
RC25244 (WAT1204-079) April 25, 2012
Computer Science

IBM Research Report

AdaptWatson: A Methodology for Developing and
Adapting Watson Technology

David Ferrucci, Eric Brown
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

1

AdaptWatson:	A	methodology	for	developing	and	adapting	Watson	
technology	

IBM Research Report, RC25244
December, 2011

David Ferrucci, Eric Brown
IBM T. J. Watson Research Center

19 Skyline Dr.
Hawthorne, NY 10532

Abstract	
The DeepQA team built Watson in under four years by adopting a metrics-driven research and
development methodology, which we call AdaptWatson. This methodology relies heavily on
disciplined integration of new and improved components, extensive experimentation at the
component and end-to-end system level, informative and detailed accuracy analysis, and the
efficacious application of highly skilled researchers and engineers to develop, innovate, and
invent technologies that together deliver the level of performance required to solve the problem
at hand. We present this methodology, highlight the key elements, and briefly compare it to the
Agile software development methodology.

Introduction	
The DeepQA team at IBM Research began the development of Watson in early 2007. By the
end of 2007 we had an initial implementation of the DeepQA framework. It admitted plug-ins
from the team of researchers and performed the full end-to-end question-answering task on
Jeopardy! clues. While its performance was poor, the team was in a position to incrementally
advance core algorithms, measure results and, based on those results, come up with new ideas
and iterate.

As a question answering and decision support system, Watson relies on a combination of
sophisticated analytics and relevant content (e.g., books, documents, articles, reports, and other
unstructured, semi-structured and structured resources) to analyze the input problem, generate
solution hypotheses, and analyze supporting evidence for those hypotheses to compute scores
and confidences. With over two dozen researchers and engineers working together to develop
analytics and integrate content, it was clear that an ad-hoc approach to developing the system
would not succeed. As the project continued into 2008, a rigorous methodology emerged for

rapidly advancing the research, development, integration, and evaluation of over 100 core
algorithmic components. We named this methodology AdaptWatson.

At a high level, AdaptWatson starts with a traditional software development methodology based
on iterative platform development and optimization, and extends it with an iterative training and
domain adaptation process. This high level process is shown in Figure 1. The training and
domain adaptation process produces new algorithms and content requirements, which drive both
the traditional core platform development cycle and the content acquisition and integration
process. New algorithms, growing content, and core platform development can generate
requirements for system optimization, while system optimization can enable larger data volumes
and more computationally demanding techniques. Similarly, core platform development may
extend the underlying architecture and framework such that new algorithms and approaches
become feasible. New algorithms developed during training and domain adaptation may
generate new content requirements, and analysis of new content can produce new knowledge and
inspire new algorithms.

Figure 1 High level Watson development and adaptation process

AdaptWatson	

2

The core of the AdaptWatson methodology is the training and domain adaptation process. The
high-level view of training and domain adaptation in Figure 1 expands out to a series of iterative
steps, detailed in Figure 2. This figure shows the main steps of the methodology, the inputs and
outputs for each step, and the roles or skills of the people required to perform the step. The
figure also highlights three key points in the process where various kinds of learning take place,
and it notes the steps that make up the core experimental research process.

Figure 2 AdaptWatson training and domain adaptation process

The development process starts in the upper left corner with a sequence of steps performed by
Systems Engineers, who are responsible for configuring, deploying, and running the software.
Before the overall methodology can even be invoked, there must be a baseline version of the
system to run. Once this bootstrapping process of creating the initial baseline version is
complete, the first step in the adaptation process is to update and compile the system, which
involves integrating the current release versions of all of the system components and building the
system.

After the Systems Engineers have successfully compiled and configured the system, they train
the models used by the statistical components in the system, which includes any individual
analytics implemented with machine learning algorithms and the final merger component that
weighs and combines the results of all of the analytics in the system [Gondek et al., 2012].

3

4

Next, the Systems Engineers launch the system run on test data. Test data typically consists of
development data that is currently being analyzed by the team to improve system accuracy, and
blind data that has not been seen by the team and is used to generate statistically significant
performance results. Note that test data is never used to train the system – training and test data
must always be kept separate. The output of the system run step is a large volume of detailed
results and logging information produced by the system, including, for each question, a ranked
list of responses with confidence scores, evidence profiles, scores produced by individual
analytics, and supporting evidence.

To accurately evaluate the system run output, the results must be vetted by domain experts. In
the expert annotation step, domain experts review the system output and ensure that the answer
key used to judge the results for each question is accurate and complete. This step is required
because Watson may find alternative answers or answer variants that are correct responses to the
input problem, but which were not originally contemplated by the answer key developer. We
can also apply this vetting process to the evidence to ensure that the evidence used by Watson to
justify the solution is in fact relevant and appropriate.

Once the answers and evidence have been “vetted” by the domain expert, we can accurately
measure the performance of the system and analyze issues in the accuracy analysis step.
Researchers perform this task using accuracy analysis tools that score the overall test run using a
variety of metrics and provide mechanisms for drilling down into the errors. A key element of
this process is identifying different error classes and grouping Watson’s incorrect responses into
these classes. The error classes typically represent a key metric (e.g., binary recall, which
suggests a problem with primary search or candidate generation), a processing stage in the
pipeline (e.g., candidate generation or lexical answer type detection), a core approach or
algorithm (e.g., parsing or term matching), a particular answer scorer (e.g., type coercion), or a
class of answer scorers (e.g., passage scoring).

Once a class of problem has been identified, the researchers perform an analysis of the impact of
addressing that problem in the headroom analysis step. This analysis produces a “headroom”
estimate, which shows the potential impact on overall system performance if the current problem
class is solved. This is typically an ideal estimate, since creating a solution that solves the entire
class is rare. Nevertheless, these estimates are useful for comparing the potential impact of
different solutions competing for resources (mainly researcher time) and deciding which
approaches are worthy of investment. This step also helps avoid “mole whacking,” where a
solution is built that addresses a very narrow problem, often in a very domain specific way. We
always prefer solutions that scale to as large a class of problem as possible and try to avoid mole
whacking. If the headroom analysis shows insufficient potential impact, development does not
continue to the next step in the lifecycle.

5

Accuracy and headroom analysis may lead to the process in the middle of Figure 2, which
addresses content. In this step, researchers explore and evaluate potential content sources to add
to the system as primary search and evidence sources. This exploration includes assembling
content to address recall (i.e., coverage) issues, as well as issues around providing sufficient
evidence to justify a result. Researchers must decide what sort of analytics to apply to new
content sources to achieve the most value from the source, and the application of analytics may
involve a learning step to train the knowledge extraction components.

New content may contain more information than just textual content. For example, the content
may have rich tabular information, link structure based on cross references or citations, and
semantic information based on the organization of the text (e.g., separating discussion of a
disease into description, diagnosis, and treatment sections). Researchers will explore and invent
ways to leverage this non-textual information. Once the content preparation and analysis steps
have been finalized, the systems engineers execute the actual content analysis step. This
produces indices over the content, as well as any derived resources that result from deeper
analysis and knowledge extraction over the text.

After accuracy and headroom analysis, the second phase of the experimental research process is
idea generation and algorithm development. This task is conducted by researchers on the team
and typically requires highly trained researchers with expertise in a variety of areas, including
natural language processing, knowledge representation and reasoning, machine learning, and
information retrieval. The idea generation step results in a research plan, and the algorithm
development step is an iterative process where ideas in the research plan are implemented and
evaluated. If an algorithm is measured to have positive impact, it is added to the next baseline
configuration of the system. If an algorithm does not have positive impact, the algorithm
development step iterates and the researchers make improvements until either the algorithm has
positive impact, or the idea is shelved. After all of the new algorithms have been added to the
baseline system, the overall adaptation process repeats from the beginning with the new baseline.

The overall adaptation process iterates until the performance targets of the driving application
are met. Over time as the inventory of analytics and algorithms grows we expect that the
experimental research process will become a smaller and smaller portion of the overall process.
Since the experimental research process is the most expensive part of adaptation, reducing the
effort and time spent in that phase will be the key to scaling Watson to new domains.

Comparison	to	Agile	
The Watson training and adaptation process has some similarities with the popular Agile
development process. Table 1 gives a comparison between the Traditional (e.g., Waterfall)
software development model, Agile development model [Cockburn, 2006], and the Watson
training and adaptation process. Compared to Agile, the Watson adaptation process is driven by

accuracy analysis on large statistically significant blind data sets, not simply to correct defects
but rather to inspire a new round of algorithmic generalizations (i.e. Research). Keys to
successful application of the Watson adaptation process include meaningful and measurable
target accuracy requirements and metrics, and access to sufficient quantities of data for training,
development, and testing. Sufficient data is absolutely key to training meaningful models and
generating statistically significant performance results on blind test data. Without such data, it is
very hard, if not impossible, to develop general algorithms in the problem domain.

Table 1 Watson adaptation versus Agile development

Traditional Agile Watson

Requirements
and Design

Negotiate with customer
to create a contract,
design specification, and
comprehensive
documentation

Iterate with customer with
working prototypes to
constantly refine requirements

Establish target accuracy
requirements and metrics over
representative data.

Sufficient quantities of training
data required for learning.

Implementation

Leverage formal
processes and
development tools driven
by a comprehensive plan

Leverage small teams,
extreme programming, and
quick implementation cycle
times to respond to changing
requirements

Rapid research cycle - Failures
found in accuracy analysis lead to
generalizations and development of
new algorithms.
Experiments validated on large
enough blind data-sets.

Measurement
Validate that software
meets design
specification using testing
and benchmarks

Iterate with customer to
evaluate working prototype
and validate requirements are
met

Defect triage used to assign
severity and priority to bugs

Accuracy metrics dominate over
traditional robustness, speed and
scale.

Headroom analysis used to
estimate impact of new or improved
analytics and guide investment

Conclusions	
AdaptWatson defines a methodology for adapting Watson to new domains by starting with a
rapid prototyping approach similar to Agile and adding to that an experimental process based on
crisp end-to-end performance metrics, accuracy analysis to classify performance issues and guide
development and research investment, and explicit allowance for a research phase where new
algorithms and solutions must be developed to solve new problems in the domain. Underpinning
this methodology is the application of learning to leverage training examples and human expert
data annotation to automatically train both analytic components and the end-to-end system.

Unlike traditional software development where requirements analysis leads to a complete
specification that describes the solution, adapting Watson to a new domain requires inventing

6

7

new technologies for problems that do not have straight forward solutions. This is inherent in
any computer technology that attempts to analyze, understand, and leverage human language.

Over time as more analytics are developed, the technology matures, and a foundation of Watson
technologies is created in each domain, we expect that the investment required in the
Experimental Research Process will taper off. This trend will be essential for the continued
growth and scale of the technology.

References	
D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. Duboue, L. Zhang, Y. Pan, Z. M. Qiu,
and C. Welty, “A framework for merging and ranking of answers in DeepQA,” IBM J. Res. &
Dev., vol. 56, no. 3/4, Paper 14, pp. 14:1–14:12, May/Jul. 2012.

A. Cockburn, Agile Software Development: The Cooperative Game (2nd Edition), Addison-
Wesley Professional, 2006.

	AdaptWatson: A methodology for developing and adapting Watson technology
	Abstract
	Introduction
	AdaptWatson
	Comparison to Agile
	Conclusions
	References

