
RC25247 (W1112-048) December 15, 2011
Computer Science

IBM Research Report

Availability Analysis of IaaS Cloud Using Analytic Models

Francesco Longo1, Rahul Ghosh2, 
Vijay K. Naik3, Kishor S. Trivedi2

1Dipartimento di Matematica
Università degli Studi di Messina

Italy

2Department of Electrical and Computer Engineering
Duke University

USA

3IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598  USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



AvailabilityAvailabilityAvailabilityAvailability    AnalysisAnalysisAnalysisAnalysis    ofofofof        

IaaSIaaSIaaSIaaS    CloudCloudCloudCloud        

UsingUsingUsingUsing    AnalyticAnalyticAnalyticAnalytic    ModelsModelsModelsModels    
 
 

Francesco Longo, Dipartimento di Matematica, Università degli Studi di Messina, Italia 
 

Rahul Ghosh, Department of Electrical and Computer Engineering, Duke University, USA 
 

Vijay K. Naik, IBM T. J. Watson Research Center, USA 
 

Kishor S. Trivedi, Department of Electrical and Computer Engineering, Duke University, USA 
 
 
ABSTRACT 
Cloud based systems are inherently large scale. Failures in such a large distributed environment are quite 
common phenomena. To reduce the overall Cloud downtime and to provide a seamless service, providers 
need to assess the availability characteristics of their data centers. Such assessments can be done through 
controlled experimentations, large scale simulations and via analytic models. In the scale of Cloud, 
conducting repetitive experimentations or simulations might be costly and time consuming. Analytic models, 
on the other hand, can be used as a complement to small scale measurements and simulations since the 
analytic results can be obtained quickly. However, accurate analytic modeling requires dealing with large 
number of system states, leading to state-space explosion problem. To reduce the complexity of analysis, 
novel analytic methods are required. In this chapter, we introduce the reader with a novel approach using 
interacting analytic sub-models and we show how such approach can deal with large scale Cloud availability 
analysis. We put our work in perspective of other existing and ongoing research in this area, describe how 
such approach can be useful to Cloud providers, especially in the case of federated scenarios, and summarize 
the open research questions that are yet to be solved.  
 
INTRODUCTION 
Cloud computing is a model of Internet-based computing. An IaaS Cloud, such as Amazon EC2 and IBM 
SmatCloud Enterprise (Amazon EC2: http://aws.amazon.com/ec2, 2011; IBM SmatCloud Enterprise: 
www.ibm.com/services/us/en/cloud-enterprise/, 2011) delivers, on-demand, operating system (OS) instances 
provisioning computational resources in the form of VMs deployed in the Cloud provider’s data center. 
Requests submitted by the users are provisioned and served if the Cloud has enough available capacity in 
terms of physical machines (PMs). Large Cloud service providers such as IBM provide service level 
agreements (SLAs) regulating the availability of the Cloud service. Before committing an SLA to the 
customers of a Cloud, the service provider needs to carry out availability analysis of the infrastructure on 
which the Cloud service is hosted. In this chapter, we show how stochastic analytic models can be utilized 
for Cloud service availability analysis. We first provide a background on the subject describing how the 
problem is faced in the current literature. Then, we propose an example of one-level monolithic model that 
can be used to analyze the availability of an IaaS Cloud. However, such monolithic models become 
intractable as the size of Cloud increases. To overcome this difficulty, we illustrate the use of an interacting 
sub-models approach. Overall model solution is obtained by iteration over individual sub-model solutions. 
Comparison of the results with monolithic model shows that errors introduced by model decomposition are 
negligible. We also show how closed form solutions of the sub-models can be obtained and demonstrate that 
the approach can scale for large size Clouds. The presence of three pools of PMs and the migration of them 
from one pool to another caused by failure events makes the model both novel, interesting and particularly 
suitable in federated environments. In order to automate the construction and solution of underlying Markov 
models, we use a variant of stochastic Petri net (SPN) called stochastic reward net (SRN). This paradigm is 
supported by SHARPE (Trivedi & Sahner, 2009)  and Stochastic Petri Net Package (SPNP) (Hirel, Tuffin, & 



Trivedi, 2000) software packages.  
Rest of the chapter is organized as follows. Section II gives a background on the subject illustrating the state 
of the art. Section III provides an introduction to the formalism that will be used in the following to model 
the considered scenario. Section IV describes Cloud system model, assumptions and problem formulation. 
Section V, presents the monolithic SRN model. Interacting SRN sub-models are described in Section VI and 
their closed form solutions are presented in Section VII. Fixed point iteration among the interacting sub-
models and proof of existence of a solution is shown in Section VIII. Results obtained from monolithic 
approach and interacting sub-models approach are compared in Section IX. Sections X and XI discuss how 
the approach can be used by Cloud providers, point out future challenges and highlight the benefit of 
decomposed models in the analysis of federation scenarios. We conclude the chapter in Section XII. 

 

BACKGROUND 
In this section, we highlight key analytic approaches for system availability assessment. There are four main 
types of analytic modeling techniques (Nicol, Sanders, & Trivedi, 2004; Trivedi, 2001;  Trivedi, Kim, Roy, & 
Medhi, 2009) that can be applied for availability analysis: non-state-space models, state-space space models, 
hierarchical, and fixed-point iterative models (Haring, Marie, Puigjaner, & Trivedi, 2001; Longo, Ghosh, 
Naik, & Trivedi, 2011; Mainkar & Trivedi, 1996; Tomek & Trivedi, 1991). Reliability block diagram (RBD), 
reliability graph (Relgraph), fault tree (FT) are examples of non-state-space models. Such models can be 
easily developed assuming statistical independence between system components and thus allowing a fast 
solution for system reliability, system MTTF and system availability. However, non-state space models 
cannot easily handle failure/repair dependencies (e.g., shared repair, warm/cold spares, imperfect coverage, 
etc.). In order to model complex interactions between system components, Markov chains or more generally 
state-space models can be used (Trivedi, 2001). Markov chains consist of state(s) and state transition(s). In 
Discrete Time Markov Chains (DTMC), all transition labels are probabilities. In Continuous Time Markov 
Chains (CTMC), all transition labels are rates. If the rates are time dependent then we have a non-
homogeneous CTMC. If each label is a distribution function (Yin, Fricks, & Trivedi, 2002) then we have a 
Semi-Markov Process (SMP) or a Markov Regenerative Process (MRGP) (Kulkarni, 2010). Markovian and 
non-Markovian models may suffer from the state-space explosion problem (or largeness problem). SPNs 
(Trivedi, 2001) or SRNs can be used for easy specification and automated generation/solution of underlying 
Markov models to tolerate largeness. To avoid largeness problems, hierarchical models (Chen, Dharmaraja, 
Chen, Li, Trivedi, Some, & Nikora, 2002; Kim, Machida, & Trivedi, 2009; Smith, Trivedi, Tomek, & 
Ackaret, 2008; Tomek, Muppala, & Trivedi, 1993; Trivedi, Vasireddy, Trindade, Nathan, & Castro, 2006; 
Trivedi, Wang, Hunt, Rindos, Smith, & Vashaw, 2008) or interacting sub-models can be used. In interacting 
sub-models approach (Longo, Ghosh, Naik, & Trivedi, 2011), dependencies among the sub-models are 
usually resolved by fixed-point iterations (Haring, Marie, Puigjaner, & Trivedi, 2001; Mainkar & Trivedi, 
1996; Tomek & Trivedi, 1991). Such interacting sub-models can be used for analysis of large scale Cloud 
infrastructure. 
In (Vishwanath, & Nagappan, 2010), Vishwanath et al. investigated failure characteristics of servers in large 
Cloud data centers. They explored the relationship between the failure of a PM and other factors (e.g., age of 
the PM, number of disks on a PM etc.), tried to quantify the relationships between successive failures on 
same PM by analyzing experimental data and finally empirically compute reliability. The analytic approach 
described in this chapter can be complementary to this work since it takes into consideration multiple classes 
of PMs and consider their failure and repair. In (Yang, Tan, Dai, & Guo, 2009), Yang et al. investigated the 
failure of workloads on Cloud service performance. They considered response time as the performance 
metric. Although, such joint analysis of availability and performance is important, the authors do not address 
the scalability issues. In this chapter, we restrict ourselves only to the scalability of availability models. In 
(Bonvin, Papaioannou, & Aberer, 2009), Bonvin et al. designed a reliable and cost-effective storage system 
that maintains high availability guarantees despite failures of servers. The authors address interesting cost-
optimization questions. Similar optimization problems can be formulated using the models and approach we 
describe in this chapter. In (Joshi, Bunker, Jahanian, Moorsel, & Weinman, 2009), Joshi et al. discussed the 
key challenges and opportunities in achieving high availability in large scale Cloud services. They outline 
different security threats, privacy issues and compliance requirements for a highly available Cloud. 
Although, the authors do not solve any specific problem, their work can provide interesting open research 
issues in this area. 
There are limited research efforts which investigated availability in large scale infrastructure. In (Tan, Gu, & 
Wang, 2010), Tan et al. designed and implemented a prediction system to achieve robust hosting for 
production hosting infrastructure. Specifically, they designed a system called ALERT to predict anomalies in 



