallelism, and often generate code (e.g., go-to ta-
bles [38]) that resists efficient parallel translation. Recently,
Cameron et al. [39, 20] proposed a bit-parallel approach
to exploit SIMD, and demonstrated 25× speedup on UTF
transcoding workloads.

On the Cell, FSM-based solutions for exact matching in-
clude: a register-file-based solution by Iorio and van Lun-
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teren [17] achieving 6.25 Gbyte/s per chip, a core-local
SIMD-based Aho-Corasick implementation by Scarpazza
et al. [16] capable of 5 Gbyte/s, and a main-memory-based
one [18] capable of 275 Mbyte/s per chip (same authors).
With Aho-Corasick on large dictionaries, Villa et al. [40]
delivered 3.5 Gbyte/s on a 128-CPU Cray XMT, and Petrini
et al.[41] delivered 0.5–2.2 Gbyte/s per core on an Intel
Harpertown.

8 Conclusions

The significant growth of unstructured data and the rising
importance of business intelligence applications urge com-
puter architects to rethink architectural support for these
emerging workloads. We focus on finite-state machine-
based regular expression matching, which is often at the
core of these workloads. We find that inline-SIMD process-
ing is efficient for accelerating regex processing. Moreover,
it can be further enhanced through more efficient gather/s-
catter operations, faster data movement between vector and
general-purpose registers, and proper cache management.
We find that inline-SIMD is sufficient to achieve end-to-end
speedup that is within 8% of the ideal speedup of 2×.

We develop a first-order model to validate the choice of
inline-SIMD as the regex accelerator. The first-order model
provides the following three key insights regarding accel-
eration: (1) overhead of acceleration must be minimized to
achieve a significant speedup, especially when the acceler-
ation is performed on small data sizes, (2) when possible,
the data size for acceleration should be as large as possible,
and (3) if there is freedom to choose the data size and to
choose the accelerator overhead, the ratio of data size and
the accelerator overhead must be much greater than baseline
processing rate.

To validate the choice of inline-SIMD, we also evalu-
ate memory bus-attached, I/O bus-attached, and network-
attached accelerators. We find that smaller overhead of the
inline-SIMD relative to the other alternatives makes it the
optimal choice for speeding up business analytics applica-
tions.

Our findings suggest that the benefits from inline
instruction-set improvements in vector processing are suf-
ficient to significantly boost the performance of business
analytics applications. Inline SIMD processing provides a
much greater speedup, around 1.8× over the baseline, than
the alternative accelerators for smaller data size (as in, for
example, Twitter text messages). For large data size, for ex-
ample e-mails and webpages, the inline-SIMD acceleration
provides about the same speedup, 1.92× over the baseline,
as the competing accelerators. Therefore, we conclude that
SIMD processing is the preferred form of acceleration for
these applications.
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