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Abstract	
The DeepQA team built Watson in under four years by adopting a metrics-driven research and 
development methodology, which we call AdaptWatson.  This methodology relies heavily on 
disciplined integration of new and improved components, extensive experimentation at the 
component and end-to-end system level, informative and detailed accuracy analysis, and the 
efficacious application of highly skilled researchers and engineers to develop, innovate, and 
invent technologies that together deliver the level of performance required to solve the problem 
at hand.  We present this methodology, highlight the key elements, and briefly compare it to the 
Agile software development methodology. 

Introduction	
The DeepQA team at IBM Research began the development of Watson in early 2007.  By the 
end of 2007 we had an initial implementation of the DeepQA framework. It admitted plug-ins 
from the team of researchers and performed the full end-to-end question-answering task on 
Jeopardy! clues. While its performance was poor, the team was in a position to incrementally 
advance core algorithms, measure results and, based on those results, come up with new ideas 
and iterate.  

As a question answering and decision support system, Watson relies on a combination of 
sophisticated analytics and relevant content (e.g., books, documents, articles, reports, and other 
unstructured, semi-structured and structured resources) to analyze the input problem, generate 
solution hypotheses, and analyze supporting evidence for those hypotheses to compute scores 
and confidences.  With over two dozen researchers and engineers working together to develop 
analytics and integrate content, it was clear that an ad-hoc approach to developing the system 
would not succeed.  As the project continued into 2008, a rigorous methodology emerged for 



rapidly advancing the research, development, integration, and evaluation of over 100 core 
algorithmic components. We named this methodology AdaptWatson. 

At a high level, AdaptWatson starts with a traditional software development methodology based 
on iterative platform development and optimization, and extends it with an iterative training and 
domain adaptation process.  This high level process is shown in Figure 1.  The training and 
domain adaptation process produces new algorithms and content requirements, which drive both 
the traditional core platform development cycle and the content acquisition and integration 
process.  New algorithms, growing content, and core platform development can generate 
requirements for system optimization, while system optimization can enable larger data volumes 
and more computationally demanding techniques.  Similarly, core platform development may 
extend the underlying architecture and framework such that new algorithms and approaches 
become feasible.  New algorithms developed during training and domain adaptation may 
generate new content requirements, and analysis of new content can produce new knowledge and 
inspire new algorithms.  

 

 

Figure 1 High level Watson development and adaptation process 

AdaptWatson	
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The core of the AdaptWatson methodology is the training and domain adaptation process.  The 
high-level view of training and domain adaptation in Figure 1 expands out to a series of iterative 
steps, detailed in Figure 2.  This figure shows the main steps of the methodology, the inputs and 
outputs for each step, and the roles or skills of the people required to perform the step.  The 
figure also highlights three key points in the process where various kinds of learning take place, 
and it notes the steps that make up the core experimental research process. 

 

 

Figure 2 AdaptWatson training and domain adaptation process 

The development process starts in the upper left corner with a sequence of steps performed by 
Systems Engineers, who are responsible for configuring, deploying, and running the software.  
Before the overall methodology can even be invoked, there must be a baseline version of the 
system to run.  Once this bootstrapping process of creating the initial baseline version is 
complete, the first step in the adaptation process is to update and compile the system, which 
involves integrating the current release versions of all of the system components and building the 
system.   

After the Systems Engineers have successfully compiled and configured the system, they train 
the models used by the statistical components in the system, which includes any individual 
analytics implemented with machine learning algorithms and the final merger component that 
weighs and combines the results of all of the analytics in the system [Gondek et al., 2012].   
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Next, the Systems Engineers launch the system run on test data.  Test data typically consists of 
development data that is currently being analyzed by the team to improve system accuracy, and 
blind data that has not been seen by the team and is used to generate statistically significant 
performance results.  Note that test data is never used to train the system – training and test data 
must always be kept separate.  The output of the system run step is a large volume of detailed 
results and logging information produced by the system, including, for each question, a ranked 
list of responses with confidence scores, evidence profiles, scores produced by individual 
analytics, and supporting evidence. 

To accurately evaluate the system run output, the results must be vetted by domain experts.  In 
the expert annotation step, domain experts review the system output and ensure that the answer 
key used to judge the results for each question is accurate and complete.  This step is required 
because Watson may find alternative answers or answer variants that are correct responses to the 
input problem, but which were not originally contemplated by the answer key developer.  We 
can also apply this vetting process to the evidence to ensure that the evidence used by Watson to 
justify the solution is in fact relevant and appropriate. 

Once the answers and evidence have been “vetted” by the domain expert, we can accurately 
measure the performance of the system and analyze issues in the accuracy analysis step.  
Researchers perform this task using accuracy analysis tools that score the overall test run using a 
variety of metrics and provide mechanisms for drilling down into the errors.  A key element of 
this process is identifying different error classes and grouping Watson’s incorrect responses into 
these classes.  The error classes typically represent a key metric (e.g., binary recall, which 
suggests a problem with primary search or candidate generation), a processing stage in the 
pipeline (e.g., candidate generation or lexical answer type detection), a core approach or 
algorithm (e.g., parsing or term matching), a particular answer scorer (e.g., type coercion), or a 
class of answer scorers (e.g., passage scoring). 