the system. In the context of this chapter, anomalies in failure-repair behavior can be viewed as a sub-
problem as addressed by the Tan et al. Moreover, the modeling approach described here can be 
complementary to such experimental work. In (Javadi, Kondo, Vincent, & Anderson, 2010), Javadi et al. 
show how statistical models can be useful to predict availability of an Internet distributed system. Analytic 
models described in this chapter can perhaps be combined with the statistical models proposed by Javadi et 
al. In (Uemura, Dohi, & Kaio, 2009), Uemura et al. used discrete time semi-Markov process to describe the 
stochastic behavior of a scalable intrusion tolerant system. In contrast, for Cloud availability analysis, we 
start with Petri net (PN) based models, to facilitate automated generation of Markov chains and subsequently 
decompose the large PN model into small PNs and eventually to Markov chains. In (Chen, Zhou, & Xiong, 
2010) Chen et al. used a deterministic and stochastic PN method to illustrate the performance of 
producer/consumer based application models in Cloud context. Unlike the approach proposed here, they 
focus only on performance behavior of Cloud. In our previous work (Ghosh, Longo, Naik, & Trivedi, 2010), 
we showed an SRN modeling approach for resiliency analysis of IaaS Cloud but scalability of such approach 
needs to be investigated. The key challenges in developing an analytic model for Cloud are: (i) developed 
models should be accurate by taking into account different system details, and (ii) the models should be 
scalable and tractable i.e., their solution times should be negligible, especially in the case of federated 
environments. In the subsequent sections, we describe how such an analytic model can be developed. 
 

STOCHASTIC  PETRI  NETS AND  REWARD  NETS 
This section presents an overview of SPNs and SRNs. A PN can be formally defined as a 4-tuple: PN = (P, T, 
A, M), where P is the finite set of places (represented by circles), T is the finite set of transitions (represented 
by bars), A is the set of arcs (connecting elements of P and T) and M is the set of markings each of which 
denotes the number of tokens in the places of the net. In SPN, exponentially distributed firing times can be 
associated to the net transitions so that the stochastic process underlying a SPN is a CTMC. In generalized 
SPNs (GSPN) (Marsan, Balbo, & Conte, 1984), transitions are allowed to be either timed  (exponentially 
distributed firing time, drawn as rectangular boxes) or immediate  (zero firing time, represented by thin black 
bars). Immediate transitions always have priority over timed transitions and if both timed and immediate 
transitions are enabled in a marking then timed transitions are treated as if they were not enabled. If several 
immediate transitions compete for firing, a specified probability mass function is used to break the tie. A 
marking of a GSPN is called vanishing  if at least one immediate transition is enabled in it. A marking is 
called tangible  otherwise. GSPN also introduces the concept of inhibitor arc  (represented by a small hollow 
circle at the end of the arc) which connects a place to a transition. A transition with an inhibitor arc cannot 
fire if the input place of the inhibitor arc contains more tokens than the multiplicity of the arc. 
SRNs (Ciardo, Blakemore, Chimento, Muppala, & Trivedi, 1993) are extensions of GSPNs. In SRNs, every 
tangible marking can be associated with a reward rate thus facilitating the computation of a variety of 
performance measures. Key features of SRNs are:  
 

1. each transition may have an enabling function (also called a guard) so that a transition is enabled 
only if its marking-dependent enabling function is true; 

2. marking dependent arc multiplicities are allowed; 

3. marking dependent firing rates are allowed; 

4. transitions can be assigned different priorities; 

5. besides traditional output measures obtained from a GSPN, such as throughput of a transition and 
mean number of tokens in a place, more complex measures can be computed by using reward 
functions. 

PROBLEM DEFINITION 
System model and assumptions 
In IaaS Cloud, when a request is processed, a pre-built image is used to create one or more VM instances. 
When the VM instances are deployed, they are provisioned with request specific CPU, RAM, and disk 
capacity. VMs are deployed on PMs each of which may be shared by multiple VMs. To reduce overall VM 
provisioning delays and operational costs, it is a common practice to group the PMs into a certain number of 



tiered pools. Here, we suppose that PMs are grouped into three pools; hot (running), warm (turned on, but 
not ready) and cold (turned off). Maintaining the PMs in three pools (in general, multiple tiered pools) helps 
to minimize power and cooling costs without incurring high startup delays for all VMs. A pre-instantiated 
VM can be readily provisioned and brought to ready state on a running PM (hot PM) with minimum 
provisioning delay. Instantiating a VM from an image and deploying it on a warm PM needs additional 
provisioning time. PMs in the cold pool are turned-off when not in use and deploying a VM on such a PM 
adds to the startup delays. A performability model of this system was presented in (Ghosh, Trivedi, Naik, & 
Kim, 2010) where it has been shown that the “bottleneck” model is the availability model. Hence, the 
objective of this chapter is to show a scalable availability model of Cloud service with the following 
assumptions:  
 

(1) Variety of failures/repairs can occur in a Cloud environment such as failure/repair of hardware, 
software, hypervisor, VM, OS and applications. Here, we consider only the net effect of different 
failures and repairs of PMs in the hot, warm and cold pools. We do not consider software and OS 
failures in a VM. Typically, these failures are handled by restarting the VM. Although the cause of a 
PM failure can be because of variety of reasons, in our analysis we consider the net combined effect 
on the PM failure rate. However, it is possible to extend such availability model to capture detailed 
PM failure modes and recovery steps as in (Trivedi, 2001; Trivedi, Wang, Hunt, Rindos, Smith, & 
Vashaw, 2008). 
 

(2) We assume that all times to failure are exponentially distributed. Equivalent mean time to failure 
(MTTF) of each hot PM is 1/�� and that of each warm PM is 1/��. Typically 1/�� is higher than 
1/�� by a factor of 2 to 4. Cold machines can fail with a very low failure rate 1/�� with �� � �� and 
�� �  ��. It is possible to remove the assumption of exponential distribution as done in (Wang, 
Fricks, & Trivedi, 2003).  
 

(3) All PMs in a pool are identical. Failure of a PM in one pool triggers migration of a PM (if available) 
from other pools to replace the failed one. When a hot PM fails, the failed PM needs to be repaired 
and at the same time the system tries to replace it by a warm PM, if available (i.e., in “UP” state). If 
no warm PM is available, replacement is attempted by migrating an available cold PM to the hot 
pool. When a warm PM fails, the failed PM undergoes repair and at the same time it is replaced by a 
PM from the cold pool (if there is at least one PM available in cold pool). We assume that the 
migration process is instantaneous. 
 

(4) Each pool has its own repair facilities. Within a pool, maximum number of PMs that can be repaired 
in parallel is assumed to be 	
. Value of  	
 is assumed to be greater or equal to 1 but less than the 
maximum number of PMs in the pool. When the number of PM failures are higher than  	
, failed 
PMs are put in a queue for repair. Across different pools, repairs can be done in parallel. We assume 
that time to repair is exponentially distributed with mean 1/�. Once a failed PM is repaired, it is 
returned to the original pool where it belonged before failure. If a PM was borrowed from other pool 
to replace the failed PM; such borrowed PM is also returned to its original pool instantaneously.  

 
Problem Formulation 
Assume that  �,  ��, and  �� PMs are initially available in the hot, warm, and cold pools, respectively. A 

possible definition of availability in such a context is that at least � PMs (with � � � � � � �� � ��) 

should be available across all the pools combined in order for the system to be up. Under the failure, repair 
and migration of the PMs across different pools, we show how to compute the average number of PMs in 
each pool at steady state and the effects of downtime on the Cloud service. 
We start by developing a monolithic model using the high level formalism of SRN for the automated 
generation and solution of the underlying Markov chain. The monolithic model is not scalable to the large 
size Clouds that we wish to analyze and that can be present in a federated environment. Hence, we show an 
interacting SRN sub-models approach that is scalable. As an important side-benefit, the decomposition also 
enables us to obtain closed form solutions of sub-models. Three key comparisons are made between these 
two approaches: (i) errors introduced by interacting sub-models, (ii) maximum number of PMs that each 
approach can handle and (iii) solution time required for both the approaches. Through systematic analysis, 



we show that interacting SRN sub-models approach is highly scalable compared to single monolithic 
modeling approach. Closed form solutions of the sub-models are especially useful in providing a highly 
scalable and fast method for the availability analysis of large sized IaaS Cloud.  

 

MONOLITHIC AVAILABILITY MODEL 
Monolithic SRN model for the availability analysis of IaaS Cloud is shown in Figure 1. 

 
Figure 1. Monolithic SRN model for availability analysis of IaaS Cloud.   

 
Input parameters of monolithic model are: (1) initial number of PMs in each pool ( 	,  	�, and  	�), (2) 
MTTFs of hot, warm, and cold PMs (1/ ��, 1/ ��, and 1/ ��, respectively), (3) number of repair facilities 
for each pool (	
), (4) MTTR of a PM (1/�). Among the input parameters,  	,  	�, 	� and 	
 are design 
parameters, MTTF and MTTR values are measured. Five guard functions are defined on the model and they 
are described in Table 1. 

 
Table 1. Guard functions defined on monolithic SRN model and interacting SRN sub-models. 

 
Places ��, ��, and �� represent the hot, warm, and cold pool, respectively. Number of tokens in these places 
indicates the number of “UP” PMs in the corresponding pool. Transitions �����, �����, and ��� 

represent 
the failure event of a hot PM. Since migration of a PM is attempted upon failure of a hot PM, three cases are 
possible: (1) ����� fires if a warm PM is available for migration to the hot pool, (2) ����� fires if the warm 
pool is empty but a cold PM is available to be borrowed, and (3)  ��� fires if both the warm and the cold pool 



are empty so that no PM is available to substitute the failed hot PM. The guard functions ���� and ���� 
model the three mutually exclusive cases. Moreover, rates of these transitions are considered to be dependent 
on the number of tokens in place �� so that the overall hot PM failure rate is equal to �� multiplied by the 
number of available hot PMs. These marking dependent firing rates are represented by the # symbol near the 
input arcs which connect the transitions  �����, �����, and ��� 

to the place ��.  
Upon firing of transition �����, a token is removed from place �� and the number of tokens in place �� 
remains unchanged. At the same time, a token is deposited in place  ���. This place keeps track of number of 
failed PMs that need to be repaired and given back to the warm pool at the end of the repair process. 
Similarly, upon firing of transition �����, a token is removed from place  �� and the number of tokens in 
place  ��  remains unchanged. Simultaneously, a token is deposited in place  ����  to take into account that a 
PM has to be repaired and given back to the cold pool. Upon firing of transition ���, following token 
exchanges happen: (i) removal of a token from place  �� to model the reduction in number of available PMs 
in the hot pool by one and (ii) deposition of a token in place  ��� to model that the failed PM has to be 
repaired and given back to the hot pool. 
Failure-repair behavior of warm pool is modeled similarly. Transitions �����, and ��� model the failure 
event of a warm PM. Two cases are possible: (1) ����� fires if a cold PM is available for migration to warm 
pool, and (2) ��� fires if the cold pool is empty and no PM is available to substitute the failed warm PM. The 
guard function ���� models the fact that the two cases are mutually exclusive. Rates of transitions ����� and 
��� are considered to be dependent on the number of tokens in place �� so that the overall warm PM failure 
rate is equal to �� multiplied by the number of available warm PMs. Firing of ����� removes a token from 
place �� and deposits a token to place  ����� representing the failed PM that needs to be repaired and given 
back to the cold pool. Upon firing of ���, a token is removed from place  ��  and a token is deposited to 
place  ��� representing the failed PM that needs to be repaired and given back to the warm pool. 
Transition ��� fires when a cold PM fails. Rate of such transition is considered to be dependent on the 
number of tokens in place  ��  so that the overall cold PM failure rate is equal to �� multiplied by the number 
of available cold PMs. Upon firing of ���, a token is removed from place ��   and deposited to place  ���.  
Transitions ��
, ��
, and ��
 model the repair of the failed PMs. Rates of these transitions are marking 
dependent to take into account the presence of  	
  repair facilities for each pool. In particular, the rates of 
the above mentioned transitions are reported in Table 2. Guard functions ���� and �� �  allow transitions ��
, 
and ��
 to be enabled only when at least one PM needs to be repaired. Immediate transitions !�
"

, !�
#
, !�
"

, 
!�
#

, and !�
$
 model the instantaneous migrations of repaired PMs to the original pool. 

 

Model outputs 
Outputs of the model are obtained using the Markov reward approach by assigning an appropriate reward 
rate to each marking of the SRN and then computing the expected reward rate both in transient and steady 
state as the desired measures (Trivedi, 2001). Let  %& be the reward rate assigned to marking i of the SRN in 
Figure 1. If  '&(!) denotes the probability for the SRN to be in marking i at time t then the expected reward 
rate at time t is given by ∑  '&(!) %&& . The expected steady state reward rate can be computed by taking into 
consideration the steady state probabilities  '&   of the SRN as

 
∑  '&  %&& . Our measures of interest are 

following. 
(i) Mean number of PMs in each pool - The mean number of PMs in the hot pool is given by the mean 
number of tokens in the corresponding place ��  (+����). Similarly, for the warm and the cold pool we 
consider the mean number of tokens in places  �� and  ��, respectively (+���� and +����). Reward 
assignment for this measures is shown in Table 3. 
(ii) Availability of Cloud service (A) - As mentioned above, we consider the Cloud service to be available if 
the total number of PMs across all hot, warm, and cold pool is greater than or equal to � (with � � � �
� � �� � ��). As a consequence, the reward assignment for this measure is the one shown in Table 3.  
 



 
Table 2. Rates of transitions modeling the repair of failed PMs in monolithic SRN model and interacting SRN 

sub-models  
 

 
Table 3. Reward rates to compute different output measures from monolithic SRN model and interacting SRN 

sub-models  
 

INTERACTING SRN SUB-MODELS 
We decompose the monolithic model into three sub-models, each of which captures the failure and repair  
behavior of a single pool. Here, we describe how these three sub-models interact with each other and can be 
used to compute the same quantities that are computed from the monolithic model. The SRN sub-models for 
the hot, warm and cold pool are shown in Figures 2, 3 and 4, respectively. Observe that some of the 
transitions of the monolithic model are present in more than one sub-model. Hence, to obtain overall model 
solution, sub-models exchange some of the input parameters and output measures. Guard functions ����, 
����, and ���� ,re not present in the interacting sub-models approach while the rates of transitions ��
, ��
, 
and ��
 are still marking dependent according to the functions described in Table 2.  

The structure of the hot pool sub-model in Figure 2 is obtained from the structure of the monolithic model by 
keeping the transitions that directly interact with place �� and disregarding the others and the related places. 
Input parameters to this sub-model are: (i) initial number of PMs in hot pool (	�), (ii) hot PMs failure rate 
(��), (iii) hot PMs repair rate (�), (iv) number of repair facilities in the hot pool (	
). Among these input 
parameters, 	� and 	
 are design parameters, �� and � are measured. Assume -� and -� are the probabilities 
to have at least one PM available in warm and cold pool, respectively as computed from the warm and cold 
pool sub-models discussed later. In the hot pool sub-model, the rate of transition ����� is ��-�. This is 
because, in the monolithic model, an arc is present from place �� to such a transition. In the hot pool sub-
model, place �� is not present but still the impact of the behavior of the warm pool sub-model on the 
throughput of transition ����� needs to be taken into account by scaling its rate with the quantity -�. 
Similarly, the rate of transition ����� is ��(1 . -�)-� because it is necessary to take into account the 
presence of the arc from place �� (by multiplying with -�) and the guard function ���� (by multiplying with 
1 . -�) as used in the monolithic model. Finally, the rate of transition ��� is ��(1 . -�)(1 . -�) because 
we need to take into account the presence of the guard function ����. From the hot pool sub-model we 
compute +�#��� that represents the mean number of tokens in place ��, i.e., mean number of available PMs 
in the hot pool. It will be used in the warm and cold pool SRN sub-models to approximate the rate of 
transitions ����� and �����. Moreover, from the hot pool sub-model we compute the probability (012

) for 
the hot pool to be available, i.e., the probability for the number of tokens in place �� to be greater or equal to 
3� with 0 5 3� � 	�. It will be used to compute the overall Cloud service availability from the interacting 
sub-models. These output measures can be computed by assigning the reward rates reported in Table 3.  



 
Figure 2. SRN sub-model for the availability analysis of the hot pool   

 
Similar to the hot pool sub-model, the structure of the warm pool sub-model in Figure 3 is obtained from the 
structure of the monolithic model by keeping the transitions that directly interact with place �� and 
disregarding the others and the related places. Input parameters to this sub-model are: (i) initial number of 
PMs in warm pool (	�), (ii) warm PMs failure rate (��), (iii) warm PMs repair rate (�) and (iv) number of 
repair facilities for the warm pool (	
). Among these input parameters, 	� and 	
 are design parameters, �� 
and � are measured. Computation of rate of transitions ����� and ��� is similar to the computation of rate of 
transitions �����, �����, and ���  as described for hot pool sub-model. Probability -� is obtained from cold 
pool sub-model. However, the rate of transition ����� needs to be set so that the throughput of this transition 
and the throughput of the transition with the same name in the hot pool sub-model are equal. In fact, the two 
transitions are same in the monolithic model. By equaling the throughput of the such transitions, we obtain: 

%,!6�(�����) 7 ��+�#���  (1) 

where +�#��� is obtained from hot pool sub-model. 

Outputs of warm pool sub-model are: (i) probability (-�) to have at least one token in place ��, i.e., at least 
one PM is available in the warm pool, (ii) mean number of tokens (+�#���) in place ��, i.e., mean number 
of available PMs in the warm pool, and probability (018

) for the number of tokens in place �� to be greater 
or equal to 3� (with 0 � 3� �  	�), i.e., availability of the warm pool. Among these output measures -� 
will be used as an input parameter to the hot pool SRN sub-model to approximate the rates of transitions 
�����, �����, and ���, +�#��� will be used as an input parameter to the cold pool SRN sub-model to 
approximate the rate of transition �����, and 018

 will be used to compute the overall Cloud service 
availability from the interacting sub-models. The reward rates assignment for such output measures are 
shown in Table 3. 

 
Figure 3. SRN sub-model for the availability analysis of the warm pool   

 



Also in the case of cold pool, the structure of the sub-model in Figure 4 can be obtained from the structure of 
the monolithic model by keeping the transitions that directly interact with place �� and disregarding the 
others and the related places. Input parameters to the cold pool sub-model are: (i) initial number of PMs in 
cold pool (	�), (ii) cold PMs failure rate (��), (iii) cold PMs repair rate (�) and (iv) number of repair 
facilities for the cold pool (	
). Among these input parameters, 	� and 	
 are design parameters, �� and �  
are measured. Following similar arguments as in the case of warm pool, we can compute the rate of 
transitions ����� and ����� in the cold pool sub-model: 

 

%,!6�(�����) 7 ��(1 . -�)+�#���  (2) 

and 

%,!6�(�����) 7 ��+�#���  (3) 

where -� and +�#��� are obtained from warm pool sub-model, and +�#��� is obtained from hot pool sub-
model. Output measures of cold pool sub-model are: (i) probability (-�) to have at least one token in place 
��, i.e., at least one PM is available in the cold pool, (ii) mean number of tokens (+�#���) in place ��, i.e., 
mean number of available PMs in the cold pool, and (iii) the probability (019

) for the number of tokens in 
place �� to be greater or equal to 3� (with 0 � 3� � 	�), i.e., the cold pool availability. -� will be used as an 
input parameter to the hot and warm SRN sub-models to approximate the rate of transitions �����, ���, 
����� and ���. 019

 will be used to compute the overall Cloud service availability. Reward assignments for 
such output measures are reported in Table 3. 

 

Figure 4. SRN sub-model for the availability analysis of the cold pool   
 

All these sub-models and the interactions among them are shown as an import graph in Figure 5. We briefly 
describe the interactions among these models here. The hot pool sub-model computes the mean number of 
PMs in the hot pool (+�#���) that is needed as an input parameter to both the warm and cold pool sub-
models. The warm pool sub-model compute the probability for the warm pool to have at least one available 
PM (-�) and the mean number of PMs in the warm pool (+�#���). The former quantity is used both in the 
hot and cold pool sub-models while the latter is used in the cold pool sub-model. Finally, the output measure 
of old pool sub-model (-�, i.e., the probability for the cold pool to have at least one available PM) is used 
both in the hot and warm pool sub-models. Observe, the import graph shows cyclic dependencies among the 
sub-models. Such dependencies are resolved using fixed point iteration (Mainkar & Trivedi, 1996; Tomek, & 
Trivedi, 1991). 



 

Figure 5. Interactions among the sub-models as an import graph. 
 
Model outputs 
Once the interacting sub-models have been solved, the same output measures of interest for the availability 
analysis of the Cloud service that can be computed from the monolithic model can be obtained. In particular, 
the mean number of PMs in each pool (+�#���, +�#���, and +�#���) are immediately available from the hot, 
warm, and cold pool sub-models, respectively. The availability of Cloud service for a given 3 can be 
computed by combining the availability of hot, warm, and cold pool as computed from hot, warm, and cold 
pool sub-models such that 3� � 3� � 3� : 3. 
 
CLOSED FORM SOLUTION OF THE SUB-MODELS 
In this section, we show the closed form solution for the interacting SRN sub-models approach by using 
equivalent Markov chain models. The Markov chains are reported in the case of 	
 7 1 to simplify 
calculations, but the closed form results can also be derived for the cases 	
 ; 1. The SRN sub-model for the 
hot pool shown in Figure 2 is equivalent to the Markov chain model shown in Figure 6. In this Markov 
chain, state i represents the configuration of the hot pool in which i PMs are available. While solving this 
Markov chain for steady state probability of each state, we can ignore the self-loops (Trivedi, 2001). Hence, 
the Markov chain depicted in Figure 6 is a simple birth-death process where birth rate for state i is 
��(1 . -�)(1 . -�)< and death rate for all states is �. Let 

�=� 7 �� (1 . -�)(1 . -�)  (4) 

Let -�>
 be the steady state probability to be in state i for the Markov chain of Figure 6, i.e., the probability to 

have i PMs in the hot pool. Under such assumptions, -�>
 is given by: 

 

-�>
7 ?�2

(@2A>)

B(@2A>)
(C2)!

&!
-�@2

 with (0 � < � 	� . 1) (5) 

 
and -�@2

is given by: 

 

-�@2
7 �

∑ EF2
(@2A>)

>
G(@2A>)

H@2I!
>!

  (6) 

 
From the steady-state state probabilities, we can compute the mean number of PMs in the hot pool (+�#���) 
that needs to be exchanged with the other sub-models: 
 

+�#��� 7 ∑ <& -�>
  (7) 

 

and the availability of the hot pool: 

012
7 ∑ -�>&   (8)

  
Similar solutions can be found for the warm and cold pools. 



 

 

Figure 6. Markov chain equivalent to the hot pool SRN sub-models 
 
FIXED POINT ITERATION 
To resolve the cyclic dependency among the interacting sub-models, we need to use a fixed point iteration 
approach. Fixed point iteration variables are reported in the import graph depicted in Figure 5. Our fixed 
point equation is given by: 
 

JK 7 LK(JK) (9) 
 

where JK 7 (-� ,  -� , +�#���, +�#���). It can be shown that all variables can be expressed as functions of  
-� and -�. Hence, the fixed point equation (9) can be rewritten as: 
 

NK 7 OK(NK) (10) 
where NK 7 (-� , -�). 
Proof of existence of a solution to equation (10) implies the existence of a solution to equation (9). We use 
the Brouwer’s fixed point theorem (Ortega & Rheinboldt, 1970): “Let  OK: Q R S� T S� be continuous on the 
compact, convex set  Q, and suppose that OK(Q) U Q. Then, OK has a fixed point in Q.” 
In our case, given that -� and -� are probabilities, we can define Q 7 VNK 7 (-� , -�):  -� W �0,1�,  -� W
�0,1�X. By mean of Heine-Borel theorem, it is straighforward to demonstrate that set Q is compact and 
convex. Moreover, given that the component functions of  OK are continuous in Q, then also OK is continuous in 
Q. This proves the existence of a solution for the fixed point equation NK 7 OK(NK). 
    

NUMERICAL RESULTS 
SPNP (Hirel, Tuffin, & Trivedi, 2000) can be used to solve the SRN models. Results have been obtained by 
solving the models for a broad range of parameter space so that they can represent large variety of Clouds. 
However, for space limitation, here we report only interesting results. We assume MTTF of hot PMs to be in 
the range of 1−6 months, MTTF of warm PMs to be in the range of 3.5−12 months and MTTF of cold PMs 
to be in the range of 7 months - 2 years. MTTR of a PM can vary depending on type of repair process: (i) 
software based completely automated repair (1−30 minutes), (ii) completely manual repair (1−5 days) and 
(iii) combination of manual and automated repair (1−12 hours).  
In Table IV, we report the state space and storage requirements for both the monolithic model and interacting 
sub-models. Monolithic model runs into a memory overflow problem when the number of PMs in each pool 
increases beyond 19. We observe that the state space size of the monolithic model increases quickly and 
becomes too large to construct the reachability graph even for small number of PMs. However, with 
interacting sub-models approach, the state space increases at a slower rate as the number of PMs in the 
system is increased. Table IV also shows a comparison of non-zero entries. These entries are number of non-
zero elements in the infinitesimal generator matrix of the underlying continuous time Markov chain. For the 
same number of PMs, number of non-zero entries in interacting sub-models is 3 − 4 orders of magnitude 



smaller compared to the monolithic model. Observe that, for interacting sub-models, in both cases (i.e., 
number of states and number of non-zero entries), we report only the maximum value among the three sub-
models. Since three sub-models are solved separately, we assumed that for a given execution only states and 
non-zero entries of only one sub-model are require to be stored in the memory. Reduction in state space and 
non-zero entries for interacting sub-models also leads to concomitant reduction in solution time needed. A 
comparison of solution times is shown in Table V. Solution time for monolithic model increases almost 
exponentially with the increase in model size. Solution time for interacting sub-models remains almost 
constant with the increase in model size. 

 
Table 4. Comparison of number of states and number of non-zero entries.  

 

 
Table 5. Comparison of solution times in seconds. 

 
In Table VI, we compare the downtime values as obtained from the monolithic model and interacting sub-
models. We assume that Cloud is available if there are at least 3 “UP” PMs across all pools. For the example 
scenario investigated, we vary the value of 3, with 10 PMs in each pool and 30 PMs in total. When 3 is 30, 
any failure of PM results in unavailability of Cloud service. For each value 3, we also change the value of 	
 
which denotes maximum number of PMs that can be repaired in parallel. If 	
 is 1, failed PMs are repaired 
serially, i.e., one after another. MTTFs of hot, warm and cold PMs were assumed to be 1000 hrs, 3500 hrs 
and 5000 hrs respectively. MTTR was assumed to be 3 hrs. Table VI shows that results obtained from the 
interacting sub-models are accurate. As expected, downtime values are higher with increasing in values of 3. 
For each 3, downtime reduces if we increase value of 	
. This gives rise to interesting optimization problems 
as discussed in Section XI. 
 

 
Table 6. Comparison of downtime values in minutes per year. 



 
In Table VII, we show the mean number of PMs in each pool. MTTF and MTTR values for this case were 
assumed to same as in the Table VI. Value of 	
 was assumed to be 1 for this example scenario. Results 
obtained from interacting sub-models are in good agreement with the results obtained from monolithic 
model. In Table VIII, we show the effect of changing MTTF of PMs on downtime. We assume 10 PMs in 
each pool (i.e., 30 PMs in total) and maximum number of parallel repairs in each pool is 2. In this example 
scenario, we further assume that Cloud service is available when at least 28 PMs across all pools are “UP”. 
For each value MTTF of hot PM, MTTFs of warm and cold PM were assumed to be 3.5 times and 5 times 
greater than that of hot PM’s MTTF. 
 

 
Table 7. Comparison of average number of PMs in each pool. 

 
Results described so far were obtained by solving SRN models using SPNP. Next, using the closed form 
solutions for the interacting sub-models, we solve large scale models (order of thousands PMs in each pool). 
Table IX shows that solution time needed for solving large models increases very slowly with the model 
input size. Clearly, interacting sub-models approach facilitates availability analysis of large sized Clouds 
with a reasonably small solution time. 
 
 

 
Table 8. Effect of varying MTTF of PMs with 10 PMs in each pool 

 

 
Table 9. Solution time required for availability analysis of large scale Cloud using closed-form. 

 
DECOMPOSED MODELS IN CLOUD FEDERATIONS 
Cloud federations are characterized by the presence of different small and medium Private Clouds, belonging 
to the same or to different organizations, that join each other to achieve a common goal, usually represented 
by the optimization of resources utilization. Public Clouds are usually used as backup when it is necessary to 

deal with load burst that cannot be managed by the Private federation. In (Bruneo, Longo, Puliafito, 2011) 
we showed a methodology based on the use of SRN monolithic models to investigate the more convenient 
strategies to manage a federation of two or more Private or Public Clouds. The final goal was to optimize 
energy consumption and performance in an energy-aware Green computing context. In this chapter, we 
presented a monolithic SRN that can be used to model the availability of a single Cloud infrastructure 
composed of a certain number of pools of PMs. Both the models are characterized by scalability problems. In 
fact, a greater number of Cloud infrastructures and/or PMs in the scenarios that it is necessary to model 



corresponds to the raising of model states and to the impossibility to store and analyze the model in a 
common computer memory.  
The solution to the state space explosion problem that we presented in the present chapter, i.e. to decompose 
the monolithic model in a set of interactive sub-models that can be analyzed by mean of fixed point iteration 
finds a perfect application in a federated environment. In fact, the presence of more than one Cloud 
infrastructure, each of which is characterized by two or more PM pools, would lead to an unmanageable 
monolithic model while is still tractable in a decomposed fashion. The advantages of the interactive sub-
models approach are evident not only from an analysis point of view but also for what concerns clearness 
and conciseness of the representation power. In fact, while the use of SRN monolithic models to represent a 
Cloud federation scenario would lead to a complex and error-prone model with a huge number of places and 
transitions, the use of decomposed models limits the errors and the complexity of the representation. This is 
even more clear if we note that the main functional blocks of the system to be represented (in our case a 
Cloud infrastructure) are usually the same among different administrative domain. For example, warm and 
cold pools sub-models presented in Section VI are very similar and this characteristic is still valid if we 
consider different Clouds. This allows us to represent and solve a single sub-model for each of the functional 
block with different parameters and still be able to analyze the variety of behaviors that are present in a 
federated environment.  

 
DISCUSSIONS AND FUTURE RESEARCH 
In the previous section, we compared the analytic results obtained from monolithic PN model, interacting PN 
sub-models and closed form solutions of Markov chains. The models developed so far can be used by Cloud 
service provider during design, development, testing and operational phases of IaaS Cloud. During the 
design and development stage, the providers can use these models to determine the pool size required to 
offer a specific availability SLA. During the testing and operational stages, the providers can dynamically 
learn, how the repair strategy should be designed (i.e., number of parallel repairs, automated vs. manual 
repairs etc.) to maintain the promised availability SLA.  
While, this chapter outlines the existing research on Cloud availability analysis and describes a novel 
approach for large scale analysis, many open research questions are yet to be solved. With the fast scalable 
approach for modeling availability, one can extend the performability analysis described in (Ghosh, Trivedi, 
Naik, & Kim, 2010) to large size IaaS Clouds. Characterizing the system behavior from such a coupled pure 
performance and availability models with thousands of PMs taking into account workload arrival, admission 
control, queueing, resource provisioning decisions, VM provisioning, and run-time execution in addition to 
the failures is challenging. Combining the performance model with availability model, the economics of 
failure-repair for a given utilization rate of the PMs needs to be determined. For different utilization and 
failure-repair rates, there are different break-even points between loss of revenue and repair costs, which can 
be determined and analyzed. Optimization problems on Cloud availability can also be developed. Table 6 
shows that downtime can be reduced by increasing the maximum number repairs that can be done in parallel. 
Since, there is a cost associated with each repair, an optimal number of repair facilities required to minimize 
the repair cost for acceptable value of downtime can be determined. Our availability models also allow us to 
perform trade-off analysis of longer MTTF vs faster MTTR on system availability, the effect of having 
multiple concurrent repair facilities (i.e., higher labor costs) vs. higher availability but expensive 
components, repairing failed components vs replacing components for the a given service availability and so 
on. Another interesting type of analysis possible with this work is analyzing tradeoff between cost of 
availability SLAs vs operational costs including repair, replacement, and energy costs. These are important 
questions Cloud architects and designers often face. It is possible to answer these type of questions using 
tools based on the modeling and analysis techniques we describe in this chapter.  

 



CONCLUSIONS  
In this chapter, we showed how analytic models can be used to analyze Cloud based systems in the context 
of federation. After a deep analysis of the state of the art in such field, we showed how it is possible to 
overcame the state space explosion problem, deriving from the largeness of scale in such scenarios, by mean 
of an interactive sub-models approach. The reference context is the availability analysis in the presence of  
multiple class of server pools. The possibility to compute closed-form solutions for the sub-models and the 
managing of dependencies among sub-models through the use of fixed-point iterations make the approach 
able to analyze IaaS Cloud systems with thousands of PMs in order of seconds. This is indeed promising in a 
federated environment where a great number of Clouds, each of which is composed by a certain number of 
pools of PMs, interact among each other in order to fulfill their business goals. After discussing  the possible 
applications and the usefulness of the approach for Cloud providers during design, development, testing and 
operational phases, open research questions that are yet to be solved have been summarized and future work 
have been indicated.  

 
REFERENCES 
 
Amazon EC2 (2011). http://aws.amazon.com/ec2. 
 
Bonvin, N., Papaioannou, T. G., & Aberer, K. (2009). Dynamic cost efficient replications in data Clouds. In 
1th ACM Workshop on Automated Control for Datacenters and Clouds (ACDC) (pp. 49-56), Barcelona, 
Spain: ACM Press. 
 
Bruneo, D., Longo, F., Puliafito, A. (2011). Evaluating energy consumption in a Cloud infrastructure. In 
Proceedings of the 2011 IEEE International Symposium on World of Wireless, Mobile and Multimedia 
Networks (WoWMoM) (pp. 1-6), Lucca, Italy: IEEE Computer Society. 
 
Chen, D., Dharmaraja, S., Chen, D., Li, L., Trivedi, K.S., Some, R.R., & Nikora, A.P. (2002).  Reliability and 
availability analysis for the JPL remote exploration and experimentation system. In  Proceedings of the 
International Conference on Dependable Systems and Networks (DSN) (pp. 337-342), Bethesda, MD, USA: 
IEEE Computer Society. 
 
Chen, H., Zhou, C., & Xiong, N. (2010). Petri net modeling of the reconfigurable protocol stack for Cloud 
computing based control systems. In Proceedings of the 1st International Conference on Cloud Computing 
(CLOUDCOM) (pp. 393-400), Indianapolis, IN, USA: IEEE Computer Society. 
 
Ciardo, G., Blakemore, A., Chimento, P.F., Muppala, J.K., & Trivedi, K.S. (1993). Automated generation and 
analysis of Markov reward models using stochastic reward nets. In Linear Algebra, Markov Chains and 
Queuing Models (pp. 145-191), New York, USA: Springer. 
 
Ghosh, R., Longo, F., Naik, V.K., & Trivedi, K.S. (2010). Quantifying resiliency of IaaS Cloud. In 
Proceedings of the IEEE Symposium on Reliable Distributed Systems (SRDS) (pp. 343-347), Los Alamitos, 
CA, USA: IEEE Computer Society. 
 
Ghosh, R., Trivedi, K.S., Naik, V.K., & Kim, D. S. (2010). End-to-End Performability analysis for 
Infrastructure-as-a-Service Cloud: An interacting stochastic models approach. In Proceedings of the Pacific 
Rim International Symposium on Dependable Computing (PRDC) (pp. 125-132), Tokyo, Japan: IEEE 
Computer Society. 
 
Haring, G., Marie, R., Puigjaner, R., & Trivedi, K.S. (2001). Loss Formulae and Their Application to 
Optimization for Cellular Networks. In IEEE Transaction on Vehicular Technology (pp. 664-673), 
Washington, DC, USA: IEEE Computer Society. 
 
 
 



Hirel, C., Tuffin, B., & Trivedi, K. S. (2000). SPNP: Stochastic Petri Nets. Version 6. In Proceedings of the 
11th International Conference on Technology of Object-Oriented Languages and Systems (TOOLS) (p.354),  
Malaga, Spain: Springer. 
 
IBM SmatCloud Enterprise (2001). www.ibm.com/services/us/en/cloud-enterprise/ 
 
Javadi, B., Kondo, D., Vincent, J., & Anderson, D. (2010). Discovering statistical models of availability in 
large distributed systems: An empirical study of seti@home. In IEEE Transaction on Parallel and 
Distributed Systems (pp. 1896-1903), Washington, DC, USA: IEEE Computer Society.  
 
Joshi, K.R., Bunker, G., Jahanian, F., Moorsel, A.P.A.V., & Weinman, J. (2009). Dependability in the Cloud: 
Challenges and opportunities. In Proceedings of the 39th annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN) (pp. 103-104), Lisbon, Portugal: IEEE Computer Society. 
 
Kim, D.S., Machida, F., & Trivedi, K.S. (2009). Availability Modeling and Analysis of a Virtualized System. 
In Proceedings of the Pacific Rim International Symposium on Dependable Computing (PRDC) (pp. 365-
371), Seoul, Korea: IEEE Computer Society. 
 
Kulkarni, V.G. (2010). Modeling and Analysis of Stochastic Systems, Boca Raton, FL, USA: CRC Press - 
Taylor & Francis Group. 
 
Longo, F., Ghosh, R., Naik, V.K., & Trivedi, K.S. (2011). A Scalable Availability Model for Infrastructure-as-
a-Service Cloud. In Proceedings of the 41st annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN) (pp. 335-346), Hong Kong, China: IEEE Computer Society.  
 
Mainkar, V., & Trivedi, K.S. (1996). Sufficient conditions for existence of a fixed point in stochastic reward 
net-based iterative models. In IEEE Transactions on Software Engineering (pp. 640–653), Washington, DC, 
USA: IEEE Computer Society. 
 
Marsan, M.A., Balbo, G., & Conte, G. (1984). A class of generalized stochastic petri nets for the 
performance evaluation of the multiprocessor systems. In ACM Transactions on Computer Systems (pp. 93-
122), New York, USA: ACM Press. 
 
Nicol, D.M., Sanders, W.H., & Trivedi, K.S. (2004). Model-based evaluation: From dependability to 
security. In IEEE Transactions on Dependable and Secure Computing (pp. 48-65), Washington, DC, USA, 
IEEE Computer Society. 
 
Ortega,  J.M., & Rheinboldt, W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. 
New York, USA: Academic Press. 
 
Smith, W.E., Trivedi, K.S., Tomek, L.A., & Ackaret, J. (2008). Availability analysis of blade server systems. 
In IBM Systems Journal (pp. 621-640), Indianapolis, IN, USA: IBM Press. 
 
Tomek, L., Muppala, J., & Trivedi, K.S. (1993). Modeling Correlation in Software Recovery Blocks. In 
IEEE Transactions on Software Engineering (pp. 1071-1086), Washington, DC, USA: IEEE Computer 
Society. 
 
Tan, Y., Gu, X., & Wang, H. (2010). Adaptive system anomaly prediction for large-scale hosting 
infrastructures. In Proceedings of the 29th ACM  Symposium on Principles of distributed computing (PODC) 
(pp. 173-182), Zurich, Switzerland: ACM Press. 
 
Tomek, L., & Trivedi, K.S. (1991). Fixed-Point Iteration in Availability Modeling. In Informatik-
Fachberichte, Vol. 283 (pp. 229-240), Berlin, Germany: Springer-Verlag. 
 
 
Trivedi, K.S. (2001). Probability and Statistics with Reliability, Queuing, and Computer Science 
Applications. New York, USA: John Wiley and Sons. 



 
Trivedi, K.S., Kim, D.S., Roy, A., & Medhi, D. (2009). Dependability and security models. In Proceedings of 
the 7th International Workshop on the Design of Reliable Communication Networks (DRCN) (pp. 11-20), 
Washington, DC, USA: IEEE Computer Society. 
 
Trivedi, K.S., & Sahner, R. (2009). SHARPE at the age of twenty two. In Sigmetrics Performance 
Evaluation Review (pp. 52-57), New York, USA: ACM Press. 
 
Trivedi, K.S., Vasireddy, R., Trindade, D., Nathan, S., & Castro, R. (2006). Modeling High Availability 
Systems. In Proceedings of the Pacific Rim International Symposium on Dependable Computing (PRDC) 
(pp. 154-164), Riverside, CA, USA: IEEE Computer Society. 
 
Trivedi, K.S., Wang, D., Hunt, D.J., Rindos, A., Smith, W.E., & Vashaw, B. (2008). Availability Modeling of 
SIP Protocol on IBM WebSphere. In Proceedings of the Pacific Rim International Symposium on 
Dependable Computing (PRDC) (pp. 323-330), Taipei, Taiwan: IEEE Computer Society. 
 
Uemura, T., Dohi, T., & Kaio, N. (2009). Availability analysis of a scalable intrusion tolerant architecture 
with two detection modes. In Proceedings of the 1st International Conference on Cloud Computing 
(CLOUDCOM) (pp. 178-189), Beijing, China: Springer. 
 
Vishwanath, K.V., & Nagappan, N. (2010). Characterizing Cloud computing hardware reliability. In 
Proceedings of the ACM Symposium on Cloud Computing (SOCC) (pp. 193-204), Indianapolis, IN, USA: 
ACM Press. 
 
Wang, D., Fricks, R.M., & Trivedi, K.S. (2003). Dealing with non-exponential distributions in dependability 
models. In Performance Evaluation - Stories and Perspectives (pp. 273-302), Vienna, Austria: 
Oesterreichchische Computer Gessellschaft. 
 
Yang, B., Tan, F., Dai, Y.S., & Guo, S. (2009). Performance evaluation of Cloud service considering fault 
recovery. In Proceedings of the 1st International Conference on Cloud Computing (CLOUDCOM) (pp. 571-
576), Beijing, China: Springer. 
  
Yin, L., Fricks, R.M., & Trivedi, K.S. (2002). Application of semi-Markov process and CTMC to evaluation 
of UPS system availability. In Proceedings of the Annual Reliability and Maintainability Symposium (pp. 
584-591), Seattle, WA, USA: IEEE Computer Society. 
 
ADDITIONAL READING 
 
Chen, D., Trivedi, K.S. (2001). Analysis of Periodic Preventive Maintenance with General System Failure 
Distribution. In Proceedings of the Pacific Rim International Symposium on Dependable Computing (PRDC) 
(pp. 103-107), Seoul, Korea: IEEE Computer Society.  
 
Das, C.R., Mohapatra, P., Tien, L., Bhuyan, L.N. (1993). An availability model for MIN-based 
multiprocessors. In IEEE Transaction on Parallel and Distributed Systems (pp. 1118-1129), Washington, DC, 
USA: IEEE Computer Society.  
 
Floyd, F., Hawkins, M. (2001). High Availability: Design, Techniques, and Processes. Upper Saddle River, 
NJ, USA: Prentice Hall. 
 
Fricks, R., Trivedi, K.S. (1997). Modeling Failure Dependencies in Reliability Analysis Using Stochastic 
Petri Nets. In Proceedings of the 11th European Simulation Multiconference (ESM), Istanbul, Turkey: ACM 
Press.  



Goldschmidt, T., Dittrich, A., Malek, M. (2009). Quantifying Criticality of Dependability-Related IT 
Organization Processes in CobiT. In Proceedings of the Pacific Rim International Symposium on Dependable 
Computing (PRDC) (pp. 336-341), Seoul, Korea: IEEE Computer Society.  
 
Goseva-Popstojanov, K., Trivedi, K.S. (2000). Stochastic Modeling Formalisms for Dependability, 
Performance and Performability. In Performance Evaluation: Origins and Directions (pp. 403-422), Berlin, 
Germany: Springer-Verlag. 
 
Grottke, M., Nikora, A.P., Trivedi, K.S. (2010). An Empirical Investigation of Fault Types in Space Mission 
System Software. In  Proceedings of the International Conference on Dependable Systems and Networks 
(DSN) (pp. 447-456), Fairmont Chicago – Millennium Park, Chicago, IL, USA: IEEE Computer Society. 
 
Haberkorn, M., Trivedi, K.S. (2007). Availability Monitor for a Software Based System. In Proceedings of 
the 10th IEEE High Assurance Systems Engineering Symposium (HASE) (pp. 321-328), Dallas, TX, USA: 
IEEE Computer Society. 
 
Kim, D.S., Machida, F., Trivedi, K.S. (2009). Availability Modeling and Analysis of a Virtualized System.  
In Proceedings of the Pacific Rim International Symposium on Dependable Computing (PRDC) (pp. 365-
371), Seoul, Korea: IEEE Computer Society. 
 
Lanus, M., Yin, L., Trivedi, K.S. (2003). Hierarchical Composition and Aggregation of State-Based 
Availability and Performability Models. In IEEE Transaction on Reliability (pp. 44-52), Washington, DC, 
USA: IEEE Computer Society.  
 
Lee, F., Marathe, M. (1999). Beyond Redundancy: A guide to designing high-availability networks. 
Indianapolis, ID, USA: Cisco Press. 
  
Malek, M. (2008). Online Dependability Assessment through Runtime Monitoring and Prediction, Panel 
Contribution. In Proceedings of the 7th European Dependable Computing Conference (EDCC) (p.181), 
Kaunas, Lithuania: IEEE Computer Society. 
 
Malhotra, M., Trivedi, K.S. (1994). Power-Hierarchy of Dependability-Model Types. In IEEE Transactions 
on Reliability (pp.493-502), Washington, DC, USA: IEEE Computer Society.  
 
Malhotra, M., Trivedi, K.S. (1995).  Dependability Modeling Using Petri-Nets. In IEEE Transactions on 
Reliability (pp.428-440), Washington, DC, USA: IEEE Computer Society.  
 
Mendiratta, V. (1999). Reliability Analysis of Clustered Computing Systems. In Proceedings of the 
International  Symposium on Software Reliability Engineering (ISSRE) (pp.268-272), Boca Reton, FL, 
USA: IEEE Computer Society.  
 
Mishra, K., Trivedi, K.S. (2006). Model Based Approach for Autonomic Availability Management. In 
Service Availability (pp.1-16), Berlin, Germany: Springer-Verlag.  
 
Muppala, J., Sathaye, A., Howe, R., Trivedi, K.S. (1992). Dependability modeling of a heterogeneous 
VAXcluster system using stochastic reward nets. In Hardware and Software Fault Tolerance in Parallel 
Computing Systems, New York, USA: Ellis Horwood. 
 



Muppala, J., Ciardo, G., Trivedi, K.S. (1994). Stochastic Reward Nets for Reliability Prediction. In 
Reliability, Maintainability and Serviceability (pp.9-20), Washington, DC, USA: SAE International.  
 
Pecchia, A., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K. (2011). Improving Log-Based Field Failure Data 
Analysis of Multi-Node Computing Systems. In  Proceedings of the International Conference on Dependable 
Systems and Networks (DSN) (pp.97-108), Hong Kong, China: IEEE Computer Society.  
 
Salfner, F., Lenk, M., Malek, M. (2010). A survey of Online Failure Prediction Methods. In ACM Computing 
Surveys (pp.1-42),  New York, USA: ACM Press. 
 
Sahner, R.A., Trivedi, K.S., Puliafito, A. (1996). Performance and Reliability Analysis of Computer Systems: 
An Example-Based Approach Using the SHARPE Software Package, Norwell, MA, USA: Kluwer Academic 
Publishers. 
 
Smith, R.M., Trivedi, K.S., Ramesh, A.V. (1988). Performability Analysis: Measures, an Algorithm, and a 
Case Study. In IEEE Transactions on Computers (pp. 406-417), Washington, DC, USA: IEEE Computer 
Society.  
 
Stewart, W.J. (1994). Introduction to the Numerical Solution of Markov Chains, Princeton, NJ, USA: 
Princeton University Press. 
 
Trivedi, K.S., Kim, D.S., Roy, A., Medhi, D. (2009). Dependability and security models. In Proceedings of 
the 7th International Workshop on the Design of Reliable Communication Networks (DRCN) (pp. 11-20), 
Washington, DC, USA: IEEE Computer Society. 
 
Trivedi, K.S., Kim. D.S., Yin, X. (2012). Multi-State Availability Modeling in Practice. In Recent Advances 
in System Reliability (pp.165-180), Berlin, Germany: Springer-Verlag. 

 

KEY TERMS & DEFINITIONS 
 
Availability: In IaaS Cloud context, availability is the degree to which the Cloud infrastructure is able to 
provide VMs to clients in the face of hardware/software failures and repairs. Simply put, availability is the 
proportion of time the IaaS Cloud is in a functioning condition. 
 
Analytic model: In performance and availability evaluation context, an analytic model is a mathematical tool 
that allows to do "what-if" analysis and predict the behavior of a real system. In contrast with simulation and 
measurement based approach, can provide results in smaller time. 
 
Petri nets: Petri nets are high-level, graphical and mathematical formalism that allows a modeler to describe 
a system without explicitly enumerating its states. Compared to Markov chains and other state space 
formalisms, Petri nets are easy to understand for non-expert users but maintain an exact mathematical 
definition of their execution semantics, with a well-developed mathematical theory for process analysis. 
Petri-nets are used when hand-generation of Markov chain is difficult. 
 
Stochastic reward nets: An extension of  generalized stochastic Petri nets in which every state of the 
underlying Markov chain can be associated with a reward rate thus facilitating the computation of a variety 
of performance and availability measures. 
 
Monolithic model: A single self-contained analytic model that allows to describe the behavior of a system 
and predict its performance and/or availability characteristics as a whole. In many cases, accurate analytic  
analysis with monolithic models usually requires dealing with large number of system states, leading to state-



space explosion problem. 
 
Interacting sub-models: A possible solution to the state-space explosion problem posed by monolithic model 
is to decompose the monolithic model to a set of sub-models each of which describes the behavior of one of 
the system components. The sub-models interact among themselves by exchanging parameters. Such 
interactions can be described by an import graph. 
 
Fixed point iterations: A technique that allows to resolve cyclic dependencies among interacting sub-models 
to obtain model solutions without incurring significant errors. Fixed-point iterations are used to solve the 
equations where the unknown variables can be expressed only in implicit form. Three mathematical issues 
important to fixed-point iterations are: (i) existence of a solution, (ii) uniqueness of a solution and (iii) rate of 
convergence. 