Once a class of problem has been identified, the researchers perform an analysis of the impact of 
addressing that problem in the headroom analysis step.  This analysis produces a “headroom” 
estimate, which shows the potential impact on overall system performance if the current problem 
class is solved.  This is typically an ideal estimate, since creating a solution that solves the entire 
class is rare.  Nevertheless, these estimates are useful for comparing the potential impact of 
different solutions competing for resources (mainly researcher time) and deciding which 
approaches are worthy of investment.  This step also helps avoid “mole whacking,” where a 
solution is built that addresses a very narrow problem, often in a very domain specific way.  We 
always prefer solutions that scale to as large a class of problem as possible and try to avoid mole 
whacking.  If the headroom analysis shows insufficient potential impact, development does not 
continue to the next step in the lifecycle.   
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Accuracy and headroom analysis may lead to the process in the middle of Figure 2, which 
addresses content.  In this step, researchers explore and evaluate potential content sources to add 
to the system as primary search and evidence sources.  This exploration includes assembling 
content to address recall (i.e., coverage) issues, as well as issues around providing sufficient 
evidence to justify a result.  Researchers must decide what sort of analytics to apply to new 
content sources to achieve the most value from the source, and the application of analytics may 
involve a learning step to train the knowledge extraction components.   

New content may contain more information than just textual content.  For example, the content 
may have rich tabular information, link structure based on cross references or citations, and 
semantic information based on the organization of the text (e.g., separating discussion of a 
disease into description, diagnosis, and treatment sections).  Researchers will explore and invent 
ways to leverage this non-textual information.  Once the content preparation and analysis steps 
have been finalized, the systems engineers execute the actual content analysis step.  This 
produces indices over the content, as well as any derived resources that result from deeper 
analysis and knowledge extraction over the text.  

After accuracy and headroom analysis, the second phase of the experimental research process is 
idea generation and algorithm development.  This task is conducted by researchers on the team 
and typically requires highly trained researchers with expertise in a variety of areas, including 
natural language processing, knowledge representation and reasoning, machine learning, and 
information retrieval.  The idea generation step results in a research plan, and the algorithm 
development step is an iterative process where ideas in the research plan are implemented and 
evaluated.  If an algorithm is measured to have positive impact, it is added to the next baseline 
configuration of the system.  If an algorithm does not have positive impact, the algorithm 
development step iterates and the researchers make improvements until either the algorithm has 
positive impact, or the idea is shelved.  After all of the new algorithms have been added to the 
baseline system, the overall adaptation process repeats from the beginning with the new baseline.   

The overall adaptation process iterates until the performance targets of the driving application 
are met.  Over time as the inventory of analytics and algorithms grows we expect that the 
experimental research process will become a smaller and smaller portion of the overall process.  
Since the experimental research process is the most expensive part of adaptation, reducing the 
effort and time spent in that phase will be the key to scaling Watson to new domains. 

Comparison	to	Agile	
The Watson training and adaptation process has some similarities with the popular Agile 
development process.   Table 1 gives a comparison between the Traditional (e.g., Waterfall) 
software development model, Agile development model [Cockburn, 2006], and the Watson 
training and adaptation process. Compared to Agile, the Watson adaptation process is driven by 



accuracy analysis on large statistically significant blind data sets, not simply to correct defects 
but rather to inspire a new round of algorithmic generalizations (i.e. Research).  Keys to 
successful application of the Watson adaptation process include meaningful and measurable 
target accuracy requirements and metrics, and access to sufficient quantities of data for training, 
development, and testing.  Sufficient data is absolutely key to training meaningful models and 
generating statistically significant performance results on blind test data.  Without such data, it is 
very hard, if not impossible, to develop general algorithms in the problem domain. 

 

 

Table 1 Watson adaptation versus Agile development 

Traditional Agile Watson

Requirements
and Design

Negotiate with customer 
to create a contract, 
design specification, and 
comprehensive 
documentation 

Iterate with customer with
working prototypes to 
constantly refine requirements

Establish target accuracy 
requirements and metrics over 
representative data. 

Sufficient quantities of training 
data required for  learning.

Implementation

Leverage formal 
processes and 
development tools driven 
by a comprehensive plan

Leverage small teams, 
extreme programming, and 
quick implementation cycle 
times to respond to changing 
requirements

Rapid research cycle - Failures 
found in accuracy analysis lead to 
generalizations and development of 
new algorithms.
Experiments validated on large 
enough blind data-sets. 

Measurement
Validate that software 
meets design 
specification using testing 
and benchmarks

Iterate with customer to 
evaluate working prototype
and validate requirements are 
met

Defect triage used to assign 
severity and priority to bugs

Accuracy metrics dominate over 
traditional robustness, speed and 
scale. 

Headroom analysis used to 
estimate impact of new or improved 
analytics and guide investment 

Conclusions	
AdaptWatson defines a methodology for adapting Watson to new domains by starting with a 
rapid prototyping approach similar to Agile and adding to that an experimental process based on 
crisp end-to-end performance metrics, accuracy analysis to classify performance issues and guide 
development and research investment, and explicit allowance for a research phase where new 
algorithms and solutions must be developed to solve new problems in the domain.  Underpinning 
this methodology is the application of learning to leverage training examples and human expert 
data annotation to automatically train both analytic components and the end-to-end system. 

Unlike traditional software development where requirements analysis leads to a complete 
specification that describes the solution, adapting Watson to a new domain requires inventing 
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new technologies for problems that do not have straight forward solutions.  This is inherent in 
any computer technology that attempts to analyze, understand, and leverage human language.   

Over time as more analytics are developed, the technology matures, and a foundation of Watson 
technologies is created in each domain, we expect that the investment required in the 
Experimental Research Process will taper off.  This trend will be essential for the continued 
growth and scale of the technology. 
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